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Abstract: The paper presents some contemporary approaches to the spatial environmental data analysis, 
processing and presentation. The main topics are concentrated on the decision–oriented problems of 
environmental and pollution spatial data mining and modelling: valorisation and representativity of data with 
the help of exploratory data analysis, topological, statistical and fractal measures of monitoring networks, 
spatial predictions and classifications, probabilistic and risk mapping, development and application of 
conditional stochastic simulation models. The set of tools used consists of machine learning algorithms 
(MLA) – Multilayer Perceptron, General Regression Neural Networks, Probabilistic Neural Networks, 
Radial Basis Function Networks, Support Vector Machines and Support Vector Regression, and recently 
developed geostatistical predictive and simulation models. The innovative part of the report deals with 
integrated/hybrid models, including ML Residuals Kriging/Cokriging predictions, ML Residuals Simulated 
Annealing/Sequential Gaussian simulations. The objective of the integrated models is twofold: from one side 
ML algorithms efficiently solve problems of spatial non-stationarity, which are difficult for geostatistical 
approach; from another side geostatistical tools are widely and successfully applied to characterise the 
performance of the ML algorithms, analysing the quality and quantity of the spatially structured information 
extracted from data by ML. Moreover, mixture of ML data driven and geostatistical model based approaches 
are attractive for decision-making process.  

 
Keywords: environmental data mining and assimilation, geostatistics, machine learning 

 

1. INTRODUCTION 

 

Most environmental data represent a combination 
of several spatial phenomena of different origin 
and appear as the complex spatial patterns at 
different scales. In some cases the original 
observations are taken with significant 
measurement errors and may contain a number of 
outliers. Spatial trends reproducing large-scale 
processes complicate variography – a basic 
geostatistical tool, describing spatial correlations, 
and sometimes make difficult or impossible 
developing of a valid variogram model. These and 

other facts complicate analysis, processing and 
interpretation of the results. Usually it is supposed 
that data can be decomposed into two parts: 
Z(x)=M(x)+e(x), where M(x) represents large 
scale deterministic variations (trends), and e(x) 
represents small scale stochastic variations. 
Geostatistical approach offers several possible 
models in case of spatial trends (spatial non-
stationarity): universal kriging, residual kriging, 
moving window regression residual kriging, 
science-based approaches, etc. These approaches 
have been considered by Cressie [1991], Deutsch 
et al. [1992], Dowd [1994], Neuman et al. [1984], 
Gambolati et al. [1987] and Haas [1996]. Each of 
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these methods has its own advantages and 
drawbacks. 

The present work is an extension (development of 
Neural Network Residuals Sequential Gaussian 
simulations (NNRSGS)) of the ideas presented by 
Kanevsky et al. [1996], where hybrid model – 
Neural Network Residuals Kriging (NNRK) – has 
been presented for the first time. The basic idea is 
to use feedforward neural network (FFNN), which 
is a well-known global universal approximator to 
model large-scale nonlinear trends, and then to use 
geostatistical interpolators/simulators for the 
residuals.  

One of the principal advantages of ML algorithms 
is their ability to discover patterns in data, which 
are so obscure as to be imperceptible to human 
researches and standard statistical methods; the 
data exhibit significant unpredictable non-
linearity. Containing no data behaviour model, 
MLA depends only on the input data and the inner 
structure of the model, e.g. number of neurones, 
hidden layers, types of connections, information 
flow direction. MLA, depending on its 
architecture, can capture spatial peculiarities of the 
pattern at different scales describing both linear 
and non-linear effects. The performances of MLA 
are based on solid theoretical foundations.  

The objective of the integrated models developed 
in the current paper is twofold: from one side 
MLA efficiently solve problems of spatial non-
stationarity, which are difficult for geostatistical 
approach; from another side geostatistical tools are 
widely and successfully applied to characterise the 
performance of the MLA by analysing the quality 
and quantity of the spatially structured information 
extracted from data. Moreover, mixture of ML 
data driven and geostatistical model based 
approaches are attractive for decision-making 
process because of their interpretability. The real 
case study on soil pollution is considered in detail: 
Chernobyl fallout – large-scale contamination of 
environment by radiologically important 
radionuclides. Details of the data can be found in 
Kanevski et al [1996].  

