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Abstract:  Stochastic Transfer Function (STF) and Generalised Likelihood Uncertainty Estimation (GLUE) 
techniques are outlined and applied to an environmental problem concerned with marine pollution dose 
assessment. The methods are used to estimate the amount and associated probability distributions of 
radionuclides transferred to marine biota from a given source: the British Nuclear Fuel Ltd (BNFL) repository 
plant in Sellafield, U.K. The complexity of the processes involved, together with the large dispersion and 
scarcity of observations regarding radionuclide concentrations in the marine environment, require efficient data 
assimilation techniques.  In this regard, the basic STF methodology searches for identifiable, linear, Gaussian 
model structures that capture the maximum amount of information contained in the data with an identified 
parsimonious parameterisation. The GLUE based-methods, on the other hand, formulate the problem of 
estimation using a more general Bayesian approach, usually without prior statistical identification of the model 
structure.  As a result, they are applicable to almost any linear or nonlinear stochastic model, although they are 
much less efficient both computationally and in their use of the information contained in the observations. As 
expected in this particular environmental application, the STF approach yields much narrower confidence limits 
for the estimates due to their more efficient use of the information contained in the data.  The STF and GLUE 
techniques are then used to combine information originating from different locations.  A final aim of the paper is 
to use the results obtained in this particular example to explore the differences between the STF and GLUE 
methods.   
 
Keywords: Stochastic Transfer Function; Monte Carlo Simulation analysis; Generalised Likelihood Uncertainty 
Estimation; marine dose assessment; predictive uncertainty; data assimilation.   
 
 
1. INTRODUCTION 
 
The methods used for regulatory purposes in marine 
pollution are normally based on linear regression 
estimates (e.g. Hunt [1984]). In recent years 
compartment-type models have also been developed 
to describe the transfer of pollutants to marine biota 
(e.g. Nielsen [1995]). While the first approach is too 
simplistic, the second almost always leads to over-
parameterised (i.e. poorly defined) problems. 
Moreover, despite the obvious uncertainties in the 
system, both methods are based on a philosophy of 
deterministic-reductionism (see e.g. Young [2002]). 
They assume complete, deterministic knowledge of 
the processes involved; and they do not take into 
account measurement uncertainties, which are 
naturally present in the observations because of their 
normally scattered and sparse nature.  In this paper, 
we propose a different approach that involves 
statistical identification, estimation and prediction 
based on Stochastic Transfer Function (STF) 

modelling techniques. When applicable, these 
techniques yield an identifiable and parametrically 
efficient (parsimonious) model structure, as well as 
providing estimates of the modelling errors and the 
uncertainties on the model parameters (based on 
Gaussian probability assumptions). The resulting 
STF model is in an ideal form for use in model-
based prediction and data assimilation exercises. 
The STF analysis conforms with the Data-Based 
Mechanistic (DBM) modelling philosophy (e.g. 
Young [1998]) and exploits the CAPTAIN Matlab 
Toolbox developed at Lancaster University (see 
http://www.es.lancs.ac.uk/cres/captain/).  

Another objective of the paper is to compare 
the STF approach with an alternative Generalised 
Likelihood Uncertainty Estimation (GLUE) 
procedure of Beven and Binley [1992]. In particular, 
both methods are used to estimate how the marine 
pollution associated with discharges from the British 
Nuclear Fuel Ltd (BNFL) repository plant in 
Sellafield, U.K. affects fish in the marine 
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environment. Finally, the differences between the 
STF approach and GLUE techniques are explored 
when they are used to combine information derived 
from different sources.  
 
2. METHODOLOGY: STF AND GLUE 
TECHNIQUES 
 
The single input, single output STF model can be 
written in the following discrete-time (sampled data) 
equation form:  
 
yt + a1yt −1 + ... + an yt −n =
                      b0ut −δ + ...bmut −δ −m + ηt

          (1) 

   
where yt  and ut  are, respectively, the dose and the 
concentration of the input pollutant at the tth 
sampling instant; δ  denotes any pure, ‘advective’ 
time delay; ηt  represents the noise (not necessarily 
white); and m, n define the model order.  

