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Abstract

The Weak Cayley Table and the Relative Weak Cayley Table

Melissa Mitchell

Department of Mathematics

Master of Science

In 1896, Frobenius began the study of character theory while factoring the group de-
terminant. Later in 1963, Brauer pointed out that the relationship between characters and
their groups was still not fully understood. He published a series of questions that he felt
would be important to resolve. In response to these questions, Johnson, Mattarei, and Se-
hgal developed the idea of a weak Cayley table map between groups. The set of all weak
Cayley table maps from one group to itself also has a group structure, which we will call the
weak Cayley table group.

We will examine the weak Cayley table group of AGL(1, p) and the dicyclic groups, find
a normal subgroup of the weak Cayley table group for a special case with Camina pairs
and Semi-Direct products with a normal Hall-π subgroup, and look at some nontrivial weak
Cayley table elements for certain p-groups.

We also define a relative weak Cayley table and a relative weak Cayley table map. We
will examine the relationship between relative weak Cayley table maps and weak Cayley
table maps, automorphisms and anti-automorphisms, characters and spherical functions.

Keywords: Finite Group, Weak Cayley Table, Relative Weak Cayley Table, Camina Pair
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Chapter 1. Background: Weak Cayley Tables

In 1896 Frobenius and Dedekind corresponded through a series of letters on the problem of

factoring the group determinant [Cu, p.50-53]. Previously, characters had been defined for

abelian groups, and it was during this time that Frobenius defined characters in a general

sense. He chose to do so in such a way that each irreducible factor of the group determinant

corresponded to an irreducible character of the group. As part of producing an algorithm

to take a character to its corresponding irreducible factor, Frobenius defined k-characters

recursively as follows [JS]:

Definition 1.1. Let χ be a character of a finite group G. Let the 1-character, χ(1), be equal

to χ. Then define the k-character χ(k) : Gk → C to be the map

χ(k)(g1, g2, . . . , gk) = χ(g1)χ
(k−1)(g2, . . . , gk)

−χ(k−1)(g1g2, . . . , gk)

−χ(k−1)(g2, g1g3, . . . , gk)

−...

−χ(k−1)(g2, . . . , g1gk).

In particular, the 2-character is defined to be

χ(2)(g1, g2) = χ(g1)χ(g2)− χ(g1g2).

This was the beginning of character and representation theory. Mathematicians began

to implement these new ideas to prove powerful results about groups, such as Burnside’s

pq-theorem.

In 1963, Brauer wrote a paper where he proposed several open questions about the

relationship between characters and their groups [Br]. Some of his questions were:
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• In addition to the character table, what information is necessary to determine a finite

group?

• Given a group G, how much information about the automorphism group Aut(G) of a

group can be obtained from the characters of G?

• Given a set of conjugacy classes that form a normal subgroup, is there enough infor-

mation in the character table to determine if the normal subgroup is abelian?

In response to these questions, Johnson, Mattarei, and Sehgal published a paper in

2000 developing the concept of a weak Cayley table. They were interested in the question,

“What properties of a group can be determined by the 1- and 2- characters which cannot

be determined by the 1-characters alone?” [JMS]. In this paper, they define a weak Cayley

table and proved that knowing the weak Cayley table of a group is equivalent to knowing

the 1- and 2-characters of a group.

1.1 Weak Cayley Tables

A weak Cayley table is similar to a multiplication table for a group, only instead of the table

containing the product of the two indices, the entries of a weak Cayley table contain the

conjugacy class of their product. More specifically, given a finite group G of order n, order

the elements of G, index the rows and columns of an n× n table with the ordered elements;

then in the ith row and jth column enter the conjugacy class of ij in G. The resulting table

is a weak Cayley table for the group. Any two weak Cayley tables for a group G differ only

by an ordering of the rows and columns.

Example 1.2. As an example, consider S3. The conjugacy classes of S3 are

C1 = {1}, C2 = {(12), (13), (23)} and C3 = {(123), (132)}.

Then a weak Cayley table for S3 is
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1 (12) (23) (13) (123) (132)

1 C1 C2 C2 C2 C3 C3

(12) C2 C1 C3 C3 C2 C2

(23) C2 C3 C1 C3 C2 C2

(13) C2 C3 C3 C1 C2 C2

(123) C3 C2 C2 C2 C3 C1

(132) C3 C2 C2 C2 C1 C3

When Johnson, Mattarei, and Sehgal defined the weak Cayley table, they proved:

Theorem 1.3 (JMS, Proposition 2.4). If the irreducible 1- and 2-characters of a group are

given, its weak Cayley table can be constructed. Conversely, if the weak Cayley table is given,

the irreducible 1- and 2- characters can be calculated.

Thus by examining weak Cayley tables, we can further understand the relationship be-

tween groups and their characters.

1.2 Weak Cayley Table Maps

Weak Cayley tables are not unique to a specific group. For example the two non-abelian

non-isomorphic groups of order p3, where p is an odd prime, have the same weak Cayley

table [JMS]. The authors of [JMS] defined a weak Cayley table map to be a bijection between

two groups that preserves the weak Cayley table structure. If G1 and G2 are two groups,

then a weak Cayley table map φ : G1 → G2 is a bijection that satisfies two conditions:

(i) φ(gG1) = φ(g)G2

(ii) for every g and h in G1, φ(gh) ∼ φ(g)φ(h).

Where ∼ denotes the equivalence relation of conjugacy. We say G1 and G2 have the same

weak Cayley table if there exists such a map.
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Example 1.4. Let G1 and G2 be the non-isomorphic groups of order p3 (p an odd prime)

with the following presentations:

G1 = 〈a, b, c : ap = bp = cp = 1, ba = bc〉

where 〈c〉 generates the center Z(G1), and

G2 = 〈x, y, z : xp = z, xp
2

= yp = zp = 1, xy = xp+1〉

where the center Z(G2) is 〈z〉. See [DF, p. 183].

One of the nice properties of G1 and G2 is that both groups form a Camina pair over

their center.

Definition 1.5. A Camina pair is a group G with a normal subgroup H such that the

conjugacy classes of G not intersecting H are unions of cosets of H.

For example in G1 the conjugacy classes are

{1}, {c}, {c2}, . . . , {cp−1},

along with classes of the form

aibj{1, c, c2, . . . , cp−1} for 0 ≤ i ≤ p− 1, 0 ≤ j ≤ p− 1,

where i and j are not both equivalent to 0 mod p.

The conjugacy classes for G2 are

{1}, {z}, {z2}, . . . , {zp−1},

together with

xiyj{1, z, z2, . . . , zp−1} for 0 ≤ i ≤ p− 1, 0 ≤ j ≤ p− 1.
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where i and j are not both equivalent to 0 mod p.

Let the map φ : G1 → G2 be defined by

φ(1) = 1, φ(ar) = yr, φ(bs) = xs, φ(ct) = z−t, and φ(arbsct) = xsyrzrs−t.

From the above description of the conjugacy classes it is easy to see that φ maps G1 conjugacy

classes to G2 conjugacy classes, thus satisfying condition (i) of a weak Cayley table map.

To meet condition (ii), φ(gh) must be conjugate to φ(g)φ(h) for all g and h in G1. Let

g = arbsct and let h = aibjck in G1. Then

gh = (arbsct)(aibjck)

= (arbs)(aibj)ct+k

= ar+ibs+jcis+t+k.

First assume that either r + i 6= p or s+ j 6= p. Then

φ(gh) = φ(ar+ibs+jcis+t+k)

= xs+jyr+iz(s+j)(r+i)−t−k,

and

φ(g)φ(h) = φ(arbsct)φ(aibjck)

= (xsyrzrs−t)(xjyizij−k)

= xs+jyr+izrs−t+ij−k+rj.

Both φ(gh) and φ(g)φ(h) are in the same coset of the center, and therefore must be conjugate

to each other since r + i 6= p or s+ j 6= p.

Next assume that r + i = p and s + j = p. Then since gh is a central element, in order

for φ(gh) ∼ φ(g)φ(h), we need for φ(gh) = φ(g)φ(h). Doing a similar computation, we get

that

φ(gh) = φ(c−rs+t+k)

= zrs−t−k,

and
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φ(g)φ(h) = φ(arbsct)φ(a−rb−sck)

= (xsyrzrs−t)(x−sy−rzrs−k).

= xsyrx−sy−rz2rs−t−k

= xs−syr−rz−rsz2rs−t−k

= zrs−t−k.

Which gives us φ(gh) = φ(g)φ(h), as required. Therefore φ is a weak Cayley table map.

In their paper, Johnson, Mattarei, and Sehgal also identified other convenient facts about

weak Cayley table maps, several of which are summarized in the following theorem [JMS].

Theorem 1.6 (Johnson, Mattarei, and Sehgal). Let φ : G1 → G2 be a weak Cayley table

map. Then

(i) φ(1G1) = 1G2

(ii) φ(x−1) = φ(x)−1

(iii) φ sends normal subgroups of G1 to normal subgroups of G2

(iv) φ preserves the cosets of any normal subgroup N of G1

(v) Any automorphism (or anti-automorphism) of a group G is a weak Cayley table map

(vi) The composition of two weak Cayley table maps is also a weak Cayley table map

(vii) If g ∈ G is an involution, then φ(g) is also an involution.

Another interesting fact is that for two non-isomorphic groups, having the same weak

Cayley table is a stronger condition than of having the same character table. For example,

consider D8, the dihedral group of order 8 and the Quaterions Q8. This is a classic example

of two non-isomorphic groups possessing the same character table [DF, p. 882]. However,

since the number of involutions in both groups are not the same, there is not a bijection
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between D8 and Q8 that preserves inverses, and so no weak Cayley table map between D8

and Q8 can exist [JMS].

Proposition 1.7. The set of weak Cayley table maps from a group G to itself is a group,

denoted WCT (G).

Proof. As stated above, the composition of two weak Cayley table maps is still a weak Cayley

table map. Then, since φ is a bijection, φ−1 exists and is also a weak Cayley table map. So

WCT (G) is a group.

Any automorphism or anti-automorphism is called a trivial weak Cayley table map. If for

some group G, the group WCT (G) consists only of automorphisms or anti-automorphisms

then WCT (G) is said to be trivial. [Hu] proved that for all n ≥ 1, WCT (Sn) is trivial and

that for all dihedral groups D2n, WCT (D2n) is also trivial.

Since any weak Cayley table map φ : G1 → G2 preserves cosets of normal subgroups N

of G, we can let φ : G/N → G/φ(N) be the map where φ(gN) = φ(g)φ(N). Johnson proved

that φ is a weak Cayley table map.

Other results from Johnson, Mattarei, and Sehgal’s work on weak Cayley table maps are

the following:

Theorem 1.8 (JMS, Theorem 3.1). Let G1 and G2 be finite groups and N a normal subgroup

in both G1 and G2. Suppose further that G1/N ∼= G2/N and the order of Gi/N is odd. If

(Gi, N) forms a Camina pair, then G1 and G2 have the same weak Cayley table.

An example of this theorem would be the two non-isomorphic groups of order p3 where

p is odd, as examined above. Their centers are isomorphic, both groups form Camina pairs

with their center, and their quotients are isomorphic and odd ordered, so they meet the

criteria of the hypotheses.

The next theorem in [JMS] uses the structure properties of extensions and Camina pairs

to create a weak Cayley table map between two non-isomorphic groups.

7



Definition 1.9. If H, G are groups and N is an abelian group such that

1→ N → H → G→ 1

is a short exact sequence, we say that H is an extension of G by N .

Theorem 1.10 (JMS, Theorem 4.1). Suppose that G1 and G2 have the same weak Cayley

table via α : G1 → G2. Let Hi be an extension of Gi by the module N , for i = 1, 2 where

ng = nα(g) for all g ∈ G and suppose that (H1, N) and (H2, N) are Camina pairs. Finally,

having written each H1 as an extension of N by Gi, suppose that for all involutions x ∈ G1

we have

(e, x)2 = (e, α(x))2.

Then H1 and H2 have the same weak Cayley tables.

The strong conditions on the theorem above might often force an isomorphism between

H1 and H2. An interesting case of this is when Hi is a Frobenius group.