 

 

2. MACHINE LEARNING RESIDUAL 
GAUSSIAN SIMULATIONS 

 

The present work deals with an important 
development of hybrid MLA+geostat models 
firstly presented by Kanevsky et al. [1996] 
towards probabilistic/risk mapping. In short, the 
basic idea is to use MLA to develop a 

nonparametric, robust model for the large scale 
non-linear structures (detrending) and then to use 
geostatistical models for the analysis of residuals - 
modelling of small scale structured variations. Lets 
look more closely into the original ML Residual 
Simulations. 

1. The data is prepared for the analysis: split into 
training and validation set, checked for 
outliers, analysed with variography tools. If 
ANN is used at the first step, the data is scaled 
on the interval [0.1, 0.9] to facilitate the 
training procedure. 

2. Further ML algorithm is applied. Without loss 
of generality, in the present study Multilayer 
Perceptron (MLP) and Support Vector 
Regression are used. They are well known 
function approximators. The consideration of 
these algorithms for application in ML 
Residual Simulations is presented below. 
Accuracy test is MLA estimation at training 
points. It shows how well the MLA has been 
trained. Validation procedure – when MLA 
estimates values at validation points, which 
have not been used for training, – is a test of 
overall MLA performance, its ability to 
generalise and is especially used to avoid 
overtraining. 

3. Accuracy test provides MLA residuals 
(estimated - measured) which are the base of 
the further analysis. Two cases are possible: 

• residuals are not correlated with the 
measurements, which means, that ANN has 
modelled all spatial structures represented in 
the raw data;  

• residuals show some correlation with the 
samples, than further analysis must be 
performed on the residuals to model this 
correlation.  

The remaining spatial correlation represents short-
range correlation structures. Long-range 
correlation (trend) in the whole area beyond the 
hot spots is very well modelled by MLA. 

4. MLA residuals are explored using variography 
tools. Normal score transformation is 
performed to prepare data for further Gaussian 
simulations.  

5. Sequential Gaussian simulation is applied to 
the MLA residuals.  

The idea of stochastic simulation is to develop a 
spatial Monte Carlo model/generator that will be 
able to generate many, in some sense equally 
probable, realisations of the random function (in 
general, described by joint probability density 
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function). Any realisation of the random function 
is called a nonconditional simulation. Realisations 
that honour the data are called conditional 
simulations. Basically, the simulations are trying 
to reproduce first (univariate distributions) and 
second moment (variograms). The realisations are 
determined by the conditional data, simulation 
model and random seed. The similarities and 
dissimilarities between realisations describe spatial 
variability and uncertainty. Simulations bring 
valuable information for the decision-oriented 
mapping of pollution. Postprocessing of 
simulations gives rise to probabilistic maps: maps 
of probabilities to be above/below some 
predefined decision levels. Gaussian random 
function models are widely used in statistics and 
simulations due to their analytical simplicity, they 
are well understood, and they are limit 
distributions of many theoretical results. They 
were successfully applied in many cases. In this 
work we shall use algorithm known as a 
Sequential Gaussian Simulations. Details on the 
models description and on the implemented 
algorithm can be found in Deutsch and Journel 
[1992].  

6. Simulation value of the residuals appears after 
back normal transformation. Final ML 
Residual Simulations value is a sum of MLA 
estimate and sequential Gaussian simulation 
value of the residuals. 

 

 

3. CASE STUDY 

 

Radioactive soil contamination caused by the 
Chernobyl fallout feature anisotropic highly 
variable and spotty spatial pattern. The multi-scale 
character of the pattern is due to numerous 
influencing factors. Structural analysis of sample 
data discovers limitation for use of stationary 
estimation/simulation models, like kriging or 
stochastic simulation. 

Exploratory spatial data analysis deals with the 
following steps: statistical analysis, spatial moving 
window statistics and trend analysis. This is an 
important phase of the study both for the MLA and 
geostatistical analyses. The basic statistical 
parameters of the Chernobyl data are following: 
minimum value Cs137=5.9, mean value 
Cs137=571.8, maximum value Cs137=4333.9, 
variance Cs137=315372, skewness Cs137=2.7 and 
kurtosis Cs137=16.9. As usually environmental 
data are positively skewed and their distributions 
are far from normal. Concentrations are measured 
in kBq/m2. 

