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Abstract: The paper presents a comparison of lumped runoff modelling approaches, aimed at the real-
time forecasting of flood events, based on or integrating Artificial Neural Networks (ANNs). ANNs are used 
in two ways: (a) as black-box type runoff simulation models or (b) for the real-time improvement of the 
discharge forecasts issued by a conceptual-type rainfall-runoff model. As far as the coupling of ANNs with a 
conceptual model is concerned, feed forward neural networks are used as univariate time-series analysis 
techniques both for forecasting the future rainfall values to be provided as input to the hydrological model 
and for updating the river discharges issued by the model. A real-world case study is developed on the Sieve 
River basin (Central Italy) and future river flows are first predicted using artificial neural networks as black-
box models, both with the only use of past flow observations and with the addition of exogenous inputs, that 
is previous rainfall depths. It is then applied the conceptual model and it is assessed the improvement 
allowed when integrating it with the ANN rainfall prediction and output updating modules. The results show 
that the ANN black-box model with exogenous input, when trained on a adequately representative data set, 
gives the best forecasting performances over the validation set. On the other hand, if the training set does not 
cover all the variety of events present in the validation set, for example if the major events are subtracted, the 
flood features were found to be better captured by the conceptual model coupled with pre and postprocessing 
ANN modules, thus demonstrating a greater generalisation ability of such approach. 
 
Keywords: Artificial Neural Networks; Flood Forecasting; Conceptual Models; Black-Box Models 
 

 
1. INTRODUCTION 
 
The mathematical models applied for real-time 
hydrological forecasting are broadly of two types: 
black-box and conceptual models. 
Black-box, or system-theoretic, models are 
stochastically-based and empirical. They are based 
primarily on observations and seek to characterise 
system response from those data. A black-box 
model does not attempt in any way to represent the 
processes occurring within the catchment, not even 
in a simplified manner.  
In a conceptual type model the internal 
descriptions of the various subprocesses are 
modelled attempting to represent, in a simplified 
way, the known physical processes. The input 
(precipitation values) is partitioned into 
components that are routed through the 
subprocesses either to the watershed outlet as 
streamflow or to the surface and deep storages or 
to the atmosphere as evapotranspiration. Even if 
not applying the exact differential laws of 
conservation, conceptual models attempt to 
describe large spatial and temporal scale 
conservation and response laws that are in 

accordance with the observed large-scale 
behaviour of water in hydrologic drainage basins.  
Conceptual approaches were recognised able to 
improve the description of the hydrological 
response of a basin in comparison with black-box 
modelling and this generally implies a better 
performance in discharge forecasting (e.g. Brath 
and Rosso, 1993). In fact black-box models may 
obtain very good results in modelling events 
included in the calibration records but they often 
perform poorly in forecasting under out-of-sample 
conditions. 
In the present work, an investigation of the real-
time forecasting ability of a conceptual and of an 
ANN-based black-box model is presented. Both 
models are of the lumped type, that is, the 
watershed is considered as a whole, the input 
rainfall being the mean areal precipitation over the 
watershed and the output being the discharge 
measured at the closure section. The conceptual 
model is integrated with ANN operating as pre and 
post-processing modules that allow on one hand to 
forecast future rainfall values and on the other 
hand to exploit the measures of actual discharge 
up to the forecast instant. 
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Next section introduces the case study and the data 
set. Section 3 describes the black-box modelling 
approach, while in section 4 the conceptual 
rainfall-runoff model and the coupling of ANNs 
for improving its forecasts are exposed. Section 5 
presents the features of the ANNs used in the 
applications. Sections 6 and 7 illustrate the results 
of the analysed forecasting approaches and offer 
the concluding remarks. 
 
