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Classifying Environmental System Situations by means
of Case-Based Reasoning: a Comparative Study

Héctor Núñeza, Miquel Sànchez-Marrèa, Ulises Cortésa, Quim Comasb,
Montse Martínezb and Manel Pochb
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bLaboratori d'Enginyeria Química i Ambiental. Universitat de Girona. Campus de Montilivi. 17071 Girona.
{quim, montse, manel}@lequia.udg.es

Abstract: The step of identifying to which class of operational situation belongs the current Environmental
System situation is a key element to build successful Environmental Decision Support Systems (EDSS).
Case-Based Reasoning (CBR) is a good technique to solve new problems based in previous experience. Main
assumption in CBR relies in the hypothesis that similar problems should have similar solutions. When
working with labelled cases, the retrieval step in CBR cycle can be seen as a classification task. The new
cases will be labelled (classified) with the label (class) of the most similar case retrieved from the Case Base.
In Environmental Systems, these classes are operational situations. Thus, similarity measures are key
elements in obtaining a reliable classification of new situations. This paper describes a comparative analysis
of several commonly used similarity measures, and a study on its performance for classification tasks. In
addition, it introduces L’Eixample distance, a new similarity measure for case retrieval. This measure has
been tested with good accuracy results, which improve the performance of the classification task. The testing
has been done using two environmental data sets and other data sets from the UCI Machine Learning
Database Repository.

Keywords: similarity assessment, environmental situation classification, case retrieval, case-based reasoning.

1.    INTRODUCTION

The management of Environmental Systems is a
very complex and dangerous task. The step of
identifying to which class of operational situation
belongs the current Environmental Systems
situation is a key element to build successful
Environmental Decision Support Systems (EDSS).
If EDSS are able to make reliable diagnostics, then
the proposed solutions by EDSS will be accurate
and optimal enough to lead the Environmental
System to a normal operation state. This diagnosis
phase is especially difficult due to multiple
features involved in most Environmental Systems,
such as chemical, biological, physical, inflow-
variability, microbiological and temporal. This is
the reason why many Artificial Intelligence
techniques have been used in recent past years, to
try to solve these classification tasks. Integration
of AI techniques in EDSS has led to obtain more
accurate and reliable EDSS. Case-Based
Reasoning (CBR) can be a good technique to make

diagnosis based in previous experience. Main
assumption in CBR relies in retrieving the most
similar cases or experiences among those stored in
the Case Base. Then, previous solutions given to
these most similar past-solved cases can be
adapted to fit new solutions for new cases or
problems in a concrete domain, instead of derive
them from scratch. When working with labelled
cases, the retrieval step in CBR cycle can be seen
as a classification task. The new cases will be
labelled (classified) with the label (class) of the
most similar case retrieved from the Case Base. In
Environmental Systems, these classes are
operational situations. Thus, similarity measures
are key elements in obtaining a reliable
classification of new situations. Theoretical
frameworks for the systematic construction of
similarity measures have been described in
Osborne and Bridge [1996], Osborne and Bridge
[1997], Bridge [1998]. Other research work
introduced new measures for a practical use in
CBR systems, such as Bayesian distance measures
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in Kontkanen et al. [2000] and some
heterogeneous difference metrics in Wilson and
Martínez [1997]. Also, a review of some used
similarity measures was done in Liao and Zhang
[1998].
This paper aims to analyse and to study the
performance of several commonly used measures
in practical use, for a better classification of
environmental situations. In addition, L’Eixample
distance, a new similarity measure for case
retrieval, is introduced. This measure tries to
improve the competence of a CBR system,
providing flexibility and adaptation to
environmental domains where some attributes
have a substantial higher importance than others.
This similarity measure has been tested against
some other related and well-known similarity
measures with good results. Measures are
evaluated in terms of classification accuracy on
unseen cases, measured by a ten-fold cross-
validation process. In this comparative analysis,
we have selected two basic similarity measures
(Euclidean and Manhattan), two unweighted
similarity measures (Clark and Canberra) and two
heterogeneous similarity measures (Heterogeneous
Value Difference Metric and Interpolated Values
Difference Metric). Although all these are distance
measures, we can refer to similarity measures by
means of the relation:

),(1),( yxDISTyxSIM −=

The paper is organised in the following way.
Section 2 outlines main features about Case-Based
Reasoning. In Section 3, background information
on selected distance measures is provided. Section
4 introduces L’Eixample distance measure. Section
5 presents the results comparing the performance
of all measures for classification tasks tested on
two environmental databases and six databases
from the UCI Machine Learning Repository.
Finally, in Section 6 conclusions and future
research directions are outlined.