Here, the RIVID algorithm in the CAPTAIN 
Matlab toolbox and the associated Data Based 
Mechanistic (DBM) modelling concepts are used to 
identify the order of the STF model (the values of n, 
m and δ) and to statistically estimate the associated 
parameters (see e.g. Young [1984]).  Depending on 
the identified order and the estimated values of the 
parameters, the STF description (1) can be 
decomposed into serial, parallel or feedback 
connections of first order systems that often have a 
direct physical interpretation (see e.g. Young 
[1998]). This demonstrates the analogy between 
transfer function and compartmental modelling 
techniques, as applied to transfer of a pollutant in 
the food chain. However, there are two main 
differences. First, the STF model (1) is identified 
and estimated statistically, so ensuring a 
parsimonious model structure and parametric 
identifiability. This means that there is no danger 
that STF models will be over-parameterised, in 
contrast to typical compartment models. Second, the 
STF model is stochastic, with all the uncertainty in 
the model quantified. 

STF model estimation (calibration) is also 
able to exploit recursive estimation (see Young 
[1984], [1999a]), so the model parameters can be 
updated as new observational data are obtained. As 
a result, STF estimation, in its most common form, 
can be considered as a Bayesian approach to model 
estimation and data assimilation for linear models 
under Gaussian assumptions. Moreover, recent 
research has shown that it can be extended further to 
handle a widely applicable State Dependent 
Parameter (SDP) class of non-linear TF models (see 
later). 

The Generalised Likelihood Uncertainty 
Estimation (GLUE) method introduced by Beven 
and Binley [1992] is overtly Bayesian in character. 
A statistical formulation of GLUE is given in 

Romanowicz et al. [1994]. It is particularly 
applicable to large, over-parameterised models, 
where there is no inverse solution; and, hence, the 
estimation of a unique set of parameters, which 
optimise goodness of fit criteria given the 
observations, is not normally possible. The method 
is a simple example of numerical Bayesian 
estimation that exploits Monte Carlo Simulation 
(MCS) based on sampling the parameter values from 
assumed prior probability distributions. The 
technique is based on the estimation of the 
probabilistic weights associated with different 
parameter sets, using arbitrary chosen goodness of 
fit criteria and the derivation of a posterior 
probability distribution function using the Bayes 
rule. This distribution function is subsequently used 
to derive the predictive probability of the output 
variables. The main advantage of GLUE in relation 
to the STF approach lies in the fact that it can be 
applied in a simple fashion to practically any linear 
or nonlinear model. As we shall see, however, it is 
much less efficient than STF, both numerically and 
statistically, when applied within linear-quadratic 
formulation of environmental problems. 
 
3. THE STF APPROACH TO DOSE 
ASSESSMENT 
 
The concentrations of radionuclide 137Cs in the Irish 
Sea derive from low level liquid discharges made by 
the British Nuclear Fuel Ltd (BNFL) repository 
plant in Sellafield. The radionuclides are present in 
sediment, plankton and sea-water, whence they are 
transferred to the fish. The available data are sparse 
and very scattered. They include liquid discharges of 
137Cs from the Sellafield pipe-line (under the 
authorisation of BNFL) dating back to 1952 (Annual 
BNFL Reports). Also available are measurements of 
concentrations of radionuclide in fish flesh at 
different locations within the Irish Sea (Baxter and 
Camplin [1993], Camplin [1995], BNFL Reports 
[1962-1999]). For the present study, the 
observations from different sources have been 
combined for the same species and similar locations 
along the Cumbrian coast. For the purpose of 
comparing the model results with observations, two 
sets of non-uniformly sampled data for fish flesh 
concentrations for two sites (one for calibration and 
one for validation) were chosen for the radionuclide 
137Cs. These sets cover the same period of time 
(1970-1999). All the data were optimally 
interpolated to produce series sampled at a uniform 
monthly sampling interval, using the Dynamic 
Harmonic Regression (DHR) algorithm in the 
CAPTAIN toolbox (Young et al. [1999]).  
Using the RIVID algorithm in the CAPTAIN 
Toolbox, the best identified and estimated (using the 
calibration data) model has the form: 
 
    1 50.9212 0.0107t t t ty y u η− −− = +             (2) 
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The simulated output of this model explains 94% of 
the variance in data (i.e. RT

2 = 0.94 ). It has a 12 
months time constant and a 5 months advective time 
delay. This means that the changes in liquid 
discharges are first detected in fish flesh 
concentrations after a period of 5 months. The effect 
then gradually increases thereafter, with an 
exponential rise time of 12 months, giving a total 
‘travel time’ of 17 months. 

This model was applied to validation data 
giving the results shown in the lower panel of figure 
1. It can be seen that the high observation values do 
not fit within the confidence limits of the estimates 
obtained from the estimation data set. This indicates 
that, on the basis of the estimation data set, some 
features of the transfer process have not been 
sufficiently well captured by the model at the high 
concentration levels. This could be because of 
different behaviour for larger concentrations of 
radionuclides in the sea-water, requiring either a 
non-stationary (time variable parameter) or non-
linear model. But it could also arise from factors 
such as input and output observational errors; or the 
influence of other, unaccounted for processes. 