Definition 1.11. Let G and N be finite groups, and let G act on N . Then the action of G

on N is said to be Frobenius if ng 6= n for all nonidentity elements n ∈ N and g ∈ G. The

group H = NoG is called a Frobenius group if the action of G on N is Frobenius [Is, p.177].

To understand why two Frobenius groups wit the same weak Cayley table must be iso-

morphic, suppose that the action of G1 and G2 on N was Frobenius. Then, with the condition

ng = nα(g) for all g ∈ G1, we would have

ngh = nα(gh)

= (ng)h

(ng)h = nα(g)α(h)

Therefore the Frobenius property shows that α(gh) = α(g)α(h). Thus G1
∼= G2 and they

both act identically on N , so in the case that the action is Frobenius, H1 and H2 in the
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previous theorem are isomorphic. Since Frobenius groups have interesting properties, the

authors of [JMS] also published the following result which eliminates the condition that G1

and G2 act the same way on N , thus allowing for the case when there are two non-isomorphic,

Frobenius groups.

Theorem 1.12 (JMS, Theorem 4.3). Suppose that G1 and G2 have the same weak Cayley

table via α : G1 → G2. Let Hi be an extension of Gi by the abelian normal subgroup N ,

such that the conjugacy classes of H1 which lie in N are the same as the conjugacy classes

of H2 in N . Suppose that (H1, N) and (H2, N) are Camina pairs. Finally, having fixed a

representation for each Hi as an extension of Gi by N , suppose that for every involution

x ∈ G1 we have

(e, x)2 = (e, α(x))2,

nx = nα(x) for all n ∈ N .

Then H1 and H2 have the same weak Cayley table.
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Chapter 2. Weak Cayley group of AGL(1, p)

In this chapter, let p be an odd prime and let Gp = AGL(1, p), the group of affine trans-

formations of A′(Fp). There are two different ways of referring to the elements of the group

Gp. One way is where we use the presentation:

〈a, b|ap−1 = bp = 1, ab = br〉,

where r is a generator for F×p . The other is to represent elements of Gp as a set of matrices of

the form ( x y0 1 ) such that x ∈ F×p , and y ∈ Fp. (Notice that AGL(1, 3) ∼= S3 and AGL(1, 5) ∼=

F20.) There is an isomorphism determined by the map a 7→ ( r 0
0 1 ) and b 7→ ( 1 1

0 1 ). Then

ai 7→
(
ri 0
0 1

)
and bj 7→

(
1 j
0 1

)
.

Any element in the group can be written as aibj where 0 ≤ i ≤ p− 2 and 0 ≤ j ≤ p− 1,

by using the conjugation a−1ba = br. So we can simplify any expression using the following

identities:

a−1bka = bkr,

a−2ba2 = a−1bra = br
2
,

a−sbas = br
s
,

a−sbkas = bkr
s
.

Next letB be the subgroup generated by 〈b〉 (in the matrix notationB = {
(

1 y
0 1

)
|y ∈ Fp}).

Then if we take an element
(

1 y
0 1

)
∈ B and conjugate it by any element ( w z

0 1 ) ∈ AGL(1, p),

we get
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 w−1 −w−1z

0 1


 1 y

0 1


 w z

0 1

 =

 w−1 −w−1z

0 1


 w z + y

0 1



=

 1 w−1y

0 1

.

Thus B is a normal subgroup and B − {( 1 0
0 1 )} is a conjugacy class of Gp since we can

take w−1 to be anything in F×p .

Now consider the element ( x 0
0 1 ) where x 6= 1. If we conjugate by any element ( w z

0 1 ),

observe that w−1 −w−1z

0 1


 x 0

0 1


 w z

0 1

 =

 w−1 −w−1z

0 1


 xw xz

0 1



=

 x w−1z(x− 1)

0 1

.

By conjugating ( x 0
0 1 ) over all the elements of Gp, the entry w−1z(x − 1) will range over all

of Fp. Thus the conjugacy class of ( x 0
0 1 ) is the coset ( x 0

0 1 )B, which implies that (Gp, B)

is a Camina pair. In the terms of the generators a and b, the conjugacy classes of Gp are

{1}, B − {1}, and the cosets aiB for every 1 ≤ i ≤ p− 2.

Lemma 2.1. Given any element ( x y0 1 ) /∈ B, then

 x y

0 1


p−1

=

 1 0

0 1

 .

Proof. If ( x y0 1 ) /∈ B, then x 6= 1. If y = 0, then the result follows from x ∈ F×p . If y 6= 0 then,

 x y

0 1


 x y

0 1

 =

 x2 (x+ 1)y

0 1


11



and  x y

0 1


3

=

 x3 (x2 + x+ 1)y

0 1

 .

An inductive argument shows that for any positive integer k,

 x y

0 1


k

=

 xk (xk−1 + xk−2 + · · ·+ x+ 1)y

0 1

 .

In particular, let k = p− 1, then

 x y

0 1


p−1

=

 xp−1 (xp−2 + xp−3 + · · ·+ x+ 1)y

0 1


Using the identity xp−1 = 1, this becomes

 xp−1 (xp−2 + xp−3 + · · ·+ x+ 1)y

0 1

 =

 1 (xp−2 + xp−3 + · · ·+ x+ xp−1)y

0 1


If we consider the upper right entry on both sides of the equation, we notice that

(xp−2 + xp−3 + · · ·+ x+ 1)y = (xp−2 + xp−3 + · · ·+ x+ xp−1)y

= x(xp−2 + xp−3 + · · ·+ x+ 1)y.

However x 6= 1 and y 6= 0, so we must have that (xp−2 +xp−3 + · · ·+x+1) = 0. Therefore

 x y

0 1


p−1

=

 1 0

0 1

 .

Considering our conjugacy classes, since B has p elements, the conjugacy classes of the

form aiB have size p (i 6= 0), and the class B − {1} is the unique class of size p − 1. If
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ϕ ∈ WCT (Gp), then ϕ is a bijection that preserves conjugacy classes. Thus ϕ(B) = B.

Also, ϕ maps the unique class of involutions (the coset a
p−1
2 B) to itself because ϕ also

preserves inverses.

Let Φ : WCT (Gp) → WCT (Gp/B) be the map that sends ϕ ∈ WCT (Gp) to ϕ ∈

WCT (Gp/B).

This map is well-defined, since we have shown that B is fixed by any φ ∈ WCT (Gp) and

that the other cosets aiB are permuted by φ.

Also Gp/B ∼= F×p is an abelian group and any weak Cayley table map of Gp/B would

have to be an automorphism to satisfy condition (ii) in the definition. Thus WCT (Gp/B) =

Aut(Gp/B), and Φ is a map from WCT (Gp) to Aut(Gp/B).

Let K be the kernel of Φ. Then K is not trivial, since it contains the automorphism ρ

which sends a → a, b → bs, for any s that generates F×p . For any φ ∈ K, φ(aiB) = aiB.

Therefore φ permutes elements inside cosets. Then we can express φ(aibj) as aibαφ(i,j) for

some function αφ, where for each i, αφ(i, ) : Fp → Fp is an injective function with αφ(0, 0) = 0

(since φ(1) = 1).

Also φ preserves inverses, so (φ(aibj))−1 = φ((aibj)−1).

Now

(φ(aibj))−1 = (aibαφ(i,j))−1

= b−αφ(i,j)a−i

= a−ib−r
−iαφ(i,j),

and

φ((aibj)−1) = φ(b−ja−i)

= φ(a−ib−r
−ij)

= a−ibαφ(−i,−r−ij).

These two expresssions are equal since αφ preserves inverses, thus for every αφ

−r−iαφ(i, j) = αφ(−i,−r−ij),

13



where 0 ≤ i ≤ p− 2 and 0 ≤ j ≤ p− 1.

Lemma 2.2. The kernel K in WCT (Gp) is the set of all bijections φ such that φ(aibj) =

aibαφ(i,j) where αφ(i, j) is an injective function on Fp to Fp such that αφ(0, 0) = 0, and

−r−iαφ(i, j) = αφ(−i,−r−ij)

for every 0 ≤ i ≤ p− 2, 0 ≤ j ≤ p− 1.

Proof. We have already shown that any map in the kernel must satisfy these conditions. All

that is left is to show that any map of this form is a weak Cayley table map in K.

So let ψ be a map such that ψ(aibj) = aibαψ(i,j) where αψ(i, j) is an injective function on

Fp to Fp such that αψ(0, 0) = 0 and −r−iαψ(i, j) = αψ(−i,−r−ij) for every 0 ≤ i ≤ p − 2,

0 ≤ j ≤ p− 1. Since ψ(aibj) = aibαψ(i,j), we have ψ(aiB) = aiB,ψ(B−{1}) = B−{1}, and

ψ(1) = ψ(a0b0) = a0bαψ(0,0) = a0b0 = 1. So ψ takes conjugacy classes to the same conjugacy

class, which means that it also fixes the cosets of B. Thus if ψ ∈ WCT (Gp), then ψ ∈ K.

Then given two elements aibj and asbt inGp, to satisfy condition (ii), we require ψ(aibjasbt) ∼

ψ(aibj)ψ(asbt). Now

ψ(aibjasbt) = ψ(ai+sbr
sj+t)

= ai+sbαψ(i+s,rsj+t),

and

ψ(aibj)ψ(asbt) = aibαψ(i,j)asbαψ(s,t)

= ai+sbr
sαψ(i,j)+αψ(s,t).

If as 6= a−i, then ai+sbαψ(i+s,rsj+t) ∼ ai+sbr
sαψ(i,j)+αψ(s,t) because they belong to the same

coset.

If as = a−i, then

ai+sbαψ(i+s,rsj+t) = bαψ(0,r−ij+t),

14



and

ai+sbr
sαψ(i,j)+αψ(s,t) = br

−iαψ(i,j)+αψ(−i,t).

When br
−iαψ(i,j)+αψ(−i,t) = 1, then r−iαψ(i, j) + αψ(−i, t) = 0, which implies

−r−iαψ(i, j) = αψ(−i, t).

Above we found −r−iαψ(i, j) = αψ(−i,−r−ij), which implies t = −jr−i mod p. Then

bαψ(0,r−ij+t) = bαψ(0,r−ij−jr−i)

= bαψ(0,0)

= 1.

By a similar argument, if bαψ(0,r−ij+t) = 1, then br
−iαψ(i,j)+αψ(−i,t) = 1.

If t 6= −jr−i, then both bαψ(0,r−ij+t) and br
−iαψ(i,j)+αψ(−i,t) are in the conjugacy class

B − {1}. Therefore, ψ(aibjasbt) ∼ ψ(aibj)ψ(asbt), and ψ is a weak Cayley table map in K.

Thus we can construct elements of K by considering permutations of each of the cosets

aiB (i 6= 0) that preserve inverses. For the class amB, where 1 ≤ m ≤ p−3
2

, its inverse

class is equal to ap−m−1B. So by choosing any permutation on the elements of amB, the

corresponding permutation of ap−m−1B is determined. So we can conclude that the kernel

of Φ contains p−3
2

copies of Sp.

There is also one coset of involutions, a
p−1
2 B, which is sent to itself by any weak Cayley

table map, and any permutation on these elements will respect inverses, so this contributes

another copy of Sp to the kernel.

Finally the subgroup B contains its own inverses, and so the allowable permutations on

B are those that respect the inverses. The Coxeter group of type B on p−1
2

elements is the

set of permutations which respect those inverses. It is denoted here as CoxB(p−1
2

).
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The permutations referred to above are all independent of each other and by Lemma 2.2

they can be composed together to give all of K. So we have shown

Lemma 2.3. The kernel of Φ is isomorphic to CoxB(p−1
2

)× Sp × S
p−3
2

p . �

Next consider any weak Cayley table map φ. We can view it as a permutation on the

cosets of B composed with an element ψ of the kernel K. Since we know the structure of

the kernel, to finish identifying all weak Cayley table maps we need to determine what effect

φ can have on the cosets of B.

As seen above, the map φ will always satisfy φ(B) = B. Further φ will take involu-

tions to involutions, so φ(a
p−1
2 B) = a

p−1
2 B since a

p−1
2 B is the unique class of involutions in

Gp. Therefore φ only (possibly) permutes the remaining p − 3 conjugacy classes amongst

themselves while preserving inverses.