Variogram analysis of normal score data 
discovered long-range structures (50 km) and local 
correlation (10-15 km) (see Figure 1 and 2). This 
conclusion leads to MLA use for trend modelling. 
Another problem with not de-trended data is that 
normal score variogram does not reach the sill=1, 
which is required for normally distributed variable. 

 
Figure 1. Raw directional variograms for normal 

score CS137 samples. 

 
Figure 2. Raw variogram rose for normal score 

CS137 samples. 

In the present study the MLP models with the 
following was used: 2 input neurons, describing 
spatial co-ordinates (X, Y); one or two hidden 
layers; output neuron describing Cs137 
contamination. An important step deals with 
training and testing of the network. 
Backpropagation training with conjugate gradient, 
steepest descent, Levenberg-Marquardt, simulated 
annealing and genetic optimisation algorithms in 
order to avoid local minima were used. The trained 
network has been evaluated by using cross-
validation, and accuracy tests - prediction of the 
training data set with trained ANN. Accuracy test 
is used as a simple test describing how ANN 
captured the correlation between locations and 
contamination. The network has been validated by 
using independent data set. Then ANN is used for 
Cs137 spatial predictions/generalisations - 
mapping. Result for the Cs137 ANN large scale 
mapping is presented in Figure 3.  

This result was obtained by using 5 hidden 
neurones respectively. It is evident that ANN has 
learned non-linear trends and that small-scale 
variations have been ignored. By using more 
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hidden neurones it was practically impossible to 
detect all structured small-scale variations.  

 
Figure 3. Cs137, Artificial Neural Network (one hidden 

layer with 5 neurones) spatial predictions. 

SVR is a recent development of the Statistical 
Learning Theory (Vapnik-Chervonenkis theory). It 
is based on Structural Risk Minimisation and 
seems to be promising approach for the spatial 
data analysis and processing Kanevski et al 
[2001]. There are several attractive properties of 
the SVR: robustness of the solution which is 
important in many applications, sparseness of the 
regression, automatic control of the solutions 
complexity, good generalisation Vapnik [1998]. In 
general, by tuning SVR hyper-parameters it was 
possible to cover the range of spatial function 
regression from overfitting to oversmoothing.  

 
Figure 4. Cs137, Support Vector Regression trend 

modelling. 

Let us present the results of large scale modelling 
using Support Vector Regression approach. High 
flexibility of SVR makes different combinations of 
the parameters suitable for trend modelling. The 
following parameters were selected: isotropic RBF 
kernel, kernel bandwidth – 20 km. This choice is 

based both on the analysis of training and testing 
errors and the analysis of the variogram of the 
resulting trend model. The results are presented in 
Figure 4. X and Y co-ordinates are in cell 
numbers, cell size = dXdY=[1x1] sq.km. 

Trained neural network and Support Vector 
Regression are able to extract some information 
described by spatial correlations from the data. 
The rest information – small scale spatially 
structured residuals - was analysed and modelled 
with the help of geostatistical approach, using 
conditional stochastic simulations model. Obtained 
residuals are spatially correlated with the original 
data and are not correlated with MLA estimates. In 
the present research so called sequential Gaussian 
simulations were applied to the MLA residuals.  

Exploratory variography of spatial correlation 
structures (variogram) of the Nscore transformed 
residuals are presented in Figures 5 and 6. 
Variograms of the Nscore transformed residuals 
can be easily modelled (fitting to theoretical 
model) and Sequential Gaussian simulations can 
be applied (variogram reaches a sill and stabilises). 
Range (distance at which variogram reaches a sill - 
a priori variance of data, dashed line) of the 
variogram has been changed to shorter distances in 
comparison with Figure 1. 

 
Figure 5. Omni-directional variogram of the ANN 

residuals. 

 
Figure 6. Omni-directional variogram of the SVR 

residuals. 

