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Abstract:  This paper describes a model for incorporating both spatial interactions and succession dynamics 
within a MOSAIC forest landscape model.  MOSAIC uses semi-Markov processes to model the succession 
dynamics of a forest landscape.  A landscape is partitioned into cells and the parameters defining the semi-
Markov process associated with each cell are derived from individual tree-based models that run in gap-sized 
plots within the cell.  Parameters vary from cell to cell based on the environmental and terrain conditions of 
the cells.  Ecologically, cells and plots influence their neighbors’ development through processes such as seed 
dispersal and disease transmission.  Neighborhood interactions are modeled through influence arrays that are 
flexible enough to capture a variety of processes operating at the landscape scale.  The influence arrays are 
similar to the transition functions used in cellular automata models.  Integrating tree-based and landscape 
scale models, as well as ideas from cellular automata and semi-Markov processes, further unifies techniques 
used in forest landscape models.  Simulation examples derived from the H. J. Andrews Forest in Oregon are 
presented. 

Keywords: Forest landscape; Spatial interaction; Succession; Piece-wise deterministic Markov processes 

 

1. INTRODUCTION 

There is an increasing realization that forest 
ecosystem management may benefit from 
extending the spatial dimension of decision 
analyses to the landscape scale.  To this end, 
models involving complex spatial processes have 
been developed to study ecological processes 
(King and With [2002]) and to simulate forest 
landscape dynamics under various management 
scenarios (Gustafson and Crow [1999]).  Forest 
landscape models generally either concentrate on 
representing the details of forest time dynamics  – 
growth and succession – or focus upon simulating 
the interactions between neighboring sections of a 
landscape (Urban et al. [1999]).  Enhancing the 
integration of spatial and temporal processes in 
landscape models is important for effectively 
applying these models to address ecosystem 
management issues.   

This paper presents an approach for modeling 
both spatial interactions and detailed succession 
dynamics in the forest landscape.  The approach 
extends the MOSAIC landscape model given by 
Acevedo et al. [1995, 2001] by placing the semi-
Markov processes used in MOSAIC within a 
larger class of stochastic process called piece-

wise deterministic Markov (PDM) processes.    
MOSAIC represents forest succession dynamics 
by dividing a landscape into cells and modeling 
transitions among forest cover types within each 
cell via a semi-Markov process.  The states (forest 
cover types) in these processes are defined using 
forest stand composition and structure.  The 
transition probabilities and transition time 
distributions of the processes vary from cell to 
cell depending upon terrain and environmental 
factors such as elevation, slope, aspect, air 
temperature and precipitation.  The parameters 
defining the processes in MOSAIC can be 
estimated (Acevedo et al. [2001]) from multiple 
runs of individual tree-based models such as 
FACET (Urban and Shugart [1992]).  These latter 
models simulate life cycles of individual trees in a 
forest stand with deterministic differential 
equations for diameter and height growth and 
probabilistic components for mortality and 
regeneration.  The growth equations allow for 
detailed representation of resource competition 
(e.g., light and soil moisture) and climate effects.  
By integrating tree-based and landscape scale 
models, MOSIAC provides a consistent procedure 
for scaling up ecological detail to heterogeneous 
conditions across a forest landscape.  This paper 
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takes a step further, extending the MOSAIC 
model to include large-scale spatial interactions 
across the landscape.  Related work, using cellular 
automata, on integrating spatial and temporal 
dynamics for vegetative models is reviewed by 
Balzter, et al. [1998]. 

Section 2 reviews piece-wise deterministic 
Markov processes and describes how spatial 
interactions and succession dynamics may be 
modeled with these processes.  Simulation 
examples derived from the H. J. Andrews Forest 
in Oregon are given in section 3.  Section 4 
contains some concluding remarks. 

   

2. PIECEWISE DETERMINISTIC 
MARKOV PROCESSES   

A piecewise-deterministic Markov process is a 
stochastic process that evolves deterministically 
until a random time when the process jumps to a 
new (random) state.  PDM processes were 
introduced by Davis [1984].  These processes 
provide a flexible framework for simultaneously 
representing spatial interactions and succession 
dynamics within a forest landscape.  Moreover, 
these processes are readily amenable to large-
scale computer simulations.  PDM processes have 
been used in a variety of settings, including 
storage processes, capacity expansion problems, 
and financial investment models.   

Four basic components define a PDM process:  
the state space, a description of the deterministic 
motion between jumps, the rate at which jumps 
occur, and the distribution of the state after a 
jump has occurred.  Each of these components is 
described below within the context of forest 
dynamics.  Note that the deterministic motion of 
the PDM processes given here is only used to 
keep track of the times that forest plots have been 
in their current states.  So, the processes used here 
are piece-wise linear, a special case of PDM 
processes. 

  

2.1  State space and deterministic motion 

A forest landscape is divided into several cells.  
Cells range from a fraction of a hectare to several 
hectares.  The area within a cell is assumed to be 
environmentally homogeneous – for example, all 
regions within the cell have roughly the same 
elevation, slope, aspect and soil type.  Each cell is 
then partitioned into gap-sized plots with a two-
dimensional grid of N total plots.  The state of a 
plot is determined by the distribution of tree 
species within it and the respective functional 
roles of those species.  This paper focuses on 
modeling the dynamics of plots within a single 

selected cell.  Forthcoming work investigates 
“scaling-up” the model to account for cell-to-cell 
interactions.   