Condition (ii) of a weak Cayley table map guarantees that φ must preserve inverses.

Conveniently all the inverses of elements in aiB lie in the conjugacy class a−iB. Therefore φ

must permute the remaining p− 3 cosets in such a way that preserves the coset containing

the inverses. This gives us another Coxeter group acting on these p− 3 classes.

However these coset permutations are not completely independent of the permutation of

the elements inside of the p− 3 classes found in the kernel, since the order of these actions

matters. So the possibilities for the action of φ on the p− 3 cosets are S
p−3
2

p o CoxB(p−3
2

).

Then, how φ permutes the elements of B and a
p−1
2 B are completely independent of the

permutations of the other cosets, thus we have:

Theorem 2.4. WCT (Gp) ∼= CoxB(p−1
2

)× Sp × (S
p−3
2

p o CoxB(p−3
2

)). �
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Chapter 3. Camina pairs (G,N) with G/N Abelian

In Chapter 2, the kernel of the map Φ played a key role in helping us understand the group

WCT (AGL(1, p)). The goal of this chapter is to find similar results about a well defined

map Φ : WCT (G) → WCT (G/N), where (G,N) form a Camina pair. First we start with

a lemma.

Lemma 3.1. If (G,N) is a Camina pair, then G/N is abelian if and only if the conjugacy

classes of G−N are cosets Ng.

Proof. First assume that the conjugacy classes of G − N are of the form Ng. Then for

g, h ∈ G,

(Nh)−1(Ng)(Nh) = Nh−1gh.

Let g ∈ G−N . Then, since h−1gh ∼ g and (G,N) is a Camina pair, h−1gh = ng for some

n ∈ G. Then

(Nh)−1(Ng)(Nh) = Nng = Ng.

Thus G/N is abelian.

Next, assume that G/N is abelian. If g ∈ G − N and n ∈ N , we have that g and ng

are in the same coset Ng, and therefor are conjugate, since (G,N) is a Camina pair. Then

note that the conjugacy classes off of N are unions of cosets of N . We also observe that

the commutator subgroup G′ is contained in N since G/N is abelian. However, no class can

have size greater than |G′|, and so each class is a coset of N .

Lemma 3.2. Let (G,H) be a Camina pair. Then for every weak Cayley table map φ,

φ(H) = H. Thus the map Φ : WCT (G)→ WCT (G/H) that sends φ to φ is a well-defined

map.
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Proof. Now φ preserves the set of conjugacy classes and sends cosets of H to cosets of φ(H).

Thus if (G,H) is a Camina pair then so is (G, φ(H)). Now if φ(H) 6= H, then there would

exist two subgroups H1 and H2 of the same order in G such that (G,H1) and (G,H2) are

both Camina pairs.

Suppose by way of contradiction that there exist two subgroups H1 and H2 such that

H1 6= H2, (G,H1) and (G,H2) are Camina pairs, and the order of H1 equals the order of

H2. Next pick h ∈ H1 −H2.

Then hG is not contained in H2, which implies hG is the union of cosets of H2, i.e.

hG = ∪H2bi for some elements bi. Then |hG| ≥ |H2|. However hG ⊆ H1 −H2 which implies

|hG| < |H1|, which gives

|hG| ≥ |H2| = |H1| > |hG|.

This is a contradiction, so H1 = H2.

Thus there can be only one subgroup that forms a Camina pair of size |H|. This gives

φ(H) = H for all weak Cayley table maps φ.

We note that what the above result really proves is

Corollary 3.3. Let (G,H1) and (G,H2) be Camina pairs. Then either H1 ⊆ H2 or H2 ⊆ H1.

�

Theorem 3.4. Let (G,N) be a Camina pair such that G/N is abelian and N − {1} is a

conjugacy class. Let Φ : WCT (G) → WCT (G/N) be the map that sends φ to φ. Then the

kernel of Φ : WCT (G) → WCT (G/N) is the set of all bijections from G to G that take

inverses to inverses and preserve conjugacy classes (i.e. maps a conjugacy class to itself).

Proof. Note by Lemma 3.2 that Φ is a well defined map, and by Lemma 3.1 the conjugacy

classes of G off of N are the cosets of N . Let K be the kernel of Φ and let L be the set of

bijections ψ that satisfy the hypothesis that ψ(gG) = gG, and ψ(g−1) = ψ(g)−1 for all g ∈ G.
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First let φ ∈ K. Then φ is a bijection and φ(x−1) = φ(x)−1 for all x ∈ G. Then φ ∈ K

implies φ(N − {1}) = N − {1} and for g /∈ N,

φ(gG) = φ(Ng)

= φ(N)φ(g)

= Nφ(g)

= Ng

= gG.

Thus any map φ ∈ K is also in L.

Next let ψ be in L. We need to show that ψ is a weak Cayley table map. Any map in

L will take conjugacy classes to conjugacy classes, thus satisfying condition (i) of a weak

Cayley table map. To show that any map ψ ∈ L also satisfies condition (ii) of a weak Cayley

table map, we need to consider three cases.

Case 1: For g, h ∈ G and gh /∈ N : Then there exists n1, n2 ∈ N such that ψ(g) = n1g,

ψ(h) = n2h and so

ψ(g)ψ(h) = n1gn2h.

Then

ψ(g)ψ(h) ∈ NgNh = Ngh.

We also have ψ(gh) ∼ ψ(g)ψ(h) = n1gn2h = n3gh, so that

Nψ(gh) = Ngh

Note that Ngh is a conjugacy class for gh /∈ N , so

ψ(g)φ(h) ∼ ψ(gh).

Case 2:g, h ∈ G, and gh = 1. Then h = g−1. Moreover since ψ ∈ L, ψ(g−1) = ψ(g)−1,

19



so

ψ(gh) = ψ(gg−1) = 1 = ψ(g)ψ(g)−1 = ψ(g)ψ(h).

Case 3:For g, h ∈ G and gh ∈ N − {1}: Then Ng = Nh−1 and for some n ∈ N ,

g = nh−1. Then

ψ(gh) = ψ(nh−1h)

= ψ(n)

∈ N − {1}.

Also

ψ(g)ψ(h) = ψ(nh−1)ψ(h)

∈ Nh−1Nh

= N − {1}.

Thus, for all g, h ∈ G,ψ(gh) ∼ ψ(g)ψ(h). So ψ is in K.
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Chapter 4. Camina-Z Groups

In this chapter we generalize the results that we obtained above in the situation where we

have a Camina pair (see Theorem 3.4).

Definition 4.1. Given a finite group G and a set π of prime numbers, a Hall π-subgroup is

a subgroup H such that all primes which divide the order of H are in π and no prime in π

divides the index [G : H]. [Is, p. 86]

The following is from [Is, p. 87]

Theorem 4.2 (Hall). Suppose that G is a finite solvable group, and let π be an arbitrary set

of primes. Then all Hall π-subgroups of G are conjugate.

In this section, we will consider groups G = A o B with Z = Z(G) such that A is a

normal Hall π-subgroup and Ab − Z is a conjugacy class for every b ∈ B. We call such a

group a Camina-Z group.

Example 4.3. An example of a group with these properties is the group

G = 〈a, b|a5 = b8 = 1, ab = a2〉 ∼= Z5 o Z8

with A = 〈a〉 and B = 〈b〉. One way to examine the conjugacy classes of this group is to

consider a part of the weak Cayley table, where the columns are indexed by the elements

of A, and the rows are indexed by elements of B. We can then see that the number of

conjugacy classes is 10, and that 〈b4〉 is the center. (In this table below, the numbers 1-10

represent different conjugacy classes of G).
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1 a a2 a3 a4

1 1 3 3 3 3

b 4 4 4 4 4

b2 5 5 5 5 5

b3 6 6 6 6 6

b4 2 7 7 7 7

b5 8 8 8 8 8

b6 9 9 9 9 9

b7 10 10 10 10 10

Here A is a normal Sylow-5 subgroup, and so is a normal Hall {5}-subgroup, and where

A∩Z = {1}. Thus for example b4A = {b4}∪{b4a, b4a2, b4a3, b4a4} is a union of two conjugacy

classes.

Theorem 4.4. Let G = Ao B with Z = Z(G) such that G is a Camina-Z group and A is

the normal Hall-π subgroup. Let K be the kernel of

Φ : WCT (G)→ WCT (G/A).

Then K is the set of functions φ such that

(i) φ is a bijection,

(ii) φ preserves conjugacy classes (i.e. maps a conjugacy class to itself),

(iii) φ satisfies φ(x−1) = φ(x)−1,

(iv) φ(xz) = φ(x)z for all x ∈ G and z ∈ Z.

Proof. The map Φ : WCT (G) → WCT (G/A) is well defined, since A is a normal Hall-π

subgroup, and so it is the unique normal subgroup of its order by Theorem 4.2. Since any
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weak Cayley table map sends normal subgroups to normal subgroups and is a bijection, the

set A must be fixed by every weak Cayley table map. So if φ is a weak Cayley table map,

φ ∈ WCT (G/φ(A)) = WCT (G/A).

Let L be the set of all bijections φ : G→ G satisfying (ii)-(iv).

If φ ∈ K, then φ is a bijection that preserves classes and respects inverses. Also for

z ∈ Z(G), we have φ(z) = φ(x−1xz) ∼ φ(x)−1φ(xz). Since z is central, φ(z) is central, and

we have

φ(z) = φ(x)−1φ(xz)

and so

φ(x)φ(z) = φ(xz).

Because φ ∈ K, φ(z) = z and φ(x)z = φ(xz). So φ ∈ L.

Next let φ ∈ L. Every map in L preserves conjugacy classes, which implies φ(Ab) = Ab

for all b ∈ B. Therefore we can think of φ as a permutation on the elements in each Ab. Let

φ(ab) = φb(a)b, where φb ∈ Sym(A). So in order to show that φ is a weak Cayley table map,

it is sufficient to show that for every g, h ∈ G, φ(gh) ∼ φ(g)φ(h). Let g = a1b1 and h = a2b2.

Then

φ(gh) = φ(a1b1a2b2)

= φ(a1a
b−1
1

2 b1b2)

= φb1b2(a1a
b−1
1

2 )b1b2,

and

φ(g)φ(h) = φ(a1b1)φ(a2b2)

= φb1(a1)b1φb2(a2)b2

= φb1(a1)φb2(a2)
b−1
1 b1b2.

Here we have two cases:
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Case 1: b1b2 /∈ Z. Then

φb1b2(a1a
b−1
1

2 )b1b2 ∼ φb1(a1)φb2(a2)
b−1
1 b1b2,

since they are in the same conjugacy class Ab1b2.

Case 2: b1b2 = z ∈ Z. If

φ(a1b1a2b2) = y

for some y ∈ Z, then

a1b1a2b2 = y,

since φ satisfies (iv). Then

a2b2 = (a1b1)
−1y,

so

φ(a1b1)φ(a2b2) = φ(a1b1)φ((a1b1)
−1y)

= φ(a1b1)φ(a1b1)
−1y

= y.

On the other hand, if

φ(a1b1)φ(a2b2) = y

for some y ∈ Z, then

φ(a2b2) = φ(a1b1)
−1y

= φ((a1b1)
−1y).

Since φ is a bijection, we have

a2b2 = (a1b1)
−1y,

so

a1b1a2b2 = y,
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which implies

φ(a1b1a2b2) = y.

So if either φ(a1b1a2b2) or φ(a1b1)φ(a2b2) is central, then both are central and they are

equal. If they are both not central, then

φ(a1b1a2b2) = φb1b2(a1a
b−1
1

2 )b1b2

= φb1b2(a1a
b−1
1

2 )z,

which is a non-central element in the coset Az. Also

φ(a1b1)φ(a2b2) = φb1(a1)φb2(a2)
b−1
1 b1b2

= φb1(a1)φb2(a2)
b−1
1 z,

which is again is a non-central element of Az. Thus we have

φ(a1b1a2b2) ∼ φ(a1b1)φ(a2b2).
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Chapter 5. Dicyclic Groups

Humphries proved a similar result to the following theorem in his paper on Weak Cayley

table Groups in 1997 [Hu]. In that paper, he proved that the WCT (G) is trivial for all

dihedral groups G. We will prove this is also true for dicyclic groups.