2.    CASE-BASED REASONING

CBR systems have been used in a broad range of
domains to capture and organise past experience
and to learn how to solve new situations from
previous past solutions. Case-based Reasoning in
continuous situations has been applied in CIDA
Joh [1997], an assistant for conceptual
internetwork design, and NETTRAC, Brandau et
al. [1991] as a case-based system for planning and
execution monitoring in traffic management in
public telephone networks. In Environmental
sciences, CBR has been applied in different areas
with different goals, because of its general

applicability. It has been used in information
retrieval from large historical meteorological
databases Jones and Roydhouse [1995], in
optimisation of sequence operations for the design
of wastewater treatment systems Krovvidy and
Wee [1993], in supervisory systems for
supervising and controlling WWTP management
R-Roda et al. [1999], Sànchez-Marrè et al [1997],
in decision support systems for planning forest fire
fighting Avesani et al. [1995], in case-based
prediction for rangeland pest management
advisories by Branting et al [1997], or in case-
based design for process engineering Surma  and
Brauschweig [1996].

CASE
LIBRARY

DOMAIN
KNOWLEDGE

NEW
CASE

RETRIEVED
CASES

BEST
CASE

ADAPTED
SOLUTION

SUCCESSFUL /
FAILURE

SOLUTION

RETRIEVAL

INDEX

SIMILARITY
ASSESMENT

ADAPTATION

EVALUATION
LEARNING

Figure 1. The general case-based reasoning
paradigm

The basic reasoning cycle of a CBR agent can be
summarised by a schematic cycle (see figure 1). In
Aamodt and Plaza [1994] they adopt the four REs
schema:

• Retrieve the most similar case(s) to the new
case. Similarity measures are involved in this
step.
• Adapt or Reuse the information and
knowledge in that case to solve the new case.
The selected best case has to be adapted  when it
does not match perfectly the new case.
• Evaluate or Revise of the proposed solution. A
CBR-agent usually requires some feedback to
know what is going right and what is going
wrong. Usually, it is performed by simulation
or by asking to a human oracle.
• Learn  or Retain the parts of this experience
likely to be useful for future problem solving.
The agent can learn both from successful
solutions and from failed ones (repair).

3.   SIMILARITY MEASURES

Most Case-based reasoners use a generalized
weighted distance function such as,
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Currently, there are several similarity measures
that have been used in CBR systems, and some
comparison studies exist among these similarity
measures (see Wilson and Martínez [1997] and
Liao and Zhang [1998]). The results obtained in
these studies show that the different similarity
measures have a performance strongly related to
the type of attributes representing the case and to
the importance of each attribute. Thus, is very
different to deal with only continuous data, with
ordered discrete data or non-ordered discrete data.
To give a greater distance contribution to an
attribute than others less important attributes is
necessary, too. In this study, our new proposed
similarity measure, L’Eixample, is compared
against some others measures that had been used
before, with a very good performance in tests done
in prior studies carried out. These selected
similarity measures are :

3.1    Measures derived from Minkowski’s
metric
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Where k is the number of input attributes. When
r=1, Manhattan or City-Block  distance function is
obtained. If r=2, Euclidean distance is obtained.
When including weights for all the attributes, the
general formula becomes the following:
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Where for not ordered attributes, their contribution
to the distance is,
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and  δ is  the δ of Kronecker

3.2    Unweighted similarity measures

We include in this study two similarity measures
that ignore attribute’s weight:

Clark :
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3.3    Heterogeneous similarity measures

To obtain a broader study and results, other two
distance measures that show very high values of
efficiency have been included. These functions
were proposed in Wilson and Martínez [1997] :

Heterogeneous Value Difference Metric (HVDM) :

),(),(
1

2
aa

m

a
a yxdjiHVDM ∑

=

=

Where m is the number of attributes. The function
da(xa,ya) returns a distance between the two values
x and y for attribute a, and is defined as:
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Where normalized_vdma(x,y), is defined as
follows:
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Where:
• Na,x is the number of instances that have

value x for attribute a;
• Na,x,c is the number of instances that have

value x for attribute a and output class c;
• C  is the number of output classes in the

problem domain

The function normalized_diffa(x,y), is defined as
showed below:
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where σa  is the standard deviation of the numeric
values of attribute a.