Assume that plots may be in any of K states and 
denote the set of possible states by S.  It is 
important to keep track of the amount of time 
each plot has been in its current state.  So, the 
state space of the cell is defined to be 

( ) .),0[ NSE ∞×=   The state of the cell at time t  
is ( )))(),((,)),(),(( 11 ttsttsX NNt ττ K= , where 

)(tsi is the state of plot i at time t and )(tiτ is the 
time that the plot has been in state )(tsi  since the 
last time it changed states. 

Again, the deterministic portion of the PDM 
processes is used here only to keep track of how 
long plots have been in their current state.  Thus, 
between jump times, the state of the each plot 
remains constant, while the time in that state 
evolves at unit rate – that is, between jump times 

1)( =tdtd iτ . 

 

2.2  Jump rate 

The process tX  jumps when any of the plots in 
the cell changes states.  The overall rate that the 
process jumps is determined by an intensity 
function .: +→ REλ   It is assumed that λ is the 
sum of individual plot intensity functions – that is,  
λ = λ1+ λ2 +…+ λN.  Intuitively, λi(x) is the 
instantaneous rate that plot i changes states given 
that the current state of the cell is x ∈ E.  The 
time T1 until the first jump has distribution 
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Once the process has jumped to a new state, the 
distribution of the next inter-jump time is defined 
analogously.   

 

2.3  Distribution after a jump 

Suppose that a jump occurs at time t.  The 
probability that it occurred because plot i changed 
states is )()( tti XX λλ .  Given that plot i 
changed states a probability transition measure, 

iQ , specifies the probabilities for the plot 
transitioning from one state to another.  Formally, 
following a jump at time t from state 

( )),(,),,( 11 NN ususx K= , the distribution on 
the next state is given by 
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where ))(( sxQi gives the probability of plot i 
transitioning to state s when the cell was in state 
x, and δy denotes the point mass measure at y.  
Note that if the process jumps because of a state 
transition in plot i, then the time that plot i has 
been in its current state is reset to 0. 

 

2.4  Independent plots 

Acevedo et al. [1995] studied the case for which 
each cell (or plot) changes according to a semi-
Markov process independent from all other cells 
(plots).  All these independent semi-Markov 
processes (one for each plot) can be integrated 
into a single PDM process by appropriately 
defining the intensity functions λi and probability 
transition measures iQ  as follows.  Recall that 
semi-Markov processes are typically specified by 
a probability transition matrix and a set of 
probability distribution functions that give the 
time to transition from state to state.  Let 

( )i
jk

i pP ,=  be the state probability transition 

matrix for plot i, where i
jkp ,  denotes the 

probability of the plot transitioning to state j given 
it is in state k.  The random time that plot i spends 
in state k, given that its next state is j, has 
distribution function i

jkF ,  and density i
jkf , .  

Since plots evolve independently of one another, 
each plot has an intensity function that is 
dependent only on that plot’s current state and its 
time in that state.  Specifically,  
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Likewise, the transition measure for each plot is 
dependent only on the plot’s current state and 
time in that state.  The transition measure is  
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2.5  Spatial interactions between plots 

Spatial interactions between plots may be 
integrated into the MOSAIC semi-Markov 
processes through both the intensity functions and 
the transition measures of the PDM framework.  

In principle, this means defining iλ and iQ  for 
each plot i and for all possible states of the cell.    
Even for a small number of states this would be 
an arduous task.  Standard approaches to making 
spatial interaction models more tractable include 
limiting the range of neighboring plots that are 
assumed to influence a given plot, assuming 
spatial homogeneity of the spatial effects, 
assuming functional forms for each iλ  and iQ , 
and applying straightforward transformations to 
parameters used in independent plot models (cf. 
Balzter et al. [1998]).  All of these techniques are 
used here. 

Spatial interactions between neighboring plots are 
introduced into the MOSAIC model by adjusting 
the state transition probabilities of the semi-
Markov processes as a function of the current 
state of the cell.  Only the second order 
neighborhood of a plot is assumed to influence its 
dynamics (the second-order neighborhood of a 
plot consists of the eight surrounding plots).  For 
plot i, define a neighborhood counting function 
such that )(sni

t is the number of plots within the 
second-order neighborhood of plot i that are in 
state s at time t.  The composition of the 
neighborhood of plot i is given by the vector 

)).(,),2(),1(( Knnn i
t

i
t

i
t

i
t K=n   Let ( )i

jk
i pP ,=  and 

{ }
Sjk

i
jkF

∈,, be the transition probability matrix and 
transition time distributions, respectively, for the 
MOSAIC semi-Markov model for the succession 
dynamics of plot i.  Define an influence array 

( )*
,,

* i
hjk

i pP = , where *
,,

i
hjkp  represents the 

probability that given plot i is in state k it would 
transition to state j if all its neighbors were in 
state h.  For fixed h, the matrix ( )*