Definition 5.1. A group with the presentation < a, x|x2n = 1, xn = a2, xa = x−1 > is called

a dicyclic group.

Theorem 5.2. If G4n is a dicyclic group, then WCT (G4n) is trivial.

Proof. Let G4n. If g ∈ G4n we can write g in the form xk or axk for some k with 0 ≤ k ≤ n.

Note that the conjugacy classes of G4n are

{1}, {a2 = xn}, {xi, x−i} for 1 ≤ i ≤ n− 1, {axi|i is even} and {axj|j is odd},

and each element that has the form axk is of order two if 0 < k < n [JL, p.420]. Observe

that Aut(G4n) acts transitively on noncentral involutions since the map

a→ axk, x→ x

determines an automorphism of G4n. So if we are given f ∈ WCT (G4n), we can assume

that f(a) = a by composing with an automorphism.

Given f ∈ WCT (G4n) such that f(a) = a, we know that f must send conjugacy classes

to classes and so by considering the classes of G4n, we note that f(xk) = xα(k) for some

bijection α : Z/(nZ)→ Z(nZ), and f(axk) = axβ(k) for some bijection β : Z/(nZ)→ Z(nZ).

Then the following relations are a result of f ∈ WCT (G4n):
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xα(k+m) = f(x(k+m))

= f(xkxm)

∼ f(xk)f(xm) = xα(k)xα(m),

xα(k) = f(xk)

= f(a3axk)

∼ a3f(axk) = a3axβ(k) = xβ(k),

xα(m−k) = f(x−kxm)

= f(a4x−kxm)

= f(a3xkaxm)

∼ f(a3xk)f(axm) = a3xβ(k)axβ(m) = xβ(m)−β(k).

Using these equations in conjunction with the structure of the conjugacy classes, we find

α(k +m) = ±(α(k) + α(m)),

α(k) = ±β(k),

α(m− k) = ±(β(m)− β(k))

for all k,m ∈ Z/(nZ). Since f ∈ WCT (G4n), we know α(0) = 0, β(0) = 0, α(−k) = −α(k)

and β(−k) = −β(k) for all k ∈ Z/(nZ).

Now suppose that α(1) = r for some r ∈ Z/(nZ). Since f is a bijection, we know

that gcd(r, n) = 1. Then α(−1) = −r, since α(−1 + 1) = ±(α(−1) + α(1)). By the

same equation, we also know that α(2) = ±2r. Then, if we consider α(3) = α(2 + 1) =

±(α(2) + α(1)) = ±(±2r + r). Then since α is a bijection, α(3) 6= α(−1) = −r, so

α(2) = +2r. Then α(−2) = −2r. So α(3) = ±3r. By similar reasoning, since α(4) =

α(3 + 1) = ±(α(3) + α(1)) = ±(±3r + r), we see that α(4) = 4r, and we can continue this

to show that α(k) = kr for all k. So α is an automorphism.

Then, since α(k) = ±β(k), we have β(k + m) = ±(β(k) + β(m)) for all k,m ∈ Z/(nZ).
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Then similar logic as shown above will show that β is also an automorphism, and that

β(1) = ±r. Now if β(1) = −r, we can compose β with the inverse map to get β(1) = r.

Then we have:

f(xkxm) = xα(k+m) = xα(k)xα(m) = f(xk)f(xm);

f(axkxm) = axα(k+m) = axα(k)xα(m) = f(axk)f(xm);

f(xkaxm) = axα(−k+m) = xα(k)axα(m) = f(xk)f(axm);

f(axkaxm) = a2xα(−k+m) = axα(k)axα(m) = f(axk)f(axm).

Therefore f is then an automorphism, so the WCT (G4n) is trivial.
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Chapter 6. Some Non-trivial Weak Cayley Table Maps

Often it is difficult to find weak Cayley table maps that are not trivial. In this chapter, we

are going to define some nontrivial maps for particular groups that are Camina pairs over

their center.

In this chapter, given a finite group G and elements g1, . . . , gr ∈ G, we will write

(g1, g2, . . . , gr) to denote the permutation of G which sends g1 to g2, g2 to g3, and so on.

Thus (g1, g2, . . . , gr) ∈ Sym(G).

6.1 Groups with a Camina Pair Structure Over a Center of

Order 2

Theorem 6.1. Let G be a group with center Z = Z(G) = 〈z〉 of order 2 and (G,Z) is a

Camina pair. For g ∈ G− Z of order 2, let

φg = (g, gz)

and for g of order greater than 2 let

φg = (g, gz)(g−1, g−1z).

Then φg is a weak Cayley table map for any g ∈ G− Z.

Proof. Let < z >= Z. Since (G,Z) is a Camina pair, the conjugacy classes of G are

{1}, {z}, and then unions of sets of the form {g, gz} for g /∈ G. By interchanging g and gz,

the conjugacy classes of G are preserved, so φg satisfies condition (i) for the definition of a

weak Cayley table map.

29



To check that φg satisfies condition (ii), let x, y ∈ G and consider the cases below. We

may also assume that x, y 6= 1. Further the cases x = z or the cases y = z are easily checked,

so we assume x, y, 6= z.

Case 1: x /∈ {g, gz, g−1, g−1z} and y /∈ {g, gz, g−1, g−1z, x−1g, x−1gz, x−1g−1, x−1g−1z}.

Then φg fixes xy, x and y. Thus φg(xy) = xy = φg(x)φg(y).

Case 2: x /∈ {g, gz, g−1, g−1z} and y = g. Then xy = xg 6= 1, z,

φg(xy) = φg(xg)

= xg or xgz,

φg(x)φg(y) = φg(x)φg(g)

= xgz or xg.

Then note that xg ∼ xgz, since G is a Camina pair over Z and xg /∈ Z. So φg(xy) ∼

φg(x)φg(y). Similar reasoning shows this for y ∈ {g, gz, g−1, g−1z}.

Case 3: x /∈ {g, gz, g−1, g−1z} and y = x−1g. Then

φg(xy) = φg(xx
−1g)

= φg(g)

= gz,

φg(x)φg(y) = φg(x)φg(x
−1g)

= xx−1g

= g.

Since g ∼ gz, we have φg(xy) ∼ φg(x)φg(y). Similar reasoning shows this for y an element

of {x−1gz, x−1g−1, x−1g−1z}.

Case 4: x = g and y /∈ {g, gz, g−1, g−1z}. Then
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φg(xy) = φg(gy)

= gy,

φg(x)φg(y) = φg(g)φg(y)

= gzy

= gyz.

Whereas gy ∼ gyz, we observe that φg(xy) ∼ φg(x)φg(y). The same argument also works

for x ∈ {gz, g−1, g−1z}.

Case 5: x = g and y = g. Then

φg(xy) = φg(g
2)

= g2,

φg(x)φg(y) = φg(g)φg(g)

= gzgz

= g2.

So φ(xy) = φ(x)φ(y). This also works for the case when x ∈ {g, gz} and y ∈ {g, gz} or the

case when x ∈ {g−1, g−1z} and y ∈ {g−1, g−1z}.

Case 6: x = g and y = g−1. Then

φg(xy) = φg(1)

= 1

φg(x)φg(y) = φg(g)φg(g
−1)

= gzg−1z

= 1.

So φ(xy) = φ(x)φ(y). This final argument also works for x ∈ {g, gz} and y ∈ {g−1, g−1z} or

x ∈ {g−1, g−1z} and y ∈ {g, gz}.

Example 6.2. A quick example of such a group is the dihedral group D8 of order 8, with

presentation

D8 = 〈a, b, |a4 = b2 = 1, ab = a−1〉.
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Then the center of D8 is Z = 〈a2〉, and (D8, Z) is a Camina pair. Then |b| = 2 and b /∈ Z,

so

φb = (b, ba2)

is an element of WCT (D8). Since WCT (D8) is trivial [Hu], we know that φb is either an

automorphism or anti-automorphism. With some simple computations, one can show that

φb is an anti-automorphism for D8.

6.2 p-Groups with a Camina Pair Structure

Theorem 6.3. Let G be a group with cyclic center 〈z〉 = Z, |Z| = p, such that (G,Z) is a

Camina pair, G/Z is elementary p-abelian, and let g ∈ G be noncentral element. Then the

map

φg = (g, gz, gz2, . . . , gzp−1)(g−1, (gz)−1, (gz2)−1, . . . , (gzp−1)−1)

is a weak Cayley table map.

Proof. Since G/Z is abelian and |Z| = p, we see that Z = G′, the commutator subgroup. If

p = 2 we can use theorem 6.1, so assume p is odd prime, and let

C = {g, gz, gz2, . . . , gzp−1}

and

K = {g−1, (gz)−1, (gz2)−1, . . . , (gzp−1)−1}.

Then C and K are conjugacy classes in G and φg fixes C, K and all other conjugacy

classes. So φg satisfies condition (i) of the definition of a weak Cayley table map.

The following are some cases to consider to prove the condition (ii) of a weak Cayley

table map φg(xy) ∼ φg(x)φg(y).

Let x, y ∈ G. The cases where x ∈ 〈z〉 or y ∈ 〈z〉 are easily checked, we we assume
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x, y /∈ 〈z〉.

Case 1: x /∈ C ∪K, y /∈ C ∪K, and xy /∈ C ∪K. Then φg fixes x, y and xy, so

φg(xy) = xy = φg(x)φg(y).

Case 2: x /∈ C ∪K, and y = x−1gzi. Then y /∈ C ∪K and so

φg(xy) = φg(xx
−1gzi)

= φg(gz
i)

= gzi+1,

φg(x)φg(y) = φg(x)φg(x
−1gzi)

= xx−1gzi

= gzi.

Then gzi+1 ∼ gzi and so φg(xy) ∼ φg(x)φg(y).

Case 3: x /∈ C ∪K, and y = x−1g−1zi is a similar argument as above.

Case 4: Then the cases where y /∈ C ∪K and x = gziy−1 or x = g−1ziy−1 are the same

as the above, since g, g−1 and z all commute.

Case 5: x = gzi, y /∈ C ∪K, and y 6= zk or g−2zk. Then xy /∈ C ∪K, so

φg(xy) = φg(gz
iy)

= gyzi,

φg(x)φg(y) = φg(gz
i)φg(y)

= gzi+1y.

Since gyzi ∼ gyzi+1, we have φg(xy) ∼ φg(x)φg(y).

Case 6: x = gzi, y = g−2zk. Then xy = g−1zi+k, so
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φg(xy) = φg(g
−1zi+k)

= g−1zi+k−1,

φg(x)φg(y) = φg(gz
i)φg(g

−2zk)

= gzi+1g−2zk

= g−1zi+k+1.

Since g−1zi+k−1 ∼ g−1zi+k+1, we have φg(xy) ∼ φg(x)φg(y).

Case 7: x = gzi, y = gzk.

φg(xy) = φg(g
2zi+k)

= g2zi+k,

φg(x)φg(y) = φg(gz
i)φg(gz

k)

= gzi+1gzk+1

= g2zi+k+2.

Then since g2zi+k ∼ gzi+k+2, so φg(xy) ∼ φg(x)φg(y).

Case 8: x = gzi, y = g−1zk. Then

φg(xy) = φg(gg
−1zi+k)

= φg(z
i+k)

= zi+k.

φg(x)φg(y) = φg(gz
i)φg(g

−1zk)

= gzi+1g−1zk−1

= zi+k.

So in this case, φg(xy) = φg(x)φg(y).

Case 9: Then the cases where x = g−1zi are the same as previous ones.

Example 6.4. A group that satisfies these hypotheses is the extraspecial 3-group of of order
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27 with exponent 3. Its presentation is given by

G27 = 〈a, b, c : a3 = b3 = c3 = 1, ba = bc, ac = a, bc = b〉.