 
Figure 1. Simulated STF model output (full line) for 
the transfer of radionuclides from liquid discharges 
to fish flesh: calibration stage (upper panel); 
validation stage based on a different data set (lower 
panel). Crosses denote the observations and the 
standard error bounds (95% confidence intervals) 
are shown as dashed lines. 
 
4. USING GLUE AND STF TECHNIQUES TO 
COMBINE INFORMATION FROM 
DIFFERENT SITES 
 
In general, the use of additional data presents no 
problems within the STF approach, since the 
recursive estimation of the parameters combined 
with the Kalman Filter enable the effective 
combination of the information from different, 
simultaneous sources. However, this approach 
requires linearity of the relations within the process 
and introduces Gaussian error for estimates 
residuals. An alternative solution is to use the GLUE 
technique to update estimates of 137Cs fish 
concentrations using data from the other observation 

sources (here the validation set was used for the 
updating).  

The application of the GLUE updating 
procedure in combination with the STF model 
allows us to consider the influence of conditioning 
on the confidence limits of the predictions. In the 
first instance, following normal practice, the prior 
distributions for parameters in the MCS analysis are 
set to be uniform. Typically in GLUE analysis, the 
estimates of parameter ranges are based on the 
preliminary sensitivity analysis. In this example, this 
procedure may lead to the choice of parameter 
ranges that do not adequately represent the STF 
mean estimates and their Gaussian distribution. 
Here, therefore, the parameter ranges equal to about 
ten times STF-derived standard deviations were set 
to yield mean values only slightly different to STF 
estimates. In order to see how the information about 
the prior parameter distribution influences the 
posterior distribution, additional GLUE analysis was 
also carried out using the Gaussian priors for 
parameters with both mean and standard deviation 
values obtained from STF analysis.  

In both of the above investigations, the 
results of the 1000 MCS over 30 year period starting 
from 1970 are used to derive the posterior 
distributions for the parameters (see Romanowicz et 
al. [1994]). Here, the exponent to the sum of square 
errors between simulated and observed 
concentrations is used as a ‘likelihood’ weighting 
for the parameters. The posterior marginal 
cumulative distributions for both model parameters 
obtained in this manner are shown in figure 2. This 
reveals that, as expected, the confidence limits for 
the parameters derived from the GLUE model with 
uniform priors are much wider than those obtained 
from the MCS analysis based on the STF estimates. 
What is more important, the posterior distributions 
obtained from GLUE procedure are flat, and 
different parameter ranges give different (not 
optimal) parameter estimates.   

 
Figure 2 Estimates of the marginal cumulative 
posterior distribution function (cdf): parameter a1 
(upper panel); parameter b0 (lower panel). The 
dashed lines are obtained from flat priors; while the 
full lines show cdfs for Gaussian priors, with the 
mean and standard deviation based on STF 
estimates. 
The posterior distributions of parameters are used to 
derive the predictive distribution of the dose 
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tY , ,( | )t obs tP Y y y< . The predictions y  are 
evaluated as in Romanowicz et al. [1994]: 

, ( )sim t ty y ε= +θ               (3) 

where ysim,t(.) denotes the model output (a function 
of the model parameter vector θ = [a1 b0]T  and the 
uncertainty of model input) obtained from the 
parameter simulations; and εt  denotes the prediction 
error related to model structure and observation 
errors (not known in the prediction stage). In the 
STF approach, this error is assumed to be equal to 
prediction error and is estimated in the estimation 
(calibration) stage of the STF procedure. It is 
assumed here that the distribution of this error 
follows a Gaussian distribution with zero mean and 
the variance derived from the calibration stage in the 
analysis. In other words, it is assumed that 
ε t ≅ y sim,t

cal − yt
cal  (although, in more general 

applications, the mean and the variance are assumed 
unknown: see Romanowicz et al. [1994]). From (3) 
it follows that the standard error bounds on the 
predictions of yt  (i.e. the total prediction error 
bounds) should be derived from the sum of two 
stochastic processes: that arising from parametric 
uncertainty and that caused by observational errors. 
In this regard, it should be stressed that the typical 
GLUE approach considers only the uncertainty 
related to the posterior distribution of parameters 
contained in ysim,t(.), neglecting εt.  