,,
* i

hjk
i pP =  is a 

probability matrix.  Intuitively, *
,,

i
hjkp  represents 

the maximal influence state h could have on plot i 
transitioning from state k to j.  To tractably extend 
the influence model to all possible neighborhood 
configurations, it is assumed that a plot’s state 
transition probabilities are weighted averages of 
these maximal values.  The weights are given by 
the proportion of neighboring plots in a given 
state.   Given the state of the cell at time t, plot i’s 
transition probabilities are given by 

∑ ∑ 




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
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h s

i
t

i
t

i
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i
t
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2.6  Simulation of PDM processes   

Simulating the spatial interaction/succession 
dynamics model described above is accomplished 
as follows.  Starting at the initial state of the cell, 
the state of each plot remains constant and the 
time in that state evolves at unit rate until the first 
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plot changes states.  The time until the first plot 
changes states has distribution 
 

    

 

 

Until the first plot changes states (and, more 
generally, between plot state transitions), i

tn  is 
constant for all plots.  It is straightforward using 
the hazard rate method (see Ross [1997]) to 
simulate the random time until the first plot 
changes states.  Given that a plot has changed 
states at time t, the plot that changed states and 
the state to which it transitioned is selected 
according the distribution given in (2) with 

(9) 
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The time until the next state change is determined 
similarly to the time for the first plot state change, 
then the new state for the plot changing states is 
selected, and so on. 

 

3. EXAMPLES 

The examples given in this section are derived 
from a MOSAIC model of a cell in the ecotonal 
area of the H. J. Andrews Forest in the Oregon 
Cascades.  The cell is assumed to be located at 
1000 m elevation, with 30% slope and aspect 90°.  
The MOSIAC semi-Markov model parameters 
given below are part of a series of FACET runs 
over 300 terrain types (Acevedo et al. [2001]).  
Parameters used in the FACET runs were derived 
from models that had previously been calibrated, 
evaluated and applied for Pacific Northwest 
conditions (Urban et al. [1993], Garman et al. 
[1995]).  The cell is divided into a 15 x 15 grid of 
225 equal sized plots.  Table 3.1 specifies the five 
cover types or states defined by species 
dominance and tree height.     

Table 3.1.  Cover types and state numbers. 
State Number Cover Type 

1 Gap 

2 Young Douglas Fir 

3 Old Douglas Fir/Hemlock 

4 Seral True Fir 

5 Mature True Fir 

3.1  Independent plots 

Assuming the plots evolve independently, the 
MOSAIC semi-Markov processes have transition 
matrix 


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
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








=

61.039.00
308.00692.0
464.053.0006.
026..74.00
00010

iP ,                 (10) 

for each plot.  Given a plot transitions from state k 
to state j, the time until transition has density 
function 

(11) 
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Note that, for each feasible transition from state k 
to j, there is a lag of jkd , years and then the 
transition time follows a gamma distribution.  
Starting each plot in state 2 (young Douglas fir 
cover type), Figure 1 shows the proportion of 
plots in each state as a function of time.  At 
approximately 300 years, these proportions reach 
a stationary distribution with ~63% of the plots in 
state 3 and ~36% in state 5.  
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3.2  Neighborhood interaction 

Two sets of influence matrices are considered.  In 
the first, a plot is strongly influenced by the 
states’ of its neighbors.  For instance, if a plot in 
state 3 is surrounded by plots in the same state, 
then the plot is assumed to stay in that state with 
probability 1.  These “strong influence” matrices 
are given by (13).   
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
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The second set of influences matrices maintains 
the same qualitative influences of the first set, but 
decreases the strength of the influence.  These 
“weak influence” matrices are closer to the 
independent-plot transition matrix given in (10).  
These matrices are given by (14). 
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Figures 2 and 3 show the proportion of plots in 
each state as a function of time for the two sets of 
influence matrices.  For the strong influence case, 
state 3 becomes the overwhelming dominant state 
after 180 years.  For the weak influence case, state 
3 again dominates more of the cell than in the 
independent case.  Although this dominance 
subsides around 250 years, it starts to increase 
again after 300 years.  In fact, unlike the stable 
distributions seen in the independent and strong 
influence cases, the distribution in the weak 
influence is fairly dynamic as the time horizon 
increases. 
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Figure 1.  Proportion of plots in each state as 

function of time for independent model. 
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Figure 2.  Proportion of plots in each state as 
function of time for strong influence model. 
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Figure 3.  Proportion of plots in each state as 
function of time for weak influence model. 

 

4. CONCLUSIONS 

Integrating spatial and temporal processes in 
forest landscape dynamics models is important for 
effectively using these models in ecosystem 
science and management.  PDM processes 
provide a flexible framework for combining the 
succession dynamics modeled by MOSAIC semi-
Markov processes with spatial interactions 
between plots.  Moreover, the simulations 
indicate that significant differences may occur 
between the dynamics predicted by a MOSAIC 
model without spatial interactions and an 
integrated model with both temporal and spatial 
effects.   
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