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Abstract: This paper presents the application of both local and global sensitivity analysis techniques to an 
estimation of the uncertainty of the output of a 3D reaction-diffusion ecological model, which describes the 
seasonal dynamics of dissolved Nitrogen and Phosphorous, and that of the phytoplanktonic and 
zooplanktonic communities in the lagoon of Venice. Two sources of uncertainty were taken into account and 
compared: 1) uncertainty concerning the parameters of the governing equation; 2) uncertainty concerning the 
forcing functions. The mean annual concentrations of Dissolved Inorganic Nitrogen, DIN, was regarded as 
model output, as the current Italian legislation sets a quality target for Total Dissolved Nitrogen in the lagoon 
of Venice. Local sensitivity analysis was initially used, so as to rank the parameters and provide an initial 
estimation of the uncertainty, which is due to an imperfect knowledge of the dynamic of the system. This 
uncertainty was compared with that induced by an imperfect knowledge of the loads of Nitrogen, which 
represent the main forcing functions. On the basis of the results of the local analysis, the most important 
parameters and loads were then taken as the sources of uncertainty, in an attempt to assess their relative 
contribution. The global uncertainty and sensitivity analyses were carried out by means of a sampling-based 
Monte Carlo method. The results of the subsequent input-output regression analysis suggest that the variance 
in model output could be partitioned among the sources of uncertainty in accordance with a linear model. 
Based on this model, 87.8% is due to the uncertainty in the parameters which specify the dynamics of 
phytoplankton and zooplankton only % of the variance in DIN mean annual concentration is accounted for by 
the uncertainties in the three main source, while. 
 
Keywords: uncertainty analysis; 3D water-quality models; lagoon of Venice. 
 

1. INTRODUCTION 
 
In 1999, the Italian government issued a new law 
for the regulation of pollutant loads in water 
bodies, which is based on the so-called Maximum-
Permissible-Loads (MPLs) policy. Within this 
framework, the relevant Local Authorities should 
make an inventory of the sources of pollution and 
then fix the level of emission of each of these 
activities, so as not to exceed a set of given 
concentration thresholds within the system, called 
“Quality Targets”, QTs. 
The effective implementation of the MPLs policy 
in a large coastal water body such as the lagoon of 
Venice is not straightforward, because the actual 
concentration of a given pollutant in water and 
sediment is determined by the “controllable” 
external load, by the “uncontrollable” exchanges 

with the Adriatic sea and by its auto-purifying 
capacity. In principle, mathematical models may 
be of help in the determination of the MPLs, since, 
in numerical terms, the loads are specified by a set 
of boundary conditions: numerical models can 
then be used for determining a functional 
relationship between the set of boundary 
conditions and the output variables which have 
been chosen for comparison with the Quality 
Targets. Once this task has been accomplished, 
one can invert this function, in order to estimate 
the MPLs which are compatible with the target 
[Pastres et al., 2002]. 
Furthermore, once the MPLs have been fixed, it is 
necessary to design a long-term monitoring plan, 
in order to assess whether the quality target has 
been reached. At this stage, it becomes important 
to understand whether the fluctuations in the 
concentration around the annual mean value, or the 
systematic deviation from the target are due to a 
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lack of control in the loads, to fluctuations in the 
uncontrollable exchanges or to variations in the 
“auto purifying capacity”. This question is not 
merely academic, since, in the first case, a revision 
of the MPLs and/or a reinforcement of the control 
over the pollution sources is required, while, in the 
other two cases, the aforementioned costly 
measures are not effective. 
In this paper, we focus on this question, in an 
attempt to make use of a 3D mathematical model 
in order to assess how the uncertainties in the loads 
and in the auto purifying capacity of the system 
can give rise to a total uncertainty in the model 
output which is to be compared with the quality 
target. 
We illustrate this procedure by using the mean 
annual concentration of Dissolved Inorganic 
Nitrogen, DINav, in the waters of the lagoon of 
Venice as a case study. Because of its peculiarity, 
the lagoon of Venice has been thoroughly 
investigated in the past and a 3D reaction-diffusion 
water quality model is already available [Pastres et 
al., 1995, Pastres et al., 2001]. The reaction-
diffusion equation (1), is solved using a finite-
difference scheme.  
 