Interpolated Value Difference  Metric (IVDM) :
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where  vdma(x,y) is defined as follows:

∑
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C is the number of classes in the database. Pa,x,c is
the conditional probability that the output class is c
given that attribute a has the value x. And:
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Where Na,x is the number of instances that have
value x for attribute a; Na,x,c is the number of
instances that have value x for attribute a and
output class c.

Pa,c(x) is the interpolated probability value of a
continuous value x for attribute a and class c, and
is defined:
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In this equation, mida,u and mida,u+1  are midpoint of
two consecutive discretized ranges such that
mida,u≤ x < mida,u+1 . Pa,u,c is the probability value
of the discretized range u, which is taken to be the
probability value of the midpoint of range u. The
value of u is found by first setting u=discretizea(x),
and then subtracting 1 from u if x<mida,u. The
value of  mida,u can be found as follows:

mida,u = mina + widtha * (u+.5)

4.    L’EIXAMPLE DISTANCE MEASURE

We assumed that an exponential weighting
transformation would be required for a better
attribute relevance characterisation, when the
number of attributes is very high. After a
competence study, we developed a normalised
weight-sensitive distance function, which was
named as L’Eixample distance. It takes into
account the different nature of the quantitative or
qualitative values of the continuous attributes
depending on its relevance.

L’Eixample distance is sensitive to weights. For
the most important continuous attributes, that is
weight > α, the distance is computed based on
their qualitative values. This implies that relevant
attributes having the same qualitative value are
equals, and having different qualitative values are
very different, even when a continuous measure
would be very small. And for those less relevant

ones, that is weight ≤ α, the distance is computed
based on their quantitative values. This implies
that non-relevant attributes having the same
qualitative value are not equals, and having
different qualitative values, are more similar.
L’Eixample distance used to rank the best cases is:
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and,

Ci is the case i; Cj is the case j; Wk is the weight of
attribute k; Aki is the value of the attribute k in the
case i; Akj is the value of the attribute k in the case
j; qtv(Aki) is the quantitative value of Aki; qtv(Akj)
is the quantitative value of Akj; Ak is the attribute
k; upperval(Ak) is the upper quantitative value of
Ak; lowerval(Ak) is the lower quantitative value of
Ak; α is a cut point on the weight of the attributes;
qlv(Aki) is the qualitative value of Aki; qlv(Akj) is
the qualitative value of Akj; #mod(Ak) is the
number of modalities (categories) of Ak;
δqlv(Aki),qlv(Akj) is the δ of Kronecker.

5.    EXPERIMENTAL TEST

To test the efficiency of all similarity measures
tested, a nearest neighbour classifier was
implemented using each one of the seven distance
measures: HVDM, IVDM, Euclidean, Manhattan,
Clark, Canberra and L’Eixample. Each distance
measure was tested in two environmental
databases as well as in six databases from the UCI
database repository. Two real environmental data
bases were selected and tested: Air Pollution
database and Wastewater Treatment Plant database
(WWTP). These databases were selected for
several reasons. One is that they were the most
easily available environmental databases for the
study. Another one is that they represent extreme
difficulty cases. The Air Pollution databases has
no missing values, while the WWTP database has
an average of 35.8% of missing values. Finally, in
both environmental domains, there were human
experts available to help in the validation and
interpretation of results.
The Air Pollution database contains information
about the contamination level of the air in the
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central area of Mexico City. There are 5
continuous attributes indicating the presence of
substances affecting the air quality (ozone, sulphur
dioxide, nitrogen dioxide, carbon monoxide and
total suspended particles). According to these
values, a pollution-degree state is assigned to each
case, which can be: Normal, No_satisfactory, Bad,
Too_bad. This database is available at
www.sma.df.gob.mx/imecaweb/base_datos.htm.
The WWTP database describes the daily operation
of a WWTP located in Catalonia. There are 15
attributes. Taking into account these features an
operational state label is assigned as the
environmental situation. Twenty-four classes are
used. Some of them have very few examples,
making the classification process very difficult.