The posterior distributions of parameters 
derived from Gaussian priors are used to derive the 
predictive distribution of the concentrations. In 
order to analyse the influence of correlation between 
prior parameter distributions, two cases are 
considered: first, the case with no correlation 
between the parameters; and second, that with full 
information about the covariance structure of 
parameters, as obtained from the STF analysis. This 
latter case corresponds exactly to the solution 
derived using the normal STF analysis: i.e. STF 
estimation combined with associated MCS analysis 
(see Young [1999b]). As seen in the lower panel of 
figure 3, the variance related to “parameter” error is 
relatively small for STF models, as expected. Most 
of the predictive uncertainty results from the 
prediction error directly related to the observation 
variance. On the other hand, when the parameters 
were varied with the same Gaussian distributions 
around their mean, but without cross-correlation, the 
confidence limits related to the posterior distribution 
of the simulated model output were much wider, as 
shown by the inner dashed curve in the upper panel 
of figure 3. 
 

 
 
Figure 3. 95% confidence intervals for the 
concentration estimates based on MCS (GLUE-
STF) analysis with no correlation between 
parameters (upper panel) and with correlation 
between parameters (lower panel). The inner 
intervals (also dashed but on the lower panel very 
small) correspond to the variance associated with 
parametric errors; the crosses denote the 
observations.  

In this case, the confidence limits relating to 
the prediction errors (3) (including the estimate of 
error ε t  and simulated output uncertainty) were also 
much wider and the resulting “total” 95% predictive 
confidence limits are shown on the same upper 
panel as the outer dashed lines. These upper bounds 
of the confidence limits may be treated as the 
maximum possible error boundaries estimated from 
the data. On this basis, it follows that, in contrast to 
normal usage, the GLUE methodology should 
include the uncertainty of not only the output 
distribution based on the uncertainty in the 
parameter estimates but also that related to the  
prediction errors ε t . 

The possibility of updating the information 
from different sources is considered as one of the 
main advantages of the GLUE technique. Following 
the discussion on the prediction error (3), updating 
can be considered as conditioning the posterior 
parameter distribution, and consequently the 
posterior output distribution, on the basis of a new 
observation set. Here, the confidence limits for the 
output distribution based on the parametric 
uncertainty alone (as typically applied in GLUE), 
would be narrower. We shall show here, that this is 
not necessarily the case when the full uncertainty in 
the model (including the prediction uncertainty) is 
taken into account.  

In order to update the estimates of the 137Cs 
fish concentrations shown in figure 3, the 
“validation” observation set from the other site was 
used as a source of additional information for the 
GLUE technique. Figure 4 illustrates the influence 
of updating information from the two sites using the 
combination of the STF technique and the GLUE 
procedure. The 95% confidence intervals for the 
model updated by the additional observation set 
posterior predictive distribution (lower panel) are 
wider than the non-updated one (upper panel). This 
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results from the larger variance of the errors for the 
second observation set.  Note that in both plots the 
confidence intervals based on posterior cdfs of 
parameters are very small and are not apparent in the 
figure. 
 

 
 
Figure 4. 137Cs concentration estimates in fish flesh: 
the 95% confidence limits based on GLUE-STF 
model conditioned on first observation set (upper 
panel); 95% confidence limits based on GLUE-STF 
model conditioned on both observation sets (lower 
panel). Dashed lines are confidence limits; crosses 
denote observations. 

5. MODEL UPDATING, DATA 
ASSIMILATION AND FORECASTING 

As we have pointed out, the STF model parameters 
can be estimated recursively and so they can be 
either updated ‘on-line’, as additional data are 
received; or the recursive algorithm can be modified 
to allow for Time Variable Parameter (TVP) 
estimation. This yields an estimated parameter 
vector 
ˆ a t| t = [− ˆ a 1,t − ˆ a 2,t ,  ... ,  − ˆ a n,t

ˆ b 0,t
ˆ b 1,t , ... ,  − ˆ b m,t ] 

 where the subscript t|t means that the model 
parameters at any tth sampling instant are estimated 
on the basis of all of the data up to time t (normally, 
this estimate is just denoted by ˆ a t  for convenience). 
Moreover, in the TVP case, backward-recursive 
Fixed Interval Smoothing (FIS) can be introduced, 
where the parameter estimates are further updated so 
that, at each sample time t, the estimate ˆ a t|N  is 
based on all N samples in the data set (see Young 
[1984] [1999a]). This is useful since it yields 
‘smoothed’ estimates of the TVPs that have smaller 
estimation error variance than the ‘forward pass’ 
estimates ˆ a t , and the algorithm can be used to 
interpolate very well over gaps in the data. 