∂c(x,y,z,t)/∂t= ∇ (K(x,y,z) ∇c(x,y,z,t)) + 
f(c(x,y,z),α,t)     (1) 

 

In eq. (1), c is the state vector, K the tensor of eddy 
diffusivities, f is the reaction term and α the set of 
25 site-specific parameters which are presented in 
Table 1. The model simulates the dynamics of the 
ecosystem up to the second trophic level by using 
twelve state variables, among which there are the 
concentrations of the two main forms of inorganic 
nitrogen, ammonium and nitrate, and that of 
inorganic reactive phosphorous: these chemicals 
are considered to be the main cause of the 
eutrophication in the lagoon and, therefore, the 
current legislation has fixed their quality target. At 
present, the concentration of DIN is above the 
target, while the concentration of phosphorous is 
now low, as its use in detergents was prohibited in 
1986. Ammonium, NH4

+, and nitrate, NO3
-, are 

carried into the lagoon by its tributaries, and are 
directly released from the Industrial area of Porto 
Marghera, on the edge of the lagoon, and from the 
city of Venice and the nearby islands. The 
Nitrogen sources are shown in Figure 1. The 
yearly evolutions of these inputs were modelled 
using Von Neumann-type, time-dependent, 
boundary conditions: the fluxes Φi are specified 
using a set of trigonometric polinomia [Pastres et 
al., 2002], which contain a total of 7x19 
coefficients for each chemical. However, only the 
19 mean annual values of the loads of Ammonia 
and Nitrate are considered here as sources of 
uncertainty. The uncertainty in the auto purifying 
capacity is assumed to be due to the uncertainties 

in the 25 parameters in Table 1, which were used 
to specify the reaction term f in eq. (1), which is 
described in detail in [Pastres et al. 2001]. Thus, 
25+(19x2)=63 potential sources of uncertainty 
were taken into consideration in the sensitivity and 
uncertainty analyses. 
 
Table 1. Parameters of the water-quality model.  
 

Parameter Description Units and value 
kgr Max. grazing rate of 

zooplankton 
0.04 [h-1] 

kpz Half-saturation constant 
for phytoplankton 

1. [mg C-Phy/L] 

kmz Zooplankton mortality 
rate 

0.006 [h-1] 

epz Phyto-Zooplankton 
digestion efficiency 

0.5 [dimensionless] 

kescrez Zooplankton excretion 
rate 

0.002 [h-1] 

GPmax Max phytoplankton 
growth rate at T=topt 

0.12 [h-1] 

kmp Phytoplankton mortality 
rate 

0.005 [h-1] 

krp Phytoplankton 
respiration rate 

0.004 [h-1] 

kn Half-saturation constant 
for nitrogen 

0.05 [mg N/L] 

kp Half-saturation constant 
for phosphate 

0.01 [mg P/L] 

Knit Nitrification rate at 
20°C 

0.0023 [h-1] 

kdec Organic detritus decay 
rate at 20° C 

0.0048 [h-1] 

krear Reaeration rate 0.04584 [h-1] 
kest light extinction 

coefficient 
1. [m-1] 

Esplass Lassiter e Kearnes 
exponential coefficient 

0.1157 [°C-1] 

Tmax phytoplankton max. 
temperature 

30 [° C] 

Topt Phytoplankton optimal 
temperature 

26 [°C] 

Iop Light intensity 
parameter 

50,000 [lux] 

rncp Nitrogen/Carbon ratio 
in phytoplankton 

0.15 [mg N/mg C 

rpcp Phosphorous/Carbon 
ratio in phytoplankton 

0.023 [mg P/mg C] 

roc Oxygen/Carbon ratio 2.66 [mg O/mg C] 
ron Oxygen/Nitrogen ratio 4.5 [mg O/mg N] 
ksed Detritus sedimentation 

rate 
0.016 [h-1] 

ksedP Phytoplankton 
sedimentation rate 

0.0016 [h-1] 

kod Half-saturation constant 
for Oxygen 

2. [mg O/L] 

 
2. METHODS 
 
The sensitivity and uncertainty analyses were 
carried out in two steps. In the first step, the local 
sensitivities of the model output with respect to all 
the parameters were computed. Based on the 
results of the first step, nine “uncertainty factors”, 
i.e. nine sources of uncertainty, were chosen: these 
were six paramters among the most important ones 
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in the reaction term and the three most relevant 
sources of nitrogen. In the second step, a global 
uncertainty analysis with respect to the uncertainty 
factors was performed, by using one of the 
simplest, sampling-based, techniques. 
 

