
Brigham Young University
BYU ScholarsArchive

International Congress on Environmental
Modelling and Software

1st International Congress on Environmental
Modelling and Software - Lugano, Switzerland -

June 2002

Jul 1st, 12:00 AM

Combining Object-Oriented Programming and
Relational Databases for Multi-Scale Spatially-
Integrated Agent-Based Models
J.G Polhill|a

Nick Gotts

Alistair N. R. Law

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for
inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

Polhill|a, J.G; Gotts, Nick; and Law, Alistair N. R., "Combining Object-Oriented Programming and Relational Databases for Multi-
Scale Spatially- Integrated Agent-Based Models" (2002). International Congress on Environmental Modelling and Software. 115.
https://scholarsarchive.byu.edu/iemssconference/2002/all/115

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2002%2Fall%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2002%2Fall%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2002%2Fall%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2002%2Fall%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2002%2Fall%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2002?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2002%2Fall%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2002?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2002%2Fall%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2002?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2002%2Fall%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2002%2Fall%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2002/all/115?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2002%2Fall%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


Combining Object-Oriented Programming and
Relational Databases for Multi-Scale Spatially-

Integrated Agent-Based Models

J. Gary Polhill a, Nicholas M. Gotts, and Alistair N. R. Law
Macaulay Institute, Craigiebuckler, Aberdeen. AB15 8QH

a g.polhill@macaulay.ac.uk

Abstract: Object-oriented (OO) programming has limitations when used to implement abstract multi-scale,
spatially-integrated, agent-based models, that could potentially be addressed using relational databases
(RDB). Although this would involve rethinking the approach to designing such models, the combined OO-
RDB approach has a number of appealing advantages for multi-scale simulations, such as allowing the user
rather than the programmer to specify the scale at which various land-use processes take place. It also
provides a basis for a more realistic representation of the relationship between agents and their environment.
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1 INTRODUCTION

This paper concerns the development of abstract,
multi-scale models of land use change using
spatially-integrated agents. The purpose of
modelling in this way is generally to understand
the processes operating in a particular topic rather
than to accurately represent a particular scenario
for the purposes of prediction or forecasting.
Consequently, abstract models tend not to make a
great deal of use of real-world data.

When abstract models include elements of scale, it
is desirable for the user to vary the scales at which
particular processes operate, in recognition of the
awareness among some authors [e.g. Nelson,
2001] that scale can be an observer-defined
phenomenon. This enables exploration of the
effect of simulating processes at different scales on
emergent model phenomena. It also provides the
flexibility to explore a wider range of scenarios.
However, varying the scale at run-time is tricky,
because the objects concerned with scale-related
processes cannot know at compile-time the scale at
which such processes will function.

Few land use models attempt multi-scale
approaches. The CLUE modelling framework
[Veldkamp & Fresco, 1996] is one exception.

Their scale hierarchy is fixed, however, and totally
ordered — though the resolutions to which each
scale applies can be varied to fit the scenario and
availability of data [Verburg et al., 1999].

The FEARLUS (‘Framework for the Evaluation
and Assessment of Regional Land Use Scenarios’)
project explores the use of spatially-integrated
agents (representing land managers) to improve
understanding of land use change. The approach
used has been to start with simple, abstract
designs, and build in complexity and elements of
realism subsequently [Polhill et al., 2001]. The
current version of the model (0-5) consists of a
rectangular grid of land parcels and a set of
heterogeneous land manager agents with various
(simple) algorithms for the selection of a land use.
The agents accumulate wealth from their land
parcels according to how well the selected land use
matches the (spatially variant, but temporally
constant) biophysical characteristics of the parcels,
the climate, and the economy. The climate and
economy change from year to year in the model,
but are spatially invariant.

The paper proposes an architecture (as yet
unimplemented) that enables agents to be designed
without specific reference to the spatial scales at
which their behaviour is taking place. This uses a
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relational database [Codd, 1970] to store all the
publicly available knowledge, with the various
scales of spatial representation integrated using
relational tables. The paper also questions some
assumptions about the role of encapsulation within
agent-based modelling.

2 THE APPEAL OF OBJECT-ORIENTED
PROGRAMMING FOR AGENT-BASED
MODELS

The appeal of object-oriented (OO) design is based
on the four core elements embodied in most OO
programming languages: Abstraction (deciding
what will be included in the simulation),
Encapsulation  (collecting the properties and
behaviours of each class of object in a single data
structure, hiding the internal workings from the
rest of the program), Inheritance (arranging classes
into a hierarchy) and Polymorphism (allowing the
same behaviour to be implemented differently in
different classes) [Hunt, 1998].