Note that |G27| = 27, it has center Z = 〈c〉, the order of c is 3, (G27, Z) is a Camina pair,

and G27/Z is elementary abelian. Then consider the element a ∈ G27−Z. By Theorem 6.2,

the map

φa = (a, ac, ac2)(a−1, (ac)−1, (ac2)−1)

= (a, ac, ac2)(a2, a2c2, a2c)

is an element of WCT (G27). This map is non-trivial, since if we consider the element

ab ∈ G27, we notice

φa(ab) = ab,

φa(a)φa(b) = acb = abc,

and

φa(b)φa(a) = bac = abc2

which are conjugate but not equal. Thus φa is a nontrivial element of WCT (G27).

6.3 Another map for p-Groups with a Camina Pair Structure

Theorem 6.5. Let p be an odd prime, and let G be a p-group with cyclic center < z >=

Z, |Z| = p such that (G,Z) is a Camina pair, G/Z is elementary abelian, and let g ∈ G be

a noncentral element of order q. Then the map

φg = (g, gz, gz2, . . . , gzp−1)(g−1, (gz)−1, (gz2)−1, . . . , (gzp−1)−1)

(g2, g2z, g2z2, . . . , g2zp−1)(g−2, (g2z)−1, (g2z2)−1, . . . , (g2zp−1)−1)

...
...

(g
q−1
2 , g

q−1
2 z, g

q−1
2 z2, . . . , g

q−1
2 zp−1)(g−

q−1
2 , (g

q−1
2 z)−1, (g

q−1
2 z2)−1, . . . , (g

q−1
2 zp−1)−1)
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is a weak Cayley table map.

Proof. Let

C = {gi, giz, giz2, . . . , gizp−1|1 ≤ i ≤ q − 1

2
},

and

K = {g−i, (giz)−1, (giz2)−1, . . . , (gizp−1)−1 |q − 1

2
≤ i ≤ p− 1}.

Also note that since (G,Z) is a Camina pair and G/Z is elementary p-abelian, conjugacy

classes are of the form xZ off of the center.

Note that φg just permutes the elements of each conjugacy class, so the condition that

φg(x
G) = φg(x)G is met. All that is left is to check to see if φg(xy) ∼ φg(x)φg(y) for every

x, y in G. There are several cases to check:

Case 1: x /∈ C ∪ K, y /∈ C ∪ K, and xy /∈ C ∪ K. Then φg fixes x, y and xy, so

φg(xy) = xy = φg(x)φg(y).

Case 2: x /∈ C ∪K and y = x−1gizj where gizj ∈ C. Then

φg(xy) = φg(xx
−1gizj)

= φg(g
izj)

= gizj+1.

φg(x)φg(y) = xx−1gizj+1

= gizj+1.

So φg(xy) = xy = φg(x)φg(y).

Case 3: x /∈ C ∪K and y = x−1gizj where gizj ∈ K. Then
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φg(xy) = φg(xx
−1gizj)

= φg(g
izj)

= φg(g
izj)

= gizj−1,

φg(x)φg(y) = xx−1gizj−1

= gizj−1.

So φg(xy) = xy = φg(x)φg(y).

Similarly, for y /∈ C ∪K and x = gizjy−1, φg(xy) is still conjugate to φg(x)φg(y).

Case 4: x = gizj and y /∈ Z, y /∈ C ∪K, and so xy /∈ C ∪K. Then

φg(xy) = xy

= giyzj,

φg(x)φg(y) = φg(g
izj)φg(y)

= gizj±1y.

Then giyzj and gizj±1y are elements of giyZ. Thus φg(xy) ∼ φg(x)φg(y).

Case 5: x = gizj and y = zk, which means xy = gizj+k. So we have that

φg(xy) = φg(g
izj+k)

= gizj+k±1,

φg(x)φg(y) = φg(g
izj)φg(z

k)

= gizk±1zk

= gizj+k±1.

Therefore φg(xy) = φg(x)φg(y). The cases where y = gizj and x /∈ C ∪K are the same as

above.

Case 6: If x = gizj and y = glzk, where l 6= −i, φg will keep x, y, and xy in the

conjugacy class of gi+lZ, so φg(xy) ∼ φg(x)φg(y).

Case 7: x = gizj and y = g−izk. Then xy = zj+k. So then we have
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φg(xy) = φg(z
j+k)

= zj+k,

φg(x)φg(y) = φg(g
izj)φg(g

−izk)

= gizj±1g−izk∓1

= zj+k.

Therefore, φg(xy) ∼ φg(x)φg(y).

Example 6.6. An example of a group that satisfies the hypothesis of Theorem 6.5 is the

extraspecial 5-group of order 125 with exponent 25. Its presentation is given by

G125 = 〈x, y, z|x25 = y5 = z5 = 1, x5 = z, xy = xz, z central〉.

The center is Z = 〈z〉, |z| = 5, and (G125, Z) is a Camina pair. Then note that since y /∈ Z,

by Theorem 6.3, the map

φy = (y, yz, yz2, yz3, yz4)(y−1, (yz)−1, (yz2)−1, (yz3)−1, (yz4)−1)

(y2, y2z, y2z2, y2z3, y2z4)(y−2, (y2z)−1, (y2z2)−1, (y2z3)−1, (y2z4)−1)

= (y, yz, yz2, yz3, yz4)(y4, y4z4, y4z3, y4z2, y4z)

(y2, y2z, y2z2, y2z3, y2z4)(y3, y3z4, y3z3, y3z2, y3z)

is a weak Cayley table map. Note that

φy(xy) = xy

φy(x)φy(y) = xyz

φy(y)φy(x) = yzx

= xyz2

are not equal, thus φy is not an anti-automorphism or automorphism of G125.
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Chapter 7. Relative Conjugacy Classes And Relative Weak

Cayley Tables

We define a conjugacy classes for an element x of a group G to be the set {g−1xg|g ∈ G}.

Relative conjugacy classes are similar, only instead of conjugating an element of x ∈ G over

the entire group, we conjugate x only by the elements of a particular subgroup of G. So if H

is a subgroup of G, the relative conjugacy class of x with respect to H (or the H-conjugacy

class of x) is the set {h−1xh|h ∈ H}. We will use the notation x ∼H y to mean that x is

conjugate to y by an element in H.

This essentially splits some of the conjugacy classes into distinct parts. In particular, the

set of relative conjugacy classes will have at least as many elements as the set of conjugacy

classes of the group. For example consider the dihedral group of order 8, D8, with the presen-

tation 〈a, b|a4 = b2 = 1, ab = a3〉. Then the conjugacy classes are {1}, {a2}, {a, a3}, {b, ba2},

and {ba, ba3}.

If we let H = 〈a〉, then the relative conjugacy classes for D8 with respect to H would be

{1}, {a}, {a2}, {a3}, {b, ba2}, and {ba, ba3}.

We can use these relative conjugacy classes to define a relative weak Cayley table. This

is similar to a weak Cayley table except the entries of the table contain relative conjugacy

classes. For example, if we consider the group S3 with the subgroup H = 〈(123)〉, then the

relative conjugacy classes of S3 with respect to H are B1 = {1}, B2 = {(12), (13), (23)}, B3 =

{(123)} and B4 = {(132)}. Then the relative weak Cayley table for S3 with respect to H is:
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1 (12) (23) (13) (123) (132)

1 B1 B2 B2 B2 B3 B4

(12) B2 B1 B4 B3 B2 B2

(23) B2 B3 B1 B4 B2 B2

(13) B2 B4 B3 B1 B2 B2

(123) B3 B2 B2 B2 B4 B1

(132) B4 B2 B2 B2 B1 B3

7.1 Relative Weak Cayley Table Maps

As with weak Cayley tables, it is convenient to know when two groups with given subgroups

have the same relative weak Cayley table. To do so, we will define a map that preserves the

weak Cayley table structure. Given two groups G1, G2 with subgroups H1, H2 respectively,

a relative weak Cayley table map is a bijection φ : G1 → G2 such that

(i) φ(H1) = H2;

(ii) φ(xH1) = (φ(x))H2 , for all x ∈ G1;

(iii) φ(xy) ∼H2 φ(x)φ(y) for all x, y ∈ G1.

Since this map preserves the structure of the relative H-conjugacy classes, we say two

groups with two specified subgroups have the same relative weak Cayley tables if there exists

a relative weak Cayley table map between the two groups.

Theorem 7.1. There exists a relative weak Cayley table map between two non-isomorphic

groups.

Proof. Consider the two non-isomorphic non-abelian groups of order p3. They have presen-

tations

G1 = 〈a, b, c : ap = bp = cp = 1, ba = bc, ac = a, bc = b〉;

G2 = 〈x, y, z : xp = z, xp
2

= yp = zp = 1, xy = xp+1, xz = x, yz = y〉;
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with

Z(G1) = 〈c〉; Z(G2) = 〈z〉.

Let H1 = 〈a〉 and H2 = 〈y〉.

Then define the map φ : (G1, H1)→ (G2, H2) by

arbsct → xsyrzrs−t

where rs is not congruent to 0 mod p.

We will show that φ is a relative weak Cayley table map by finding the relative conjugacy

classes and comparing several cases that arise.

Notice these two groups are Camina pairs over their centers, so this makes the relative

Hi-conjugacy classes easy to compute: for (G1, H1):

{1}, {c}, {c2}, . . . , {cp−1},

{a}, {ac}, {ac2}, . . . , {acp−1},
...

{ai}, {aic}, {aic2}, . . . , {aicp−1},
...

{ap−1} {ap−1c} {ap−1c2} . . . {ap−1cp−1}

and then

aibj{1, c, c2, . . . , cp−1}

for 0 ≤ i ≤ p− 1, 0 < j ≤ p− 1;

and for (G2, H2):
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{1}, {z}, {z2}, . . . , {zp−1},

{y}, {yz}, {yz2}, . . . , {yzp−1},
...

{yi}, {yiz}, {yiz2}, . . . , {yizp−1},
...

{yp−1}, {yp−1z}, {yp−1z2}, . . . , {yp−1zp−1},

and then

xiyj{1, z, z2, . . . , zp−1}

for 0 < i ≤ p− 1, 0 ≤ j ≤ p− 1.

By inspection, it is easy to see that φ will send H1 to H2, and that φ will send H1-

conjugacy classes in G1 to H2-conjugacy classes in G2, which are the first two conditions of

a relative weak Cayley table map. The last thing to check is to see if φ(αβ) ∼H2 φ(α)φ(β)

for all α, β ∈ G1.

Let α = aibjck and β = arbsct. Then there are three cases that can happen which we

need to compare to determine if φ is a relative weak Cayley table map: when j + s < p,

j + s > p, and j + s = p.

Case 1: Let j + s < p. Then αβ = aibjarbsck+t = ai+rbj+sck+t+rj, so

φ(αβ) = xj+syi+rz−k−t−rj.

On the other hand φ(α) = xjyizij−k and φ(β) = xsyrzrs−t. Therefore we have

φ(α)φ(β) = xjyizij−kxsyrzrs−t

= xj+syi+rzij−k+rs−t+si

This gives φ(αβ) is H2-conjugate to φ(α)φ(β).
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Case 2: Let j + s > p, then j + s = w + p for some 0 < w < p. Thus

φ(αβ) = xwyi+rz−k−t−rj+1,

and

φ(α)φ(β) = xwyi+rzij−k+rs−t+si+1,

both of which are also in the same H2-conjugacy class.

Case 3: Let j + s = p. Then φ(αβ) needs to be equal to φ(α)φ(β) in order to be

H2-conjugate. Note that j = −s mod(p).

In this case we have

φ(αβ) = yi+rz−k−t−rj+1

= yi+rz−k−t+rs+1,

and

φ(α)φ(β) = yi+rzij−k+rs−t+si+1

= yi+rz−is−k+rs−t+is+1

= yi+rz−k−t+rs+1.

Thus φ(αβ) = φ(α)φ(β).

Proposition 7.2. Let G1, G2 and G3 be groups with subgroups H1, H2 and H3 respectively

such that there exist relative weak Cayley table maps φ : (G1, H1) → (G2, H2) and ψ :

(G2, H2) → (G3, H3). Then the map ψ ◦ φ : (G1, H1) → (G3, H3) is a relative weak Cayley

table map.