Chioggia inlet 

S16 S4 

S15 

S10 

S3 

S7 

S2 

S6 

S14 

S8 

S9 

S11 

S1 

S5 

Lido inlet 

Malamocco inlet 

Adriatic Sea 

Venice 

  Nitrogen source 

S13 

S12 

 
 

Figure 1 The lagoon of Venice and the sources of 
Nitrogen. 

 
 
2.1 Local sensitivity analysis 
 
Local sensitivity analysis of a dynamic system is 
based on a Taylor series expansion around its 
“nominal” trajectory, that is the trajectory which is 
obtained when the estimates, or nominal values, of 
the parameters are used [Turanyi, 1990]. The 
effect of a small change of a parameter αi on the 
solution of an ODE system: 
 

 dx/dt=f(x,α,t)         (2) 
 

 can be expressed as: 
 

 x(t,αj + ∆αj) = x(t, αj) + (∂x/∂αj)∆αj + … (3) 
 

The partial derivatives ∂x1/∂αj, … ∂xi/∂αj, are called 
first-order sensitivities or, simply, sensitivities, 
Sij(t) = ∂xi/∂αj Information about the, approximate, 
effect of the simultaneous variations in two or 
more parameters can be straightforwardly obtained 
by means of eq. (3): 
 

 x(t,α + ∆α) ≈ x(t, α) + S∆α     (4) 
 

where S = {Sij} is the sensitivity matrix and α is 
the vector of the parameters. 
The sensitivities provide a measurement of the 
“importance” of the parameters and, therefore, can 
be used for ranking them. In order to compare 
parameters which have different physical 
dimensions and numerical values, the ranking is 
usually based on the relative sensitivities, which 
are defined as sr

ij = Sij (αi/xj). The definition of 

sensitivity given above can be extended to a 
distributed parameter system. The basic equation 
needed for the computation of the first-order 
sensitivities of the reaction-diffusion equation (1) 
reads as [Koda et al., 1979]: 
 

∂S (x,y,z,t)/∂t = ∇ (K(x,y,z) ∇S (x,y,z,t)) + 
JS + {∂f/∂α}    (5) 

 

where S is the space-time dependent sensitivity 
matrix, α the vector of parameters, K is the 
diffusivity tensor, and J is the Jacobian matrix. Eq. 
(5) must be solved together with the state equation 
(1): the so-called “direct method”, [Koda et al., 
1979], was used in this application. The elements 
matrices J and the {∂f/∂α} were calculated using 
symbolic calculus: this may appear to be a 
limitation regarding the extension of this approach 
to other problems, but such calculations are now 
performed automatically using a number of 
software packages, which also give the 
corresponding piece of Fortran code as an output. 
Once the sensitivity matrix has been determined, 
eq (4) provides the basis for an estimation of the 
variance in the model output [Turanyi et al., 2000], 
as a function of the standard deviations of the 
parameters. For example, the variance of a model 
output Y which is linear function L(x) of the state 
vector, can be estimated as: 
 Var(Y) = Var(L(x)) ≈ [L( S∆α)]2 
 
2.2 Global sensitivity and uncertainty analysis 
 
The main advantage of the local analysis briefly 
outlined in the previous paragraph is its 
computational efficiency, which allows one to 
estimate the sensitivity matrix for large sets of 
parameters and complex, time-consuming models. 
However, care must be taken in using the results of 
the local analysis when ranking the parameters and 
evaluating the total uncertainty in the model output 
because the local analysis is based on Taylor series 
expansion and, therefore, the assumption of 
linearity between the perturbations of the 
parameters and the variation of the output may be 
violated when the whole ranges of variation of the 
parameters are considered. The aim of the so-
called “global” methods of is to estimate the 
uncertainty of model output and to apportion it to 
the uncertainty in the “input factors”, which may 
include, besides the parameters, the forcing 
functions, the boundary and initial conditions, as 
well as alternative model structures. Global 
methods are based on the sampling of the 
distribution function of the input factors and on the 
repeated execution of the model, in order to 
determine the distribution of the output: therefore 
they are, in general, computationally expensive. 
The uncertainty analysis involves three steps: the 
selection of the joint distribution of the input 
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factors, the generation of a sample from the 
distribution, and the computation of model output, 
Y, for each element of the sample, in order to 
estimate the distribution of the output. In the 
subsequent sensitivity analysis, the variation in the 
output is apportioned to the different sources. 
 In this paper, a simple Monte Carlo analysis 
was employed in order to explore the relationship 
between the model output and a set of “m” input 
factors, X1,……Xm, which were selected on the 
basis of the results of the local analysis. The 
factors were assumed to be independently and 
normally distributed. A sample of 250 elements 
was generated, using a crude Monte Carlo 
sampling scheme, and the input-output relationship 
was fitted by means of a multiple regression 
model: 
 