As mentioned previously, another advantage 
of the STF model is that it can be converted easily 
into a stochastic state space form and embedded 
within a KF framework. This has the advantage that 
it allows for state estimation and updating or, when 
combined with the recursive parameter updating, on-
line ‘data assimilation’ and adaptive forecasting. 
Here, the model is continuously updated on-line, so 
that its parameters always reflect the latest data; and 

it can be used to forecast yt  into the future based on 
these latest updates (see e.g. Young [2002])1.  

Of course, these extensions of STF modelling 
only apply if the model is linear or linear with TVPs 
(non-stationary).  Whilst this class of models, 
particularly in the TVP case, can be used to describe 
a wide class of practical environmental systems, it 
does not cover truly nonlinear processes. However, 
it is possible to extend the methodology to nonlinear 
stochastic systems by ‘re-linearisation’, where the 
nonlinear model is linearised at each recursive 
update of the KF in order to allow for updating the 
covariance matrix associated with the parameter 
estimates. The best known algorithm of this type is 
the Extended Kalman Filter (e.g. Jazwinski [1970]). 
However, recent developments in State Dependent 
Parameter (SDP) estimation (Young [2000]; Young 
et al. [2001]) offer an alternative approach to 
handling nonlinear systems. Here, the TVPs are 
estimated in a special recursive manner that allows 
them to be interpreted in terms of the variations in 
other ‘state’ variables (e.g. ut , yt  or other 
physically relevant variables). This very effectively 
extends the range of the recursive estimation and 
data assimilation to a widely applicable class of truly 
nonlinear systems that even includes chaotic 
processes. However, the forecast probability 
distributions are still in a Gaussian form (defined by 
their first two moments) and so further 
developments, using MCS methods, are currently 
being considered to eliminate this restriction. 
 
6. CONCLUSIONS  

The research presented in this paper describes the 
application of STF techniques and GLUE analysis to 
environmental assessment problems based on an 
example of 137Cs radionuclide transfer from liquid 
discharges to fish flesh in Irish Sea near Sellafield, 
UK. The example has shown that a reasonable 
explanation of the data (model fit) and dose 
prediction is achieved by introducing the STF 
model. The differences between the GLUE and 
STF-based approaches have been discussed from the 
point of view of their applicability to modelling 
environmental processes. In the original form of 
Beven and Binley [1992], GLUE differs from 
Bayesian analysis “sensu stricto”; e.g. in the 
subjective choice of the goodness of fit criterion. It 
is a method applicable to any computationally 
tractable linear or nonlinear environmental problem. 
Unlike the STF alternative, however, it assumes that 
there is no unique solution to the inverse problem, 
i.e. the model is over-parameterised and not 
identifiable.  

                                                 
1 Indeed, when used with FIS recursion, it can also be 
used to backcast into the past. 
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In contrast to GLUE, the STF methods used 
here identify and estimate, from the observational 
data, an identifiable and parsimonious model 
structure from amongst all linear structures that have 
an inverse solution. Moreover, the STF method 
yields quantitative information on the posterior 
probability distribution of the parameters in the 
model, as well as the variance of the prediction 
errors. Also, since they are based on recursive 
estimation, STF model parameter estimates and their 
associated covariance matrix can be updated on-line, 
as the data are received. Then, together with the 
Kalman Filter, the continuously updated model can 
be used to develop adaptive data assimilation and 
forecasting algorithms. Of course, as a result of the 
stochastic assumptions required in its derivation, the 
standard, constant parameter STF model form used 
in this paper, is restricted to the class of linear, 
identifiable models with Gaussian disturbances. We 
have pointed out, however, that more sophisticated 
time variable (TVP) and state-dependent parameter 
(SDP) forms of STF analysis are now available that 
remove the linearity and stationarity restrictions. 
Moreover, research is proceeding on the removal of 
the normality assumption.  

Finally, we have shown that one 
disadvantage of the original GLUE method (Beven 
and Binley [1992]) is that it estimates the predictive 
uncertainty bounds based on the uncertainty of the 
output originating from the posterior distribution of 
parameters alone. In so-doing, it neglects the 
uncertainty related to the prediction errors and so 
applies only when the variance of prediction errors 
is small in comparison with the variance of 
parameter-related errors. In the case when 
information about the probability distribution of the 
parameters and prediction errors is available (as in 
the case of the STF model), this assumption may 
well not be fulfilled. The results of the present 
research confirm that, as expected in the case of 
linear, Gaussian models, the STF methods are much 
simpler and yield narrower confidence limits for the 
estimates than the GLUE method. 
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