 
2. CASE STUDY AND DATA SET 
 
The study catchment is the Sieve River basin, a 
tributary of the Arno River in Central Italy, with a 
drainage area of 830 km2. The data set consists of 
five years (1992-1996) of hourly river discharges 
at the closure section of Fornacina and the spatial 
average of hourly rainfall depths in 12 gauges. 
Given the interest in flood forecasting, the analysis 
of the river flow simulation was limited, both in 
calibration and validation phases, to the time 
intervals belonging to storm events. In the 
observation period a total of 84 storm events were 
identified and the corresponding precipitation and 
discharge observations were collected. The storm 
events were divided in two sets: a calibration (or 
training) set and a validation set, to test the 
performances of the calibrated model over out-of-
sample occurrences. The calibration set (training 
set 1) contains twice the number of events of the 
validation set (56 versus 28 events) and the sets 
were chosen so as to have approximately the same 
proportion of major and minor events, in terms of 
flood peaks magnitudes. In order to investigate the 
influence of the calibration data on the 
generalisation ability of the trained networks, the 
ANNs were trained also on a subset (training set 
2) of the above described set (training set 1), 
obtained setting aside the events reaching the 
highest flood peaks, that is the four events whose 
peaks are greater than 500 m3/s. 
In all the forecasting applications to be presented, 
in correspondence of each forecast instant, that is 
of each hourly step of the event, a discharge 
prediction is issued for the following 1 to 6 hours, 
based on the information available up to the 
forecast instant. 
 
 
3. BLACK-BOX MODELLING 
 
The most widely diffused application of ANN for 
flood forecasting is their use as a black-box 
hydrologic model, at time scales ranging from one 
year to one day. 
Several studies have been dedicated to the 
prediction of river flows with no exogenous 
inputs, that is with the only use of past flow 
observations (e.g. Karunanithi et al, 1994; Atiya et 

al. 1999). The ANNs are used as univariate time 
series analysis techniques, forecasting the future 
discharge (output) on the basis of the last observed 
values (input). 
But the large majority of hydrologic ANN 
applications consists in the prediction of future 
flows with exogenous input, that is, based on the 
knowledge of previous rainfall depths (and, rarely, 
other meteorological variables) along with past 
observed flows. The appeal of the use of ANNs as 
black-box rainfall-runoff models lies mainly in 
their capability to reproduce the highly non-linear 
nature of the physical phenomena dominating the 
rainfall-runoff transformation and encouraging 
results have been obtained in literature on both 
real and synthetic hydrologic data (among the 
others: Lorrai and Sechi, 1995; Campolo et al., 
1999). 
In a rainfall-runoff application, where the rainfall 
represents the exogenous input, in correspondence 
of each forecast instant the input consists of 
rainfall depths observed over a past time interval. 
In addition, the last observed discharges are 
generally included as inputs. In fact, the response 
time of the river depends on the state of saturation 
of the basin, which is a function of the rainfall 
history in the period preceding the flood event. If 
the model is not run in a continuous way, where 
the state of the catchment is represented by the 
moisture contents in the various stores, the only 
information available on the conditions of the 
basin before the current storm, and therefore on 
the capability of the system to respond to rainfall 
perturbation, is the ongoing runoff in the closing 
section (see Campolo et al., 1999). 
In the present work, ANNs are first used without 
exogenous input, that is without the use of rainfall 
observations. Only the last measured discharges 
are provided as input to the networks, analysing 
the performance of the forecasts provided for the 
validation sets over the varying lead-times. It may 
therefore be identified the optimal number of 
inputs, that is the number of past discharge 
observations that seem to mainly influence the 
future occurrences. In the second type of 
application, the same optimal number of past 
discharges is given as input to the ANN, along 
with exogenous inputs, that is past rainfall values, 
thus testing a rainfall-runoff modelling approach. 
 