 Y = b0 + ΣibiXi       (6) 
 

The average yearly concentration of DIN in the 
lagoon was taken as a modul output in our 
numerical experiment. The coefficients bi, i=1,m, 
represent reliable “global” measurements of the 
sensitivity of model output to the variation of each 
factor if the regression model (6) explains a large 
fraction of the variance in model output, that is if 
the coefficient of determination Ry

2 is close to 
unity. In this case, if the input factors are 
independent, the contribution of each factor to the 
total variance of Y can be taken as proportional to 
the square of the regression coefficients. The 
standardized regression coefficients βi = bi 
STD(Xi)/STD(Y) were also compute, in order to 
rank the input factors. In analogy with the relative 
sensitivities, these coefficients give the change in 
model output, measured as a fraction of its 
standard deviation, which follows a change in the 
input Xj, measured as a fraction of its standard 
deviation STD(Xj). If the regression model (6) is 
not adequate, other, more complex, variance-based 
techniques, such as Sobol or FAST methods [Chan 
et al., 2000] should be employed, in order to 
decompose the variance in model output with 
respect to its sources. 
 
 
3. RESULTS 
 
The methods, which are outlined in the above 
section, were applied in sequence to the sensitivity 
and uncertainty analyses of the distributed 
parameter 3D finite-difference water-quality model 
described in the introduction. Eqs. (1) and (5) were 
solved, in order to compute the nominal trajectory 
and the sensitivity matrix, whose elements give, at 
each time and grid point, the sensitivities of all the 
state variables to the set of 63 parameters. 
The evolution of the space-averaged nominal 
trajectories of the three most important variables, 

DIN, which is given by the sum of nitrate and 
ammonia, phytoplankton and zooplankton, is 
shown in Figure 2. A DIN mean annual 
concentration of 0.57 g/m3 was obtained. As one 
can see, the DIN concentration in the system 
decreases in the spring and summer, as a result of 
the decrease in the discharges from the tributaries 
and of the increase in the assimilation by 
phytoplankton. Such a seasonal evolution is in 
qualitative agreement with the one which was 
observed in the monitoring network which was set 
up by the Venice Water Authority in September 
2000.  
 

Time (months)

g/
m

3

0.0

0.5

1.0

1.5

2.0

2.5

Gen Feb Mar Apr Maj Jun Jul Aug Sep Oct Nov Dec

DIN
Zooplankton  
Phytoplankton    

 
Figure 2. Space-averaged nominal trajectory 
of DIN [gN/m3], Phytoplankton [gC/m3] and 

Zooplankton [gC/m3] 
 
The sensitivities of the space-averaged nominal 
trajectory to any of the parameters, are obtained by 
averaging the sensitivities over the computational 
grid. The curve regarding the specific growth rate 
of phytoplankton, Gmax is shown in Figure 3. The 
sensitivity was scaled by dividing by the average 
DIN annual concentration and multiplying by the 
nominal value of the parameter. The first relative 
minimum in Figure 3 shows that an increase in 
Gmax causes an anticipation of the spring bloom in 
the phytoplankton, which results in a decrease in 
the DIN concentration. Furthermore, such an 
anticipation shifts the predator-prey oscillations, as 
it is evidenced by the oscillations of the sensitivity. 
 

Time (months)

-0.16

-0.12

-0.08

-0.04

0.00

0.04

0.08

Gen Feb Mar Apr Maj Jun Jul Aug Sep Oct Nov Dec

 
Figure 3. Space-averaged sensitivity of DIN 
to the specific growth rate of phytoplankton, 

Gmax. 
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The effect of the variation in a given parameter on 
the mean annual concentration of DIN was then 
estimated by averaging the sensitivities over space 
and time. The coefficients thus obtained were 
multiplied by 1% of the nominal value of the 
parameter: therefore, they represent estimates of 
the variations ∆DINav which are caused by an 
increase of 1% of each parameter. The results are 
summarized in Table 2, which shows the values of 
∆DINav above .001. The ranking of the parameters 
is based on the square of ∆DINav, third column, 
and is presented in the fourth column. The sum of 
squares of the variations ∆DINav is taken as an 
overall measure of the influence of the remaining 
15 parameters in Tab. (1) which do not appear in 
the Tab. 2, and of the 38 sources. The results of the 
local analysis suggest that the mean annual 
concentration of DIN is more sensitive to small 
fluctuations in the parameters which govern the 
predator-prey oscillation than to slight variations 
in the input of nitrogen. In fact, the ten parameters 
listed in Table 2 are directly related to the 
zooplankton and phytoplankton and on the effect 
of the light and temperature on their evolution. 
 