Proof. By the definition of φ and ψ, we have

φ(H1) = H2,
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ψ(H2) = H3

and so

ψ ◦ φ(H1) = H3.

Let a, b be elements of G1. Then if we consider the relative conjugacy class aH1 , we note

that

φ(aH1) = φ(a)H2 ,

and

ψ(φ(a)H2) = (ψ ◦ φ(a))H3 .

Lastly, consider the relationships

φ(ab) ∼H2 φ(a)φ(b),

which implies

ψ(φ(ab)) ∼H3 ψ(φ(a))ψ(φ(b)).

Corollary 7.3. Let G1 and G2 have subgroups H1 and H2 respectively such that there exists

a relative weak Cayley table map φ : (G1, H1) → (G2, H2). Also let α ∈ Aut(G1) and

β ∈ Aut(G2). Then φ ◦ α : (G1, α
−1(H1)) → (G2, H2) and β ◦ φ : (G1, H1) → (G2, β(H2))

are also relative weak Cayley table maps.

Proof. Automorphisms are relative weak Cayley table maps, so by using Proposition 7.2, we

can easily see these compositions are relative weak Cayley table maps.
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Chapter 8. Relative Weak Cayley Table Groups

We define the set of relative weak Cayley table maps from G with a subgroup H to itself by

RWCT (G,H).

Theorem 8.1. Let φ ∈ RWCT (G,H), then φ ∈ WCT (G).

Proof. By definition if φ ∈ RWCT (G,H), then φ(xy) ∼H φ(x)φ(y) which also implies

φ(xy) ∼G φ(x)φ(y). This implies the second condition of a weak Cayley table map.

Then, let x′ = φ−1(x) and y′ = φ−1(y). Then we know that

φ(x′y′) ∼H φ(x′)φ(y′) = xy

also

φ(y′x′) ∼H φ(y′)φ(x′) = yx

and xy ∼G yx, which means that φ(x′y′) ∼G φ(y′x′).

So given any g ∈ G, φ(g) = φ(gaa−1) for any a ∈ G. Then φ(gaa−1) ∼G φ(a−1ga) by

the above argument. This implies that φ(gG) = φ(g)G, which is the first condition of a weak

Cayley table map. Thus φ ∈ WCT (G).

Theorem 8.2. RWCT (G,H) is a subgroup of WCT (G).

Proof. Given φ, ψ ∈ RWCT (G,H), then φ, ψ ∈ WCT (G). Clearly, φ◦ψ takes H-conjugacy

classes to H-classes. Then given two maps φ and ψ in RWCT (G,H), we know from Propo-

sition 7.2 that ψ ◦ φ is also in RWCT (G,H).

Since WCT (G) is a group, for every φ ∈ RWCT (G,H), there is a φ−1 ∈ WCT (G). Since

φ(H) = H, φ−1(H) = H, and since φ sends H-conjugacy classes to H-conjugacy classes, φ−1

does the same.
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Then let x′ = φ−1(x) and y′ = φ−1(y). Then, since φ ∈ RWCT (G), we have that

φ(x′y′) ∼H φ(x′)φ(y′) = xy. Since we know that φ−1 takes H-conjugacy classes to H-

conjugacy classes, we know that φ−1φ(x′y′) ∼H φ−1(xy). So x′y′ ∼H φ−1(xy), which implies

that φ−1(x)φ−1(y) ∼H φ−1(xy). Therefore, φ−1 ∈ RWCT (G,H), and RWCT (G,H) is a

subgroup of WCT (G).
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Chapter 9. Extensions of Results from [JMS]

Theorem 9.1. Let G be a group with |G| odd. Let N be an abelian group that is also a

G-module and assume the N-conjugacy classes outside of N are Ng. Let G1 and G2 be two

non-isomorphic groups which are extension of N by G such that (G1, N) and (G2, N) are

Camina pairs. Then (G1, N) and G2, N) have the same relative weak Cayley tables.

Proof. This result was proven for weak Cayley tables in [JMS] without the assumption that

the N -classes outside of N are Ng. We will show that the map that he defined is also a

relative weak Cayley table map between (G1, N) and G2, N) with this additional condition.

Some notation that [JMS] used was to use the extension structure of G1 and G2 to write

(n1, g1) ◦i (n2, g2) = (n1n
g−1
1

2 fi(g1, g2), g1g2),

where ◦i represents the multiplication in the particular group G1 or G2 and fi is a 2-cocycle

in H2(G,N). One can assume that fi(g, e) = fi(e, g) = e for all g ∈ Gi.

They then partitioned G−{e} into two subsets, S1 and S2, where if g ∈ S1, then g−1 ∈ S2,

and S1 ∪ S2 = G. This is possible since |G| is odd. Using these subsets, they defined the

map φ : G1 → G2 as follows:

φ(n, e) = (n, e) for n ∈ N,

φ(n, g) = (n, g) for g ∈ S1,

φ((n, g)inv(1)) = (n, g)inv(2) for g ∈ S1,

where inv(i) represents the inverse in Gi.

In [JMS], they then went on to prove that this is a weak Cayley table map.

To see that this map is also a relative weak Cayley table map, note that since we have

Camina pairs over the abelian subgroup N and that the N -classes outside of N are Ng, the
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N -conjugacy classes of Gi (i = 1, 2) are the singleton sets {1}, {(n, e)} for every n ∈ N , and

the cosets Ng for every g ∈ G − {1}. It is clear that φ preserves the N -conjugacy classes,

thus satisfying condition (ii) of a relative weak Cayley table map.

For condition (iii), let A = φ((n1, g1) ◦1 (n2, g2)) and let B = φ(n1, g1) ◦2 φ(n2, g2), and

we want to show that A and B are in the the same N -conjugacy class, which would imply

that φ is a relative weak Cayley table map between G1 and G2.

We then need to consider three cases:

Case 1: g1 = g2 = e. Then A = (n1n2, e) = B.

Case 2: g1 6= g−1
2 . Then A = (m1, g1g2) for some m1 ∈ N , and B = (m2, g1g2) for some

m2 ∈ N . Then, since g1g2 /∈ N , A and B are in the same coset Ng1g2, so A and B are

conjugate by an element of N .

Case 3: g2 = g−1
1 6= e. Assume without loss of generality that g1 ∈ S1. Then (n, g) =

(n, e) ◦ (e, g) for all n ∈ N and g ∈ G. So then

(n, g) ◦ (m, g)−1 = (n, e) ◦ (e, g) ◦ (e, g)−1 ◦ (m, e)−1 = (nm−1, e).

Which means

A = φ((n1, g1) ◦1 (m, g1)
inv(1)) = φ((n1m

−1, e)) = (n1m
−1, e),

and

B = φ(n1, g1) ◦2 φ((m, g1)
inv(1)) = (n1, g1) ◦2 (m, g1)

inv(2) = (n1m
−1, e).

So A = B, which is what was needed for A and B to be N -conjugate.

The following lemma shows that the conditions required in Theorem 4.1 from [JMS]

(referenced in this paper as Theorem 1.8) force any weak Cayley table to be an automorphism
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when the action of Gi is Frobenius on N .

Lemma 9.2. Suppose that G1 and G2 have the same weak Cayley table, and α : G1 → G2

is a weak Cayley table map. Suppose that Hi is a Frobenius extension of Gi by the module

N in such a way that ng = nα(g) for all g in G1. Then G1
∼= G2.

Proof. Note that all g, h ∈ G1, we have

ngh = nα(gh).

From the group actions we also have:

nα(gh) = ngh = (ng)h = (nα(g))α(h) = nα(g)α(h).

This means that

nα(gh) = nα(g)α(h).

So

nα(gh)(α(g)α(h))−1

= n.

Since the action is Frobenius, this implies that

α(gh)(α(g)α(h))−1 = 1,

and so

α(gh) = α(g)α(h),

which shows that α is a homomorphism, which means that it is also an isomorphism.

The following theorem allows us to remove the condition that N be abelian from the

statement of Theorem 4.1 of [JMS] if we require that the action of Gi is Frobenius on N .
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Theorem 9.3. [Is, p.179] Let Hi = N oGi be a Frobenius group with kernel N . If the order

of Gi is even, then Gi has at most one involution and N must be abelian.

When the order of Gi is odd, the authors of [JMS] comment that in the proof of Theorem

4.1, the fact that N is abelian is not necessary.

Theorem 9.4. Suppose there exists a weak Cayley table map α : G1 → G2. Let Hi be a

Frobenius extension of Gi by the normal subgroup N , such that in H1 and H2, the relative N-

conjugacy classes outside of N are unions of cosets of N . Lastly, for any involution x ∈ G1,

we require

(e, x)2 = (e, α(x))2.

Then H1 and H2 have the same relative weak Cayley table.

Proof. First we note that (H1, N) and (H2, N) are Camina pairs, since Hi is a Frobenius

extension [Is, pg. 185]. As in the proof of 9.1, write H1 and H2 as group extensions. Let

I denote the set of involutions of G1 (if it exists). Next, partition G1 − {e} − I into two

subsets S and S−1 (where S−1 = {s−1|s ∈ S}). Then we have that G1 = {e} ∪ I ∪ S ∪ S−1

and G2 = {e} ∪ α(I) ∪ α(S) ∪ α(S−1).

The map that the authors of [JMS] prove is a weak Cayley table map is

φ(n, g) = (n, α(g)), for g ∈ {e} ∪ {x} ∪ S,

φ((n, g)−1) = (n, α(g))−1, for g ∈ S,

φ((e, x)) = (e, α(x)), for x ∈ I.

To see this is a relative weak Cayley table map, we need to know the N -conjugacy classes

of Hi. Note that by the hypothesis, the N -conjugacy classes contained in H1 lying in N are

the same as those lying in the copy of N in H2, so φ automatically preserves those N -classes.

Then the rest of the conjugacy classes are unions of costs {(n, g)|n ∈ N} for a g ∈ Gi.

Knowing the N -conjugacy classes, it is clear that φ is a bijection that sends N -conjugacy

classes to N -conjugacy classes.

50



Then to show that φ is a relative weak Cayley table map, we need to show that φ((n, g)(m,h)) ∼N

φ(n, g)φ(m, g) for all n,m ∈ N and g, h ∈ G. Let A = φ((n, g)(m,h)) and let B =

φ(n, g)φ(m, g).

Case 1: g = h = e. Then A = (nm, e) = B.

Case 2: g 6= h−1. Then A = (m1, gh) for some m1 ∈ N , and B = (m2, gh) for some

m2 ∈ N . Then A and B are in the same coset Ng1g2, so A and B are conjugate by an

element of N .

Case 3: h = g−1 6= e. The authors of [JMS] show that for all g ∈ G, φ((n, g))−1 =

φ((n, g)−1), and this is the only spot in his proof where he used the action of G on N .

If the order of G is even, then in order for φ((n, g))−1 = φ((n, g)−1) to hold, N must be

abelian. However, since N is a Frobenius kernel of G, the fact that |G| is even forces N

to be abelian. If the order of G is odd, then no assumptions on N are needed to obtain

φ((n, g))−1 = φ((n, g)−1).

Therefore, an equivalent statement to A ∼N B is to show

φ((n, g)(m,h)−1) ∼N φ((n, g))φ((m,h)−1).

Consider the two computations:

φ((n, g)(m, g)−1) = φ((nm−1, e))

= (nm−1, e)

and

φ((n, g))φ((m, g)−1) = φ(n, g)(φ(m, g))−1

= (n, α(g))(m,α(g))−1

= (n, e)(e, α(g)((m, e)(e, α(g)))−1

= (n, e)(e, α(g)(e, α(g))−1(m−1, e)

= (nm−1, e).
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These show that A = B, and hence conjugate, which means φ is a relative weak Cayley

table map.

The authors of [KR] describe a construction of groups that meet the criteria for Theorem

9.4. They start with a semi-direct product of semi-linear maps acting on a finite vector

space, and then choose specific subgroups of this semi-direct product.

Example 9.5. [KR, Definition 3.1 and 3.2, pg. 278-279] Let Gn be a group with a cyclic

normal subgroup Dn = 〈dn〉 of order n with complement Cµ(n) = 〈c〉, where µ(n) is the

Euler function, i.e., the number of primitive nth roots of unity. The group Dn should be

interpreted as the group of nth roots of unity, on which Cµ(n) acts as the Galois group.