 
4. CONCEPTUAL MODELLING 
 
The deterministic rainfall-runoff transformation 
was simulated using a conceptual continuous 
simulation model called ADM (Franchini 1996). 
The catchment is assumed composed of an infinite 
number of elementary areas and the proportion of 
elementary areas that are saturated is described by 
a distribution function: the total surface runoff is 
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the spatial integral of the infinitesimal contribution 
deriving from the saturated elementary areas. The 
catchment is divided into two stores: the upper 
store produces surface and subsurface runoff, 
having as input precipitation and potential 
evapotranspiration, while the lower store produces 
base runoff. A parabolic type transfer of these 
components takes place first along the hillslopes 
towards the channel network, then along the 
channel network towards the basin outlet.  
Even if the model is run in correspondence of the 
flood events, a simulation in continuous during the 
antecedent period is needed for updating the water 
contents in the stores, which in this way do not 
need to be subjectively initialised at the beginning 
of the storm. In the continuous rainfall-runoff 
simulation, an estimation of the potential 
evapotranspiration is needed: in the present case 
study it is based on hourly temperatures measured 
in 4 gauges and climatological data. Such 
temperature data are not used in the black-box 
approach, since as above said, the initial 
conditions of the watershed are represented by the 
last discharge observations. 
The 11 parameters of the ADM model were 
calibrated for the Sieve river basin, on out-of-
sample data, with the SCE-UA global optimisation 
algorithm (Duan et al., 1992). 
Two possible ways for improving the real-time 
discharge forecasts issued by the conceptual model 
are here presented, both based on the coupling of 
the model with ANN-based forecasting modules. 
 
4.1 Precipitation forecasting 
 
The black-box model with exogenous input is 
calibrated on the same type of data that are 
provided to it when used in a real-time forecasting 
framework, that is rainfall and discharge values 
measured up to the forecast instant. In this way, 
the black-box model may, as long as it transforms 
the past rainfall in future discharge, somehow 
compensate for uncertainty sources in the input, 
first of all the ignorance of future rainfall 
occurrences. This is particularly easy for ANN 
models, which are extremely flexible and do not 
need any a priori identification of the input/output 
relationship. On the contrary, the conceptual 
approach, which is deterministic, assumes the 
knowledge of the future rainfall because it was 
parameterised on the basis of historical rainfall and 
runoff contemporary series, thus assuming the 
knowledge of actual rainfall values.  
Being, in a real flood forecasting framework, the 
future rainfall unknown, the hydrological forecasts 
of the conceptual model must be based on a 
prediction of future rainfall, that is performed by 
an ANN having as input past rainfall observations 
and as output future rainfall values. 
 

4.2 Discharge Updating 
 
Any rainfall-runoff model discharge forecast, 
independently of the chosen modelling scheme, is 
only an approximation of reality, subject to 
different sources of error. In addition to input 
uncertainty, the forecasts are subject to 
uncertainties in both the model structure and in the 
parameters values. 
Such uncertainty results in biased discharge 
forecasts, as shown by the difference between the 
simulated hydrograph and the hydrograph that is 
actually measured up to the time of forecast. 
Black models, as above said, take into account the 
precious information coming from the real-time 
measurement of the actual discharge preceding the 
forecast instant. On the contrary, conceptual 
hydrologic models are generally formulated in a 
deterministic way, assuming that the input is 
sufficient to describe the evolution of the system 
and the measurements of the output (recent river 
flows) are considered redundant information.  
For a more accurate real-time forecasting, it is 
instead extremely useful to exploit up-to-date 
observed system outputs in order to minimise the 
acknowledged errors due to model inadequacies. It 
was here chosen to update the output of the 
conceptual model with a postprocessing module, 
without the need to alter in any way the structure 
and implementation of the model. The correction 
consists in the addition to the modelled discharge 
of a prediction of the future error. Past discharge 
errors, as soon as they are measured by the tele-
metering network, are processed by an ANN that 
issues predictions of the future errors, to be added 
to the discharge forecasts of the conceptual model. 
 