Table 2. Expected variation in DINav, relative to a 
1% increase in the parameter. 
 

Parameter ∆DINav (∆DINav)2 Rank
kgr 2.23E-03 4.97 E-06 4
kpz -1.08E-03 1.16 E-06 10
kmz -1.36E-03 1.86 E-06 8
epz 3.04E-03 9.23 E-06 3
GPmax -1.96E-03 3.85 E-06 6
Explass 2.19E-03 4.82 E-06 5
Topt 1.81E-02 3.28 E-04 1
Tmax -3.17E-03 1.01 E-05 2
kP 2.72 E-4 7.40 E-8 12
Iop 5 E-4 2.5 E-7 11
Sum of squares of the 
remaining 15 parameters. 

1.39 E-6 9

Sum of squares of all 
nitrogen sources 

2.49 E-6 7

 
Based on this preliminary screening, six 
parameters, kgr, GPmax, Topt, Explass, Iop and kP, 
and the three main nitrogen sources, S2, S6 and S9 
in Figure 1, were taken as input factors in the 
following global analysis. 
In this first numerical experiment, the eight factors 
were assumed to be independently and  normally 
distributed, with a standard deviation equal to 20% 
of their nominal value. A Monte Carlo random 
sampling scheme was employed [Helton et al., 
2000] for extracting 250 elements. For each 
element of the sample, a yearly simulation of the 
model was repeated, in order to compute the mean 
annual TIN concentration. Total elapsed time was 
about five days, on a Digital 533Au WS. 

The results of the uncertainty analysis of model 
output and of the multiple linear regression with 
respect to the input factors are summarized in 
Table 3. 
The descriptive statistics of the distribution of DIN 
are given in the first two rows. The standardized 
regression coefficients, βi, and the regression 
coefficients are given in columns two and three 
respectively. The fourth column shows the rank of 
the parameters, based on the absolute value of the 
standardized coefficients. The high value of the 
coefficient of determination, last row of Table 3, 
indicates that the linear model explains a large 
fraction of the output variability. This would make 
it reasonable to use the linear model in order to 
obtain a tentative estimation of the relative weight 
of the uncertainty in the internal parameters and in 
the forcing functions when determining the 
variability of the DIN mean annual concentration. 
The ratio between the contributions of the two 
groups of input was computed by assuming that 
the variance in the model output could be 
partitioned in accordance with eq. 7, which strictly 
holds for independently distributed variables only. 
 

 Var(DINav) ≈ Σibi
2Var(Xi)     (7) 

 

 The ratio between the two contributions and 
the total variance was then computed: 
 

 Var(X1,X2,X3,X4,X7,X9)/Var(DINav) = 87.8% 
 

 Var(X5,X6,X8)/Var(DINav)    = 6.4% 
  
 The remaining 5.8% of the output variance is 
not accounted for by the linear model. 
  
Table 3. Summary of the Monte Carlo uncertainty 
and sensitivity analysis. 
 

Uncertainty analysis 
Model 
output 

Mean value Standard 
Deviation 

CV% 

DINav .602 .081 13.4
Sensitivity analysis 

Input 
factors 

β b Rank 

Intercept -1.15 E-01 
X1 = kgr 5.72 E-01 5.73 E+00 1 
X2= GPmax -5.58 E-01 -2.20 E+00 2 
X3 = Topt 4.35 E-01 1.50 E-02 3 
X4 = Explass 1.88 E-01 6.50 E-01 4 
X5 = S2 1.85 E-01 8.45 E-02 5 
X6 = S6 1.44 E-01 4.80 E-02 6 
X7 = Iop    1.35 E-01    1.07 E-06 7 
X8 = S9 9.55 E-02 2.15 E-02 8 
X9 = kP 5.73 E-2 1.63 E+00 9 
R2= .92  
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4. CONCLUDING REMARKS 
 