The OO paradigm has been recognised as being
highly suitable for building agent-based models
[Gilbert & Troitzsch, 1999], although it has been
observed that pure OO design methodologies are
not adequate to represent and describe the
specialised set of concepts and inter-relationships
that are needed when designing agent-based
models [Wooldridge et al., 2000; Kinny et al.,
1996]. Nevertheless, agent-based models are
usually implemented in an OO programming
language, and agents can be seen as a subset of
objects [Luck & d’Inverno, 2001].

However, one feature of the OO paradigm is the
distributed nature of the data about properties of
objects. Whilst some properties of agents relate to
their internal states, others, though they are still
specific to the agent, are such that other agents
requiring information about them should not
necessarily need to ask the agent for them.
Examples include spatial location and physical
appearance. These external properties are
particularly relevant in spatially-integrated models
because the space provides the external context in
which they may be observed.

When multiple spatial scales are involved, the OO
paradigm has l imitat ions that  make
implementation difficult. The development of
FEARLUS is towards a more flexible approach to
the representation of the various scales at which
processes influence land use change. For example,
allowing the user to specify that climate could vary
spatially, or that land use should be chosen at the
farm, rather than the parcel level. This means
providing a structure to enable the agents to

process information and make changes to their
world, ideally without explicitly coding all the
different options for obtaining the information that
the user might configure. Therefore, there is a need
to distinguish between public (or external) and
private (or internal) properties of objects, and to
provide an architecture for the design of agents in
the absence of explicit knowledge of the spatial
scales at which their behaviour operates.

3 THE PROBLEM OF SCALE

Scale is used to mean a number of different, but
often interlinked, things. In a geographical context
scale typically refers to the level of detail of
observation or representation (resolution) of a
particular spatial region. The resolution of the data
affects the interpretation and recognition of spatial
features and patterns.  These form the basis of
another way of looking at scale, in which the land
is divided into parcels according to a classification
scheme applied to the observed properties. The
parcels so formed will have a smaller average area
when there are more classes in the classification
scheme.

A hierarchy of scales can enable consideration of
parcels of land defined in terms of a particular
property, which can be subdivided into smaller
parcels that are associated with another property.
For example, farms (the parcels of land associated
with a particular owner) always consist of one or
more fields (the parcels of land associated with a
particular crop). Alternatively, a particular
property (such as land cover) may be described by
a class hierarchy, and a scale hierarchy could also
be formed to mirror this. For example, a forest
land cover class can be sub-classified into
evergreen, deciduous and mixed forests, which are
distinguishable at different levels of resolution.

The scale hierarchy will be partially ordered when
the properties of the land do not form a single
chain of sub-divisions of parcels, an example of
which may be land ownership and soil type
(Figure 1). This adds an extra dimension of
complexity that multi-scale simulations typically
either ignore or work around using totally-ordered
scale hierarchies that have neighbouring parcels
with the same property value.

In FEARLUS, a modelling framework is being
built that allows the user to select which properties
and processes (pertaining to land use change) they
wish to simulate. They should also be able to
determine how these properties and processes will
relate to one another in terms of scale, i.e. to
configure the scale hierarchy at run time.
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Ownership
boundaries

Fields (crop/land
use boundaries)

Boundaries
between soil types

Atomic scale

Figure 1. An example of a hierarchy of scales associated with different properties of the land

From the OO design point of view, none of these
problems present obstructions to representation. In
an abstract model, one could consider something
like a “ScaledParcel” class, which would have an
anonymously typed “landProperty” instance
variable to store the spatial data associated with
that scale, a ScaledParcel-typed instance variable
containing the parent scale parcel, and a list of
child parcels, if applicable. Both totally and
partially ordered scale hierarchies could be
represented in this way (partially-ordered scale
hierarchies requiring a list of parent parcels and a
list of lists of child parcels).