 
5. ARTIFICIAL NEURAL NETWORKS 
 
Neural networks distribute computations to 
processing units called neurons, grouped in layers 
and densely interconnected. Three different layer 
types can be distinguished: an input layer, 
connecting the input information to the network 
(and not carrying out any computation), one or 
more hidden layers, acting as intermediate 
computational layers, and an output layer, 
producing the final output. In correspondence of a 
computational node, each one of the entering 
values is multiplied by a connection weight. Such 
products are then all summed with a neuron-
specific parameter, called bias, used to scale the 
sum of products into a useful range. The 
computational node finally applies an activation 
function to the above sum producing the node 
output. Weights and biases are determined by 
means of a non-linear optimisation procedure 
(training) that aims at minimising a learning 
function expressing a closeness between 
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observations and ANN outputs, in the present case 
the mean squared error. A set of observed input 
and output (called a target to be distinguished 
from the network final output) data pairs, the 
training data set, is processed repeatedly, changing 
the parameters until they converge to values such 
that each input vector produces outputs as close as 
possible to the desired target vectors.  
The following network characteristics were chosen 
for all the ANN applications described in the 
following: 
• Architecture: multi-layer feedforward networks 
formed by only one hidden layer; 
• Training algorithm: the quasi-Newton 
Levenberg-Marquardt BackPropagation algorithm 
(Hagan and Menhaj, 1994); the ANNS are trained 
starting from 10 different initial networks, 
randomly initialised, of which the best performing 
on training data is chosen as the trained network; 
• The training did not consider an early stopping 
approach and only the training set was used for 
determining weights and biases; 
• Activation functions: a tan-sigmoidal unit was 
chosen for the hidden layer: 

( ) 1
)1(

2
2 −

+
= − xe

xf ,             (1) 

where x is the input to the node, that is the 
weighted sum of the outputs from previous nodes 
and the bias of the node, and f(x) is the node 
output. A linear transfer function was instead 
chosen for the output layer: it was, in fact, 
preferred to choose an output activation function 
suited to the original distribution of targets, that in 
the present case are unbounded, rather than to 
force the data, with a standardisation or rescaling 
procedure, to conform to the output activation 
function; 

• Multistep ahead prediction scheme: direct 
multioutput method, each output node representing 
one time step to be forecasted, so that the forecasts 
for all the lead-times are issued simultaneously. 
The multioutput prediction scheme sets the 
number of the output nodes equal to the number of 
the lead-times of the prediction, in the present case 
equal to 6, having chosen to issue a prediction in 
correspondence of all the 6 hourly time steps 
following the forecast instant. 
As far as the number of input and hidden nodes is 
concerned, the investigation of the performances 
of several combination of input and hidden layers 
dimensions will be described in the following 
sections. 
 
 
6. ANALYSIS OF RESULTS 
 
6.1 Black-box modelling results 
 
Networks with a varying number of input and 
hidden nodes were first trained over training set 1. 
Their forecasting ability on the validation events 
was assessed through the mean of their Efficiency 
coefficients, EL, over the six lead times, 
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where Qf,t+L is the discharge forecast for lead-time 
L issued in the forecast instant t, Qo,t+L is the value 
of the corresponding observed discharge and 
Qo,mean is the mean of the observed discharges. The 
summations are extended to all the issued 
forecasts, that is, to all the forecasts instants t 
belonging to all the validation events. 

 
a) Without exogenous input 

   Lead-time (h)  
NI Discharge NI Rainfall NH 1 2 3 4 5 6 Mean EL 

2  6 0.982 0.932 0.857 0.774 0.693 0.615 0.809 
4  4 0.978 0.934 0.864 0.783 0.702 0.622 0.814 
6  9 0.976 0.932 0.861 0.778 0.695 0.615 0.810 
8  6 0.976 0.933 0.862 0.779 0.696 0.616 0.810 

10  6 0.976 0.930 0.859 0.779 0.697 0.618 0.810 
12  4 0.973 0.929 0.857 0.773 0.690 0.610 0.805 
15  2 0.957 0.908 0.831 0.742 0.656 0.576 0.778 

b) With exogenous input 
4 2 6 0.985 0.956 0.920 0.883 0.838 0.779 0.893 
4 4 4 0.986 0.958 0.929 0.894 0.847 0.785 0.900 
4 6 9 0.985 0.960 0.931 0.894 0.843 0.779 0.899 
4 8 6 0.986 0.962 0.934 0.898 0.842 0.773 0.899 
4 10 6 0.984 0.959 0.930 0.889 0.831 0.765 0.893 
4 12 4 0.985 0.956 0.921 0.878 0.824 0.761 0.887 
4 15 2 0.938 0.949 0.925 0.876 0.811 0.738 0.873 