To verify the accuracy of the environmental
situation classification in both environmental
databases, and class prediction in the other
databases, a test was implemented by means of a
10-fold cross-validation process. The average
accuracy over all 10 trials is reported for each data
test, and the highest accuracy achieved for each
data set is shown in boldface in table 1. Another
feature was taken into account: the accuracy

ordering among the measures, in order to show the
accuracy quality of all measures, and not only the
best one. For each data test, 7 points were given to
the best measure, until 1 point to the worst
measure. The table 1 also shows the number of
instances in each database (#Inst.), the number of
continuous attributes (Cont), ordered discrete
attributes (Disc Ord), not ordered discrete
attributes (Disc NOrd.), number of classes (#Class)
and missing values percent (%Mis.).

5.1    Missing values

In Euclidean, Manhattan, Clark, Canberra and
L’Eixample distance measures, a pre-processing
task was carried out to substitute the missing input
values by the average value obtained of the
instances with valid values. This was done for all
the attributes. In the case of HVDM, a distance of
1 is given when one of the values compared or
both are unknown. IVDM treats the unknown
values as any another value. Thus, if the two
values compared are both missing, the distance
between them is 0.

Table 1. Generalization Accuracy

Similarity Measures Database Characteristics

Database HVDM IVDM Euclid Manh Clark Canberra L’Eixample #
Inst Con Disc

Ord.
Disc
NOrd

#
Class

%
Mis

WWTP 44.65 29.12 45.29 45.16 43.64 43.26 45.42 793 14 0 1 24 35.8
Air Pollution 91.93 92.74 97.23 96.14 90.98 89.90 100 365 5 0 0 4 0
Breast Cancer 94.99 95.57 95.68 96.55 96.35 96.54 96.55 699 0 9 0 2 0
Hepatitis 76.67 82.58 81.45 79.87 81.69 80.21 83.45 155 6 0 13 2 5.7
Horse-Colic 60.53 76.78 78.72 76.82 73.07 72.86 77.61 301 7 0 16 2 30
Iris 94.67 94.67 96 95.33 96 94.66 97.33 150 4 0 0 3 0
Pima Indians
Diabetes 71.09 69.28 67.93 67.67 66.84 67.88 68.23 768 8 0 0 2 0

Soybean (large) 90.88 92.18 90.91 91.06 91.65 90.76 91.06 307 0 6 29 19 21.7
Average
Accuracy: 78.17 79.11 81.65 81.07 80.02 79.51 82.45

Accuracy
ordering: 22 34 38 37 30 18 50

5.2    Discretization and Weight Assignment

Some of the similarity measures have a good
performance when the attributes are all continuous or
all discrete. Others incorporate mechanisms to deal
appropriately all the types of attributes. Our proposal
is to make a discretization on the continuous
attributes. Discretization serves to mark differences
that are important in the problem domain. The
continuous attributes were divided in a number of
intervals equal to the number of present classes in
the database. This division was made through a
statistical analysis of the distribution of the classes
and the values for each attribute.

As there is not any information about the relevance
of attributes in the UCI databases, weights were set
for each attribute to a value depending on the
correlation level between the attribute and the class
label. The assigned weights are in a rank of 0..10.

6.    CONCLUSIONS AND FUTURE WORK

The main result of this paper is to show a
comparison of several similarity measures to
improve the classification of environmental
situations. From the table 1, can be argued that
L’Eixample measure seems to outperform the other
ones in a general case improving the performance of
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a CBR system. Thus, the classification of
Environmental System situations will be improved.
The average accuracy on all the databases is the
highest, and also the accuracy ordering punctuation
is also the best. This improvement is due to the fact
that the domain knowledge of the experts has been
taken into account in the measure, as it has been
recognised by some researchers Leake et al. [1997].
For example, the weights assigned to the attributes
have actually split them between important and
irrelevant. Another important contribution is the
proposal of a novel exponential weight
transformation that gives more importance to
separate important from irrelevant attributes. On the
other hand, a heterogeneous function is proposed in
the sense of discretizing the most important
continuous attributes to improve the retrieval process
and to apply a different criterion of distance for
continuous attributes. Some previous measures were
presented as heterogeneous only by the fact of
applying different functions of distance to the
different attribute types Wilson and Martínez [1997].
A final remark in the analysis result must be made; a
very poor accuracy is obtained for the WWTP
database. This is principally due to the large amount
of missing values present in all the attributes
(35.8%). Moreover, there are 6 attributes, of a total
of 15 attributes, which have more than 50% of
missing values, even reaching an 88.9% in one
feature. The direction of future investigations will be
focused mainly on working in the process of
automatic discretization and in the automatic
assignment of weights, and additionally, in assigning
different weights for each interval found in the
discretization step.
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