By Gn,m we denote the subgroup of Gn, where the complement Cm = 〈cm〉 is generated

by an element of order m dividing µ(n). In addition, we require that m2 divides n, and that

m and n/m2 are relatively prime.

A further assumption is that p is a rational prime, such that Fpm is the smallest field

of characteristic p containing all nth roots of unity. Then M = Fpm is an irreducible Gn,m-

module, on which dn acts by multiplication with a primitive nth root of unity, and cm acts

as the Frobenius automorphism, i.e., raising to the pth power.

By Gn,m,p we denote the semi-direct product M o Gn,m. Let bm = d
n/m2

n be an element

of order m2 in Dn. There is no loss of generality if we assume that bcmm = bm+1
m . We note

that bmm lies in the center of Gn,m.

The authors of [KR] then show that the element

(cmb
i
m)m = bimm ,

is central, and then proceed to define the subgroups which meet the criteria of Theorem 9.4.

Let 1 ≤ i ≤ m − 1 be relatively prime to m, and define the group Hn,m,i as a subgroup

52



of Gn,m by

Hn,m,i = 〈dm2

n , bmm, cmb
i
m〉,

and put

Hn,m,i,p = M oHn,m,i,

the semi-direct product with the module M .

An example of such groups are the subgroups of F73 o (F∗73 × C3). Then d9 ∈ F73 has

order 19, b ∈ F73 has order 9, c generates C3, and

Hn,m,i = 〈d9, b3, cbi〉,

for i = 1, 2. Then

Hn,m,i,p = F73 o 〈d9, b3, cbi〉.

These Hn,m,i,p are Frobenius groups with kernel M , and the Hn,m,i are isomorphic for all

i such that 1 ≤ i ≤ m− 1 and i is relatively prime to m. Also, for each 1 ≤ i ≤ m− 1, the

orbits of Hn,m,i are the same on M [KR, pg. 279]. This is the same as stating that the relative

M -classes of Hn,m,i,p inside M are the same for all i relatively prime to m, (1 ≤ i ≤ m− 1).

Since Hn,m,i,p, is a Frobenius group with kernel M , (Hn,m,i,p,M) is a Camina pair. Thus the

groups Hn,m,i,p satisfy all the hypotheses of Theorem 9.4. �
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Chapter 10. Relative Weak Cayley Table Map Group of

AGL(1, p)

As in Chapter 2 let G = AGL(1, p) have the presentation

G = 〈a, b|ap−1 = bp = 1, ab = br〉,

and let B be the subgroup 〈b〉.

Then the B-conjugacy classes of G are the singletons {1}, {b}, {b2}, · · · {bp−1}, and the

cosets of the form aiB where i 6= 0.

Since every weak Cayley table map sends B to itself, we can define a map

Ψ : RWCT (G,B)→ WCT (G/B)

to be the restriction of the map Φ : WCT (G,B) → WCT (G/B) (as defined in chapter 2)

to the subgroup RWCT (G,B). Then let K = Ker(Ψ).

If ψ ∈ K and is also a weak Cayley table map, then from Lemma 2.2 in Chapter 2, we

know that ψ(aibj) = aibα(i,j) where α(i, j) is an injective function on (F )p to itself such that

α(0, 0) = 0, and −r−iα(i, j) = α(−i,−r−ij) for every 0 ≤ i ≤ p− 2 and 0 ≤ j ≤ p− 1.

Also ψ|B has to be the identity map on B, since the B-conjugacy classes on B are

singletons. Also, since B is abelian, ψ|B must be an automorphism.

Lemma 10.1. Let β be an automorphism of B. Then map β∗ : G→ G which sends b→ β(b)

and aib→ aiβ(b) is an automorphism.

Proof. Let aibj, akbl be in G, then using the relations established in Chapter 2, we have:

β∗(aibjakbl) = β∗(ai+kbr
ij+l) = ai+kβ(br

ij+l),
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and

β∗(aibj)β∗(akbl) = aiβ(bj)akβ(bl) = ai+kβ(bj)r
i

β(bl) = ai+kβ(br
ij+l).

Similar to chapter 2, we can construct a relative weak Cayley table map in the kernel K

by permuting elements of cosets and respecting their inverse cosets. For aiB, for 1 < i ≤ p−3
2

pick any permutation on the elements of the coset. This determines a permutation of its

inverse class. Also there is one coset of involutions, a
p−1
2 B and any permutation of the

elements of this coset will preserve inverses. So from these permutations, we have a subgroups

of RWCT (G,B) isomorphic to Sp × S
p−3
2

p .

Then, given one of the above maps, we can compose it with an automorphism like those

in Lemma 10.1 to get permissable permutations of the elements in B. These give you all of

the maps ψ in the kernel K. This means

K ∼= (Sp × S
p−3
2

p ) o Aut(B).

Then for any relative weak Cayley table map, we can view it as a composition of permu-

tations on the nontrivial cosets of B composed with an element of the kernal K. As above

in chapter 2, this gives a subgroup of WCT (G) isomorphic to

((Sp × S
p−3
2

p ) o Aut(B)) o CoxB(
p− 3

2
).
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Chapter 11. Automorphisms, Anti-Automorphisms and

RWCT (G,H)

Note that automorphisms always satisfy the requirements for a relative Weak Cayley table

map for G1 = G2, since they are isomorphisms. However, while anti-automorphisms are

weak Cayley table maps, they are not always relative weak Cayley table maps.

Example 11.1. Consider the group S3. The relative-S2 conjugacy classes are

B1 = {1}, B2 = {(12)}, B3 = {(13), (23)}, B4 = {(123), (132)}.

Since we can write any anti-automorphism as an automorphism composed with the inverse

map, it is sufficient to check if the inverse map is a relative weak Cayley table map.

However, note that the inverse map α : S3 → S3 given by α(g) = g−1 fails to be a relative

weak Cayley table map, since

α((132)(13)) = α((12))

= (12).

However,

α((132))α((13)) = (123)(13)

= (23).

Note that (12) is not S2-conjugate to (23), so the inverse map α fails to be a relative weak

Cayley table map, which implies that no anti-automorphisms of S3 are in RWCT (S3, S2).

Theorem 11.2. Given a group G with a subgroup H, RWCT (G,H) contains the anti-

automorphisms if and only if for every a /∈ H,Ha ∩ CG(g) 6= ∅ for all g ∈ G.

Proof. Since any anti-automorphism can be expressed as an automorphism composed with

the inverse map, it is sufficient to find when the inverse map α : G→ G is in RWCT (G,H).

Note that since α permutes H-conjugacy classes, α ∈ RWCT (G,H) is equivalent to

α(ab) ∼H α(a)α(b) for all a, b ∈ G. Then since
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α(ab) = (ab)−1 = b−1a−1,

and

α(a)α(b) = a−1b−1,

the statement α(ab) ∼H α(a)α(b) for all a, b ∈ G is equivalent to ab ∼H ba for all a, b ∈ G.

This is the same as (ab)h = ba for some h ∈ H or abh = hba.

If either a or b are in H, then we can find h ∈ H such that abh = hba. The reason for

this is if b ∈ H, then take h = b−1. Then

abh = abb−1 = a

and

hba = b−1ba = a.

If a ∈ H, take h = a, then

abh = aba = hba.

So suppose a and b are not in H. Then we note that since ba = (ab)a,

(ab)h = ba = (ab)a ⇐⇒ (ab)ha
−1

= ab

⇐⇒ ha−1 ∈ CG(ab)

⇐⇒ Ha−1 ∩ CG(g) 6= ∅ for all g ∈ G, and all a ∈ G−H.

An example of a group and a subgroup that satisfies the hypotheses in Theorem 11.2 is

the group S3 ×C2, with the subgroup S3. Let C2 = 〈t〉, then we can write the two cosets of

S3 are itself and S3t.

Note that S3t contains the element t, which is central. Certainly t ∈ CS3×C2(g) for

every g ∈ S3 × C2, so the pair (S3 × C2, S3) fits the criteria of Theorem 11.2, and so

anti-automorphisms of S3 × C2 are elements of RWCT (S3 × C2, S3).
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Chapter 12. Relative Weak Cayley Table Maps and

Characters

Let φ : (G1, H1) → (G2, H2) be a relative weak Cayley table map from a group G1 with

subgroup H1 to a group G2 with subgroup H2. Further, let χ1,i be the irreducible characters

of G1, and let χ2,i be the irreducible characters of G2. Let ψ1,i be the irreducible characters

of H1 and let ψ2,i be the irreducible characters of H2. Then define an action by φ on the

characters χ2 of G2 by φ · χ2 = χ2(φ(g1)) where g1 ∈ G1. Thus for every character χ2 of G2

we obtain a function φ · χ2 : G1 → C. We prove that

Proposition 12.1. φ · χ2 is a character of G1.

Proof. Let g1 be conjugate to k1 in G1. Since φ is a relative weak Cayley table map we have

φ(g1) ∼ φ(k1).

Then considering that χ2 is a character of G2, we know that

χ2(φ(g1)) = χ2(φ(k1)).

This can be rewritten as φ · χ2(g1) = φ · χ2(k1), which means that φ · χ2 is constant on the

conjugacy classes of G1, so φ · χ2 is a character of G1.

Proposition 12.2. For a relative weak Cayley table map φ : (G1, H1) → (G2, H2), and a

character ψ2 of G2 as in the above, we have that φ · ψ2 is an H1-class function.

Proof. The proof is very similar to the above proof for φ · χ2. Let g1 ∼H1 k1 in G1. Then

since φ is a relative weak Cayley table map,

φ(g1) ∼H2 φ(k1),
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and

ψ(φ(g1)) = ψ(φ(k1)),

which shows φ · ψ2(g1) = φ · ψ2(k1). Therefore φ · ψ2 is an H1-class function.

Theorem 12.3. The character φ · χ2,i is irreducible if and only if χ2,i is irreducible.

Proof. Since χ2,i is irreducible, we know that the inner product

(χ2,i, χ2,i) =
1

|G2|
∑
g2∈G2

χ2,i(g2)χ2,i(g2) = 1.

Then the inner product of φ · χ2,i with itself is

(φ · χ2,i, φ · χ2,i) =
1

|G1|
∑
g1∈G1

φ · χ2,i(g1)φ · χ2,i(g1)

=
1

|G1|
∑
g1∈G1

χ2,i(φ(g1))χ2,i(φ(g1)).

Since φ is a relative weak Cayley table map, we can rewrite this in terms of G2:

(φ · χ2,i, φ · χ2,i) =
1

|G2|
∑
g2∈G2

χ2,i(g2)χ2,i(g2)

= (χ2,i, χ2,i) = 1.

So φ · χ2,i is an irreducible character of G1. The other implication is similar.

Theorem 12.4. The H-class function φ · ψ2,i is irreducible if and only if ψ2,i is irreducible.
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Proof. Assume that ψ2,1 is an irreducible H-class function. Then the inner product of φ ·ψ2,i

with itself is

(φ · ψ2,i, φ · ψ2,i) =
1

|H1|
∑
h1∈H1

φ · ψ2,i(h1)φ · ψ2,i(h1)

=
1

|H1|
∑
h1∈H1

ψ2,i(φ(h1))ψ2,i(φ(h1)).

Then, since φ maps H1 into H2 bijectively, we can rewrite this expression as

(φ · ψ2,i, φ · ψ2,i) =
1

|H2|
∑
h2∈H2

ψ2,i(h2)ψ2,i(h2)

= (ψ2,i, ψ2,i) = 1.

Thus φ · ψ2,i is an irreducible character of H1.

Definition 12.5. Given a group G with a subgroup H, we call the map ψ : G → C an

H-class function of G if ψ is constant on the H-classes.

Theorem 12.6. A relative weak Cayley table map φ : (G1, H1)→ (G2, H2) determines a cor-

respondence between the irreducible characters χ1,1, χ1,2, . . . , χ1,s of G1 and χ2,1, χ2,2, . . . , χ2,s

of G2, and a correspondence between the irreducible H1-characters ψ1,1, ψ1,2, . . . , ψ1,r on G1

and the H2-characters ψ2,1, ψ2,2, . . . , ψ2,r on G2.