Table 1. Efficiency coefficients of the validation forecasts issued by the black-box ANNs with varying 
numbers of input nodes. For each number of input nodes (NI) , only the networks with the number of 

hidden nodes allowing the highest efficiency are illustrated. 
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6.1.1 Without exogenous input 
 
The ANNs with no exogenous input are fed only 
by past discharge values. Each past hourly value 
preceding the forecast instant corresponds to an 
input node. The number of such input nodes was 
varied from 2 to 18, with a number of nodes in the 
hidden layer, NH, ranging from 2 to 24. Table 1a 
shows that the highest efficiencies for the 
validation forecasts is obtained with 4 past 
discharge values (and 4 hidden nodes). 
 
6.1.2 With exogenous input 
 
The results on the networks with no exogenous 
input may be used to infer the number of past 
discharges that have more influence on the future 
values. The number of past discharge values to be 
given as input to the networks with exogenous 
input is thus set equal to 4. In addition, a varying 
number of past rainfall values (from 2 to 15) is 
also provided as input, again with NH ranging 
from 2 to 24. The best performance is provided by 
the network having as input 4 past discharge and 4 
past rainfall values and with 4 nodes in the hidden 
layer. As shown in Table 1b, the improvement 
allowed by the addition of rainfall values is 
remarkable, especially for the longest lead-times. 
 
6.2 Conceptual modelling results 
 
As a standard of reference, the conceptual model 
was first applied without pre or post-processing 
modules. As a forecasting benchmark, the rainfall 
following the forecast instant was assumed to be 
persistent, that is equal to the last observed value 
for all the six hourly lead-times (Conceptual A). 
ANN-based rainfall forecasting and discharge 
updating were first implemented separately. 
An ANN module was trained for forecasting future 
rainfall depths on the basis of the last rainfall 
values. Rainfall forecasts for lead-times from 1 to 
6 hours were issued in correspondence of each 
hourly time step belonging to all the events in the 
validation set. The performances of networks with 
varying number of input (from 2 to 24) and hidden 
(from 2 to 8) nodes were investigated and 
classified according to the RMSE (Root Mean 
Squared Error) of the hourly rainfall forecasts 
cumulated over the 6 steps ahead as compared to 
the 6-h cumulated observed rainfall depths. It was 
thus allowed to identify as the best performing 
networks for rainfall forecasting those with 12 to 
18 input nodes and a small (2 to 4) number of 
hidden nodes. The predicted rainfall values were 
then provided to the conceptual model instead of 
the persistent rainfall values (Conceptual B), 
allowing an improvement (see Table 2a). 

As far as the updating technique is concerned, the 
discharges issued by the conceptual rainfall-runoff 
model are corrected with the addition of an error 
value predicted by another univariate ANN, 
having as input past error values, up to the forecast 
instant. Networks with a number of input (past 
errors) ranging from 2 to 24 hours and a number of 
hidden nodes, NH, ranging from 2 to 8 were 
tested. In a first phase, in order to set apart the 
influence of input uncertainty, the future rainfall 
values were assumed to be known, that is the 
rainfall-runoff model was fed with actually 
observed future rainfall values. The networks with 
a medium input layer dimension (between 4 and 
12) and a small number of hidden nodes allowed 
obtaining the highest mean coefficients of 
efficiency of the updated discharges over the six 
lead-times. The differences in the mean 
efficiencies of such networks were modest (around 
0.1%), therefore the most parsimonious network 
was preferred and the ANN with 4 input nodes and 
2 hidden nodes was chosen as the optimal 
configuration.  
Following the separate implementation of rainfall 
forecasting and discharge updating techniques, an 
integrated flood warning approach was 
implemented, operating with both the input 
prediction and the output correction modules. 
The second ANN (the one used for discharge 
updating) was thus re-calibrated on the simulation 
errors resulting when using as rainfall input to the 
hydrologic model, along with past observed 
values, the rainfall predictions issued by the first 
ANN. 
 