If the model is abstract, however, implementation
in the OO paradigm presents difficulties when the
model is required to be sufficiently flexible to
allow phenomena to be configured to take place at
various different scales. An example is of farmers
deciding what crop to sow. In one model, the user
might want a farmer to decide a single crop for the
whole farm, with biophysical properties affecting
yield varying at the field scale. In another, farmers
might be given the capability to choose crop
sowings at the sub-field scale (i.e. possibly
subdividing the field into two separate crop
sowings). To provide this kind of functionality
within a single modelling framework means that
the classes used to simulate farmers cannot have
‘hard-coded’ access to data about land at a
particular scale. This means providing run-time
configurable scale-related data transactions within
each class.

The problem for OO in implementing scale-related
data transactions that can be configured at run-time
is that there is no way to relate the various scales
together except through the scale hierarchy. Since
the scale hierarchy is itself created at run-time,
there is no easy way to specify how data should be

accessed at compile time, except through
exhaustively specifying all the possible
configurations of the scale hierarchy and coding
for each option individually — a prospect that is
combinatorially worse for more complex
modelling frameworks that identify a greater
number of feature or entity scales.

In non-abstract models, the scales will be defined
by the data sources, so the scale hierarchy can be
hard-coded. It is possible, however, that in the
future, those sources of data will be at a different
resolution, which could affect the scale hierarchy.
The flexibility to adjust the scale hierarchy may
therefore apply to non-abstract models as well.

4 THE APPEAL OF RELATIONAL
MODELLING

The OO approach lacks a constructive way of
linking the scales in the hierarchy that circumvents
the need to exhaustively specify all the user-
configurable options for simulating scale.
Relational modelling offers a way around these
limitations. Once spatial data is stored using
relational tables, the possibility arises of storing
other data from the simulation in this way,
including data about agents.

In the relational model, one table is used to
represent each scale of property. A relational table
is then created for each adjacent pair of scales in
the scale hierarchy (Figure 2). The relational join
operator can then be used to link any two scales by
searching through the partial ordering of scales.
This allows the creation of abstract hierarchies of
scale at run-time with easy retrieval of relevant
information. Once the user has configured the
scale hierarchy, the operations needed to join each
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once in Y.
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Figure 2. The scale hierarchy (thick arrows) is converted into a series of relational tables (indicated in grey)
that link adjacent scales in the hierarchy together (thin arrows). The atomic scale consists of a set of polygons
covering the space, with each polygon containing the same value for all scales in the hierarchy.

pair of scales together can be automatically (and
exhaustively) generated. Since it will be known at
compile-time which operations agents will need to
do, at run-time, agents can be configured to use the
appropriate automatically generated operation for
each time they get information about or update the
properties of the land.

Consider, for example, the case in Figure 3. An
agent requires access to climate information for the
land it owns. The user might configure a number
of different scale hierarchies, however, which
prevent a consistent operation from being coded in
the Agent class. (Two such hierarchies, A and B,
are shown in the diagram.) The code in the Agent
class consists of a call to the database to get the
climate information. The database is configured at
run time to construct appropriate join operations
for the scale hierarchy the user has configured,
returning to the agent a list of the parcels of land
containing the information at the highest possible
scale.

A relational model enables the representation not
only of the various scales of the land and its
properties, but also of the relationships between
them. This allows abstract representation of land
properties to be configured at various scales from
model to model within a single modelling

framework, without exhaustive explicit coding of
all the different scale scenarios in classes that
should not really be concerned with them.

Storing data about agents as well as the space in a
relational database could provide a means of
representing the external properties of agents
discussed earlier. It would also have the benefit of
facilitating the construction of reports from the
model. However, it would mean a break from strict
encapsulation, since the external properties of
agents would not be stored within the Agent class.

5 DISCUSSION

This proposal for the design of an abstract,
spatially-integrated, agent-based model allows
user-configurable scale hierarchies to be enabled
using a relational model. It also suggests a
departure from core OO design philosophy in the
design of agents, through breaking the concept of
strict encapsulation. Some of the practical benefits
of encapsulation (such as being able to recode one
class without affecting others) will be lost as a
consequence.

A more serious problem for this proposal concerns
the performance implications of replacing a local
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look-up in the object data structure with a database
query. If a query has to be constructed each time
the agent needs some information, the model will
take considerably longer to run. One possible
solution is to construct the queries at initialisation
time, and have the queries persist for the duration
of the model run. This would have performance
implications with each change to the data, but
access times would be reduced. Constructing
queries at initialisation time would also have
implications for adaptive agents, who might
change their queries during the course of the run.
The obvious solution is to have the queries
constructed when first used, and persist until the
object creating them is destroyed. In general,
however, although there may be techniques for
reducing the performance costs, inevitably models
built in this way will take longer to run.