Final ML Residual Sequential Gaussian 
Simulation results are presented as equiprobable 
realisations in Figures 7 and 9.  
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The final stage is a validation of the ML Residual 
Sequential Gaussian Simulation results. There is 
much more variablility on the maps in Figures 7 
and 9 than on the maps in Figure 3 and 4 
respectively, which describes only large-scale 
trends. ML Residual Sequential Gaussian 
Simulations model is exact model - it honours the 
measured data: when measurements errors are 
negligible at sampling points ML Residual 
Sequential Gaussian Simulations estimates equals 
measurements. Comparisons with geostatistical 
prediction models were carried out. Proposed 
models give comparable or better results on 
different data sets. Comprehensive comparisons 
with other ML methods are a topic of current 
research. 

 

Figure 7. Mapping of Cs137 with Neural Network 
Residual Sequential Gaussian Simulations model 

(NNRSGS). 

 
Figure 8. Probability of exceeding level 800 

kBq/m2 for NNRSGS model 

Several important points should be mentioned: 1) 
analysis of residuals is an important also in case 
when only MLA mapping is applied. This helps to 
understand the quality of the results. If there is no 
spatial correlations between residuals it means that 
all spatial information from data have been 

extracted and MLA can be used for prediction 
mapping as well.  

2) Robustness of the approach: how is it sensible 
to the selection of the MLA architecture and 
learning algorithm. Kanevsky et al. showed that 
summary statistics of residuals described by 
variograms is robust versus ANN architecture – 
number of hidden layers and neurones. The same 
robust behaviour in the case presented in this study 
has been obtained both for ANN and SVR 
(varying model parameters). So, we can choose the 
simplest models from MLA capable to learn and 
catch non-linear trends.  

 
Figure 9. Mapping of Cs137 with Support Vector 

Regression Residual Sequential Gaussian 
Simulations model (SVRRSGS). 

 
Figure 10. Probability of exceeding level 800 

kBq/m2 for SVRRSGS model 

Usually accuracy test have been used for the 
analysis and description of what have been learned 
by MLA. Accuracy test measures correlations 
between training data set and MLA predictions at 
the same points. 3). Data clustering is a well 
known problem in a spatial data analysis [Deutsch 
and Journel, 1992]. This problem is related to the 
spatial representativity of data. We have used 
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spatial declustering procedures for preparing three 
data sets: training, testing and validation.  

The similarity and dissimilarity between digital 
models of the reality describes spatial variability 
and uncertainty. The next step deals with the 
probabilistic mapping: mapping to be Above some 
predefined decision level. This is a topic of 
another research related to decision oriented 
mapping of contaminated territories. Usually 
hundreds of simulated models (realizations) are 
generated. The similarity and dissimilarity 
between different equiprobable realizations of the 
reality (using data and available knowledge) 
describes spatial variability and uncertainty of 
data. By developing many of equiprobable 
realizations probabilistic/risk mapping is possible 
as well: mapping of probability to be above/below 
some predefined decision/regulation levels 
(probability of exceeding level 800 kBq/m2 for 
Neural Network/Support Vector Regression 
Residual Sequential Gaussian Simulation models 
is presented in Figures 8 and 10 respectively). This 
is an important advanced information for real 
decision making process.  

 

 

3. CONCLUSIONS 

 

The new non-stationary NNRSGS (neural network 
residual sequential gaussian simulations model) 
and SVRRSim models for the analysis and 
mapping of spatially distributed data have been 
developed. Non-linear trends in environmental 
data can be efficiently modelled by the three layer 
perceptrons. Combinations of MLA and geostat 
models gave rise to decision-oriented risk and 
probabilistic mapping. The promising results 
presented are based on an important case study: 
soil contamination by the most radiologically 
important Chernobyl radionuclides. Other kinds of 
ANN models (also local approximators) can be 
used with possible modifications. The approach 
seems to be useful in many cases when it is 
important to model and to remove non-linear 
trends or large-scale spatial structures. 
Computational cost of the method is rather cheap 
for typical geostatistical problems. But application 
of the method needs deep expert knowledge in 
geostatistical modelling. Extension of the model to 
image processing can require improving and 
adaptation of algorithms, especially from ML side 
recent developments in ML algorithms 
implementations, see e.g. www.torch.ch, are 
promising from the computational point of view 
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