The results presented in the previous section, 
though preliminary, show that the combination of 
a local and a global sensitivity analysis may be 
very effective when dealing with large models. In 
this paper, the local analysis was essentially used 
as a screening method. Although other screening 
methods, of easier implementation, are available, 
[Campolongo et al., 2000], the local analysis 
provides extra information, such as the sensitivity 
curve in Figure 3, which can be used for an 
understanding of how each parameter affects the 
trajectory. Such information, and the fact that the 
sensitivities can be used to compute the gradient of 
a goal function, are extremely useful when guiding 
the calibration of the model.  
 The Monte Carlo uncertainty and sensitivity 
analyses here presented should be considered as 
the preliminary phases of a deeper analysis. In fact, 
the results based on the linear model, eq. (6), 
should be checked by means of other variance-
decomposition methods, such as Fast or Sobol, 
which are not tied to the linear hypothesis. These 
techniques also gives indications about the 
“interaction” of the input factors in determining 
the model output. In other words, the addition of 
quadratic or higher order terms to eq. (6) may be 
needed, in order to explain a larger fraction of the 
variance. The fact that the linear model gave 
satisfactory results may also be due to the ranges 
of variation in the parameters which were 
tentatively chosen. The range of variation in each 
parameter should be determined on the basis of the 
available information and then the numerical 
experiment should then be repeated, in order to 
obtain a more realistic estimation of the expected 
variability in the model output.  
However, from the ecological point of view, as 
well as from the point of view of the management 
of the water basin, the results strongly suggest that 
the variability induced by non-controllable 
fluctuations in the internal dynamics of the system, 
that is the variations in its auto purifying capacity, 
may overshadow the variability resulting from the 
fluctuations in the loads. These fluctuations could 
be due to uncontrollable factors, such as the 
amount and distribution of atmospheric 
precipitation which affects the discharges from the 
tributaries, or they could be the result of the 
management strategy. Therefore, it might be 
difficult to assess whether the adoption of a 
particular management strategy or set of controls 
imposed on the pollution sources are actually 
effective in keeping the system below the water 
quality target. 
 
 

5. AKNOWLEDGEMENTS 
 
 This work was partly supported by the 
Consortium for the Management of the Centre of 
Research Coordination in the Venetian Lagoon 
System (CORILA). 
 
 
6. REFERENCES 
 
Campolongo, F., J., Kleijnen, and T. Andres, 

Screening methods, in “Sensitivity 
Analysis”, A., Saltelli, K., Chan and E.M. 
Scott, Ed. Wiley & Sons, 65-80, 2000. 

Chan, K., S., Tarantola, A., Saltelli, and I.M. 
Sobol, Variance based methods, in 
“Sensitivity Analysis”, A., Saltelli, K., 
Chan and E.M. Scott, Ed. Wiley & Sons, 
167-197, 2000. 

Helton, J.C., and F.J. Davis, Sampling based 
methods, in “Sensitivity Analysis”, A., 
Saltelli, K., Chan and E.M. Scott, Ed. 
Wiley & Sons, 101-152, 2000. 

Koda, M., A.H. Drogu, and J.H. Seinfeld, 
Sensitivity analysis of partial differential 
equations with applications to reaction and 
diffusion processes, Journal of 
Computational Physics, 30, 259-282, 1979. 

Pastres, R., D. Franco, G. Pecenik, C. Solidoro, 
and C. Dejak,. Using parallel computers in 
environmental modelling: a working 
example, Ecological Modelling, 80, 69-85, 
1995. 

Pastres, R., C., Solidoro, G., Cossarini, D., Melaku 
Canu and C. Dejak., Managing the rearing 
of Tapes philippinarum in the lagoon of 
Venice: a decision support system, 
Ecological Modelling, 138, 231-245, 2001. 

Pastres, R., S. Ciavatta, G., Cossarini , and C. 
Solidoro, Sensitivity analysis as a tool for 
the implementation of a water quality 
regulation based on the Maximum 
Permissible Loads policy, Reliability 
Engineering and System Safety, in press, 
2002. 

Turanyi, T., Sensitivity analysis of complex kinetic 
systems. Tools and application, Journal of 
Mathematical Chemistry, 5, 203-248, 1990.  

Turanyi, T., and H. Rabitz., Local Methods, in 
“Sensitivity Analysis”, A., Saltelli, K., 
Chan and E.M. Scott, Ed. Wiley & Sons, 
81-99, 2000. 

 

65


	Brigham Young University
	BYU ScholarsArchive
	Jul 1st, 12:00 AM

	A comparison between the uncertainties in model parameters and in forcing functions: its application to a 3D water quality model.
	R. Pastres
	S. Ciavatta

	Microsoft Word - 248_Pastres&Ciavatta_Iemss2002.doc