 Mean 

Efficiency
Mean Volume 

Error(%) 
Mean Peak 
Error(%) 

a) Training set 1 
Black-box 0.814 18.8 60.5 
Black-box X 0.900 9.3 24.4 
Conceptual A 0.781 36.6 56.3 
Conceptual B 0.804 34.6 37.2 
Conceptual C 0.883 13.1 25.7 

b) Training set 2 
Black-box 0.779 20.1 59.9 
Black-box X 0.827 19.0 42.2 
Conceptual B 0.805 31.1 43.4 
Conceptual C 0.870 18.1 33.3 

Table 2. Mean over the six lead-times of 
Efficiency, Volume error and Peak error of the 

forecasts of validation events for: black-box ANN 
without and with (X) exogenous input, conceptual 

model with persistent rainfall and no updating 
(Conceptual A), with ANN-based rainfall and no 
updating (Conceptual B) and with ANN-based 

rainfall and updating (Conceptual C). 
 
Table 2a highlights the improvements of the 
performances of the fully integrated approach 
(Conceptual C) in comparison with those obtained 
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when no discharge updating is performed and 
future rainfall is A) assumed to be persistent, B) 
predicted with the ANN module. Along with the 
mean over the six lead-times of the efficiency 
coefficients, Table 2 shows the average of the flow 
peak and volume percentage errors corresponding 
to each flood event in the validation set. 
The comparison of the goodness-of-fit criteria of 
the black-box modelling with exogenous input 
(Black-box X) and of the conceptual model 
integrated with both rainfall and discharge error 
ANN predictions (Conceptual C) shows (Table 2a) 
better performances of the Black-box X modelling 
with respect to all the characteristics of the 
forecasted hydrograph: overall agreement 
(efficiency), volume and, to a less extent, flood 
peak. 
 
6.3 Results with the reduced training set  
 
The ANN-based models described in sections 6.1 
(black box without and with, X, exogenous input), 
and 6.2 (conceptual model with ANN rainfall 
forecasting only, B, and with output updating as 
well, C) were successively trained over the 
reduced training set (training set 2), obtained 
abstracting the four events overpassing a flood 
peak of 500 m3/s (peaks ranging from 535 to 715 
m3/s). The new trained networks were used for 
forecasting the events of the same validation set, 
which includes other four events with peaks 
between 514 and 725 m3/s. The performances of 
the forecasts are summarised in Table 2b, and 
show how, on the reduced training set, the 
conceptual model with ANN pre and 
postprocessing modules is preferable to both 
black-box models. 
 
 
7. CONCLUSIONS 
 
The black-box application confirms the 
importance of the addition of the exogenous input. 
This appears to be more remarkable for increasing 
lead-times, as could be expected given the stronger 
influence of rainfall. The best performing 
networks have moderate hidden layers dimensions 
and are relatively parsimonious. In fact the 
analysis of the forecasts with varying number of 
input nodes indicates as most influencing the past 
four hourly values of observed flow and the past 
four values of rainfall. 
As far as the conceptual model is concerned, the 
gain allowed by the introduction of ANN-based 
rainfall forecasts is sensible, but not as remarkable 
as the one given by the addition of the discharge 
updating, as it may be seen considering the 
differences in the goodness-of fit criteria between 
Conceptual B and A and between Conceptual C 
and B (Table 2a). 

When comparing the forecasts of the black-box 
model with exogenous input with those of the 
conceptual model coupled with pre and 
postprocessing ANN modules, that is the best 
performing models within each modelling group, a 
difference is evidenced when training on the entire 
data set and when setting aside the major events. It 
seems in fact that if the ANN black-box model is 
trained on a adequately representative data set with 
respect to the events forming the validation set 
(training set 1), it outperforms the conceptual 
approach. On the other hand, if the training set 
does not cover all the variety of events present in 
the validation set (training set 2), the flood 
features are better captured by the conceptual 
modelling, thus demonstrating a greater flexibility 
and adaptability of such approach to out-of-sample 
forecasting. This conclusion may provide useful 
indications for the choice of the modelling 
approach in the operational implementation of 
real-time flood warning systems. 
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