Proof. Above we showed that φ · χ2,i is an irreducible character of G1 obtained from an

irreducible character χ2,i of G2. Note that G1 and G2 have the same number of irreducible

characters. Thus it is sufficient to show that if χ2,i and χ2,j are two distinct irreducible

characters of G2, then φ · χ2,i 6= φ · χ2,j. This will complete the correspondence required.
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If H2-characters χ2,i and χ2,j of G2 are distinct, then for some element g2 ∈ G2, χ2,i(g2) 6=

χ2,j(g2). Further since φ is a bijection and φ−1(g2) is an element in G1, we find

φ · χ2,i(φ
−1(g2)) = χ2,i(φ(φ−1(g2)))

= χ2,i(g2),

and

φ · χ2,j(φ
−1(g2)) = χ2,j(φ(φ−1(g2)))

= χ2,j(g2).

So φ · χ2,i and φ · χ2,j must be distinct, irreducible characters of G1.

The same argument on the irreducible H1-characters and H2-characters show the corre-

spondence for the subgroups’ characters.
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Chapter 13. Overview of Spherical functions

Most of the information in this section came from [Tr]. Spherical functions are very similar

to characters. They are functions that are constant on the relative conjugacy classes for a

particular subgroup, and they have many of the same properties that characters possess.

Definition 13.1. Let G be a finite group with subgroup H, let χ be a character of G, and

let ψ be a character of H. Then the spherical function Yχψ : G→ C is defined as

Yχψ(g) =
1

|H|
∑
σ∈H

χ(gσ)ψ(σ−1).

The following properties of spherical fuctions can be found in [Tr]:

(i) Yχψ(1) = (χ|H , ψ),

(ii) Yχψ(g−1) = Yχψ(g),

(iii) For h in H, Yχψ(hgh−1) = Yχψ(g),

(iv) Let fχ be the degree of χ and let ξ be another character of G. Then

Yχψ ∗ ξ = δχξ
1

fχ
Yχψ.

where ∗ denotes the convolution. In other words if φ1 and φ2 are functions from G into

the complex numbers, then

(φ1 ∗ φ2)(g) =
1

|G|
∑

h∈G φ1(gh
−1)φ2(h). [Ga]

(v) Let φ be another character of H, and let φ represent the function of G that vanishes
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off H, and is equal to |G : H| · φ on H, then

Yχψ ∗ φ = δφψ
1

fφ
Yχψ,

and

Yχψ ∗ Yξφ = δχξδφψ
1

fχfψ
Yχψ.

(vi) The regular representation can be written as:

R(g) =
∑
χ,ψ

fχfψYχψ(g).

(vii)

Theorem 13.2. [Tr, Theorem 1] The following are equivalent

(a) Yχψ is a G-class function;

(b) Yχψ is proportional to χ;

(c) χ|H = cχψ · ψ.

(viii)

Theorem 13.3. [Tr, Theorem 1′]The following are equivalent

(a) Yχψ vanishes off of H;

(b) Yχψ is proportional to ψ;

(c) ψG = cχψ · χ.

63



Chapter 14. Relative Weak Cayley Tables and Spherical

Functions

For notation in this chapter let G1, G2 be groups with H1, H2 as subgroups respectively, such

that φ : (G1, H1)→ (G2, H2) is a relative weak Cayley table map. Also let χ1,1, χ1,2, . . . , χ1,s

be the irreducible characters of G1, and let χ2,1, χ2,2, . . . , χ2,s be those of G2. Further let

ψ1,1, ψ1,2, . . . , ψ1,s be the irreducible H1-characters and ψ2,1, ψ2,2, . . . , ψ2,s be those of H2.

Theorem 14.1. Let χ2 be an irreducible character for G2, and let χ1 = φ · χ2 be the

corresponding irreducible character in G1. Also let ψ2 be an irreducible character for H2,

and let ψ1 = φ · ψ2 be the corresponding irreducible character in H1. Then

Yχ2ψ2(g2) = Yχ1ψ1(φ
−1(g2))

for all g2 ∈ G2.

Proof. By the definition of a spherical function

Yχ1ψ1(φ
−1(g2)) =

1

|H1|
∑
σ∈H1

χ1(φ
−1(g2)σ)ψ1(σ

−1)

=
1

|H1|
∑
σ∈H1

χ1(φ
−1(g2)φ

−1(φ(σ)))ψ1(σ
−1).

Then because φ is a relative weak Cayley table map, φ−1(g2)φ
−1(φ(σ)) ∼H1 φ

−1(g2φ(σ)) and

since Yχ1ψ1 is constant on conjugacy classes, we can rewrite the above equation as:
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Yχ1ψ1(φ
−1(g2)) =

1

|H1|
∑
σ∈H1

χ1(φ
−1(g2φ(σ)))ψ1(σ

−1)

=
1

|H1|
∑
σ∈H1

χ2(φ(φ−1(g2φ(σ))))ψ2(φ(σ−1))

=
1

|H1|
∑
σ∈H1

χ2(g2φ(σ))ψ2(φ(σ−1)).

Since φ is a bijection between H1 and H2, this becomes

=
1

|H2|
∑
σ∈H2

χ2(g2σ)ψ2(σ
−1)

= Yχ2ψ2(g2).
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Chapter 15. An Example of Relative Weak Cayley Table

Maps With Spherical Functions

The goal of this Chapter is to illustrate Theorem 14.1 with the non-isomorphic, non-abelian

groups of order p3.

Example 15.1. For a prime p, let G1 and G2 be the two non-isomorphic, non-abelian groups

of order p3. As in Chapter 7, let them have the following presentations:

G1 = 〈a, b, c : ap = bp = cp = 1, ba = bc, ac = a, bc = b〉;

G2 = 〈x, y, z : xp = z, xp
2

= yp = zp = 1, xy = xp+1, xz = x, yz = y〉.

Let H1 = 〈a〉 and H2 = 〈y〉. In Chapter 7 we defined a bijection φ : G1 → G2 which is a

relative weak Cayley table map from (G1, H1) to (G2, H2). Recall that φ was defined to be

the map

arbsct → xsyrzrs−t.

Note that G1 and G2 have the same character table. The irreducible characters of G1 are

χ1:u,v(a
rbsct) = εru+sv,

and

ξ1:u(a
rbsct) =

 0 if a 6= 0 or b 6= 0;

pεut otherwise;
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where 0 ≤ u, v ≤ p− 1 and ε is a primitive pth root of unity [JL, p.301-304]. For G2 we have

χ2:u,v(x
syrzt) = εru+sv,

and

ξ1:u(x
syrzt) =

 0 if x 6= 0 or y 6= 0;

pεut otherwise.

As shown above, we can act on the character χ2:u,v of G2 by φ to get an irreducible

character of G1:

φ · χ2:u,v(a
rbsct) = χ2:u,v(φ(arbsct))

= χ2:u,v(x
syrz−t)

= εru+sv

= χ1:u,v(a
rbsct).

And if we look at the irreducible characters of H1 these are just ψ1:j(a
i) = εij since H1 is

cyclic of order p. (For H2 the irreducible characters are ψ2:j(y
i) = εij.)

Then to examine the spherical functions of G1 with H1, we notice

Yχ1:u,v ,ψ1:j
(arbsct) =

1

|H|
∑
yi∈H

χ1:u,v(a
rbsctai)ψ1:j(a

−i)

=
1

p

∑
yi∈H

χ1:u,v(a
iarbsct)ψ1:j(a

−i),

since arbsctai ∼G1 a
iarbsct, so
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Yχ1:u,v ,ψ1:j
(arbsct) =

1

p

∑
yi∈H

χ1:u,v(a
r+ibsct)ψ1:j(a

−i)

=
1

p

p∑
i=1

ε(r+i)u+svε−ij

=
1

p
εru+sv

p∑
i=1

εi(u−j).

If u = j this becomes

Yχ1:u,v ,ψ1:u(arbsct) =
1

p
εru+sv

p∑
i=1

εi(0)

= εru+sv,

and if u 6= j then εi(u−j) runs over all the roots of unity, so we get

Yχ1:u,v ,ψ1:u(arbsct) =
1

p
εru+sv

p∑
i=1

εi(u−j)

=
1

p
εru+sv(0)

which implies

Yχ1:u,v ,ψ1:u(arbsct) = 0.

To summarize,

Yχ1:u,v ,ψ1:u(arbsct) =

 εru+sv if u = j;

0 otherwise.

Next if we consider the other characters, ξ1:u, on G1, we notice
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Yξ1:u,ψ1:j
(arbsct) =

1

p

∑
yi∈H

ξ1:u(a
rbsctai)ψ1:j(a

−i)

=
1

p

∑
yi∈H

ξ1:u(a
r+ibsct)ψ1:j(a

−i).

Because of how ξ1:u is defined, when r + i 6= 0 we have that ξ1:u(a
r+ibsct) = 0. Thus

1

p

∑
yi∈H

ξ1:u(a
r+ibsct)ψ1:j(a

−i) =
1

p
ξ1:u(a

r−rbsct)ψ1:j(a
r)

=
1

p
ξ1:u(b

sct)ψ1:j(a
r).

Further ξ1:u(b
sct) = 0 if s 6= 0.Therefore if s 6= 0,

Yξ1:u,ψ1:j
(arbsct) = 0,

and if s = 0,

Yξ1:u,ψ1:j
(arct) =

1

p
ξ1:u(c

t)ψ1:j(a
r)

=
1

p
(pεut)(εrj) = εut+rj.

To summarize, these spherical functions are of the form

Yξ1:u,v ,ψ1:u(arbsct) =

 0 if s 6= 0;

εut+rj if s = 0.

The same sort of calculations will result in similar spherical functions for G2 with H2.
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Lastly we note the inverse of xryszt is

φ−1(xryszt) = asbrc−t

and the action of φ on χ2:u,v and ψ2:j gives

φ · χ2:u,v = χ1:u,v and φ · ψ2:j = ψ1:j.

Thus χ1:u,v, χ2:u,v, ψ1:j, and ψ2:j satisfy the hypothesis to Theorem 14.1. Then notice

Yχ2:u,vψ2:u(xryszt) =
1

p
εru+sv

and

Yχ1:u,vψ1:u(asbrc−t) =
1

p
εru+sv.

So we have

Yχ2:u,vψ2:u(xryszt) = Yχ1:u,vψ1:u(φ−1(xryszt)),

which is the conclusion to Theorem 14.1.
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Chapter 16. Questions for further research

Here we list questions for future work.

(i) If H is normal in G what can one say about the subgroup RWCT (G,H) of WCT (G)?

(ii) For any subgroup, when is RWCT (G,H) a normal subgroup of WCT (G)?

Example 16.1. RWCT (S3) does not contain anti-automorphisms, then RWCT (G) is

strictly contained in WCT (G). Also WCT (S3) is trivial, meaning it is only composed

of automorphisms and anti-automorphisms, which means that RWCT (G,H) has index

2, and therefore is normal.

(iii) Are there any non-trivial groups G such that WCT (G) = RWCT (G,H)?

(iv) Are the anti-automorphisms of S4 in RWCT (S4, S3)?

(v) Given a subgroup H of G, if φ ∈ RWCT (G,H), then we have an induced map φ∗ :

CGH → CGH . What conditions do we need to go the other direction?

(vi) Do there exist non-isomorphic groups G1, G2 and φ : G1 → G2 a weak Cayley ta-

ble map such that for every subgroup H contained in G1, φ(gH) = φ(g)φ(H) and

φ∗(RWCT (G1, H) = RWCT (G2, φ(H))?

(vii) What other applications do RWCT (G,H) maps have to spherical functions?

(viii) What other conditions are equivalent to the condition: given a group G and a subgroup

H, for every a /∈ H,Ha ∩ CG(a) is non-empty?

(ix) What conditions are needed for a weak Cayley table map to be a relative weak Cayley

table map for some nontrivial subgroup?
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(x) If WCT (G) is not trivial, is there always a nontrivial relatively weak Cayley table map

for some nontrivial subgroup?
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