Agents are not objects, but subjects interacting
with a single objective world of which they are a

part. Thus, there is a sense in which even the
private internal states of an agent form a part of
that world. At some point, however, the question
of abstraction arises, and the direct physical effects
of agents adjusting their internal knowledge of
their environment (if indeed there are any) will not
be simulated. Furthermore, in the class hierarchy
of Agents, there may be sufficient difference in the
way behaviour is derived (say, decision trees in
one class and neural nets in another) that it makes
more sense for these internal states to be
encapsulated within the object, and not stored in a
table. The key issue is to realise that strict
encapsulation lies at one extreme of a dimension of
design, and that this extreme position may not
necessarily be best suited to all agent-based
models.  Indeed, many object-oriented
programming languages provide syntax to allow
objects direct access to instance variables, which
are exploited by authors such as Axtell [2000] in
agent design.

Climate,Economy

Ownership

SoilType,Crop,Yield

Ar1

Ar2

User-configured
scale hierarchy A

Economy

Ownership

Crop

Yield

Climate

SoilType

Br1

Br2

Br3

Br4

Br5

Br6

User-configured
scale hierarchy B

Owner

owner1

Climate

climate1

Ar1

Climate

climate1
climate1
climate1
climate1

Crop

crop1
crop2
crop2
crop3

Owner

owner1
owner1
owner1
owner1

Yield

yield1
yield2
yield3
yield4

Soil

soil1
soil1
soil2
soil2

Br2 Br3 Br6 Br5

Method

Agent

Ownership Climate?

A

B

Each parcel at
scale X consists
of one or more

contiguous
parcels at scale Y

X

Y

Arrow
Semantics

Figure 3. Two user-configured scale hierarchies (A and B), and an Agent who needs to find out the weather
on its property in one of its methods. The relevant join operations are set up at run-time, when the model is
initialised, and the Agent connects to these operations to get the information required. The arrow labels are
the names of relational tables linking adjacent scales together. In hierarchy A, the query about climate and
ownership involves traversing Ar1 to look up the climate for the given owner. In hierarchy B, a more
complex query is required, linking two separate chains in the partially ordered hierarchy — the crop, yield
and soil type data are not used — these are just the spatial units of land that have to be traversed to get from
land ownership data to climate data according to the way the land is divided up in hierarchy B.
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These arguments are in apparent contradiction to
the views of leading authors in the field of agent-
oriented design such as Wooldridge, Jennings and
Kinny [2000], who state that “the agent paradigm
is based on a significantly stronger notion of
encapsulation than the object paradigm” [p. 307].
However, their focus on the strictly social aspects
of agent interactions (through concepts such as
roles, responsibilities and protocols) does not
consider the interactions between agents and their
environment. For such ‘disembodied’ agents,
basing design principles on strict encapsulation is,
perhaps, the best way forward. The suggestion
made here, however, is that once agents are located
in a space (not something that Wooldridge et al.
are especially concerned with), this principle is
turned on its head. Space provides a context for
indirect agent communication, through (in the real
world) such things as visual, aural and olfactory
signs that, although they are properties of the
agent, can be observed through the space without
directly querying the agent, and so are also, in a
sense, properties of the space. Locating agents
within a space therefore reduces the sense of their
strict individuality. In more general terms, agents
are intricately bound with their environment, in
that the environment and the agent cannot properly
be regarded as being wholly separate.

It is the contention of this paper that of the four
elements embodied in most object-oriented
programming languages, strict encapsulation need
not be considered ‘core’ to the development of
spatially-integrated agent-based models. Using
relational modelling as a means to address issues
in the representation of spatial scale, which has
also been demonstrated in this paper, provides a
basis for simulating both the individual agent view
and the world view, and the somewhat blurred
relationship between them.

This technique was developed to deal with a
perceived problem with implementing user-
configured spatial scale hierarchies. The scope for
applying this technique to temporal and
organisational scale hierarchies has not been
considered, but should not necessarily be ruled out,
as there is nothing inherently spatial in the
methodology. So long as a scale hierarchy can be
defined with particular kinds of property
associated with each scale, and there is an atomic
scale to join chains in a partially-ordered
hierarchy, there is no immediately obvious
impediment to applying relational modelling to
temporal and organisational scales as well as
spatial. Further work, however, is needed to
confirm this.
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