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Conceptually-based multivariate simulation of monthly runoff

P. Claps

Department of Hydraulics, Trasportation and Civil Infrastructures, Politecnico di Torino, Torino, Italy
(claps@polito.it)

Abstract: This paper presents a multivariate extension of a parsimonious conceptually-based Auto
Regressive-Moving Average (ARMA) stochastic model for monthly runoff. The multi-station model is a
Contemporaneous-ARMA (CARMA), which considers separately the serial and space correlation of runoff.
Serial correlation is reproduced in individual series by an ARMA model. The ARMA model residuals are
uncorrelated in time but correlated in space. Spatial correlation of runoff is then reproduced by generating
correlated series of residuals and using them to generate runoff through the individual ARMA models. In the
conceptual framework, stochastic ARMA parameters are related to the parameters of a linear system, which
represents the watershed filter that produces runoff. The system input is the effective rainfall, which is
inversely estimated through the ARMA model residual. Application of the CARMA model in the conceptual
framework consists in reproducing the spatial correlation on the effective rainfall rather than on the residuals.
A suitable technique is also proposed for estimation of correlation in matrices with gaps. The performances of
the model are discussed with regard to its application on a 9-station system in Southern Italy.

Keywords: Monthly Runoff; Conceptual model; multivariate; CARMA

1. INTRODUCTION

Simulation of simultaneous runoff series over
several stations is an essential part of current
practice of planning and management of water
resources systems. For reasons of parsimony, it is
nowadays widely accepted that multi-station runoff
simulation can be achieved with models that
preserve spatial correlation among stations (multi-
site) and let serial correlation be reproduced by at-
site univariate models (Contemporaneous ARMA –
CARMA - models, [Salas et al., 1980]). This
representation means that runoff di,t in station i at
time t, depends on past values measured at the
same station (di,t-1; di,t-2 , etc.) but not on the other
station’s past values, as in the complete (vector)
multivariate formulation. The (spatial) dependence
of di,t on the values occurred in the other stations is
thus evaluated only on contemporaneous runoff
values (di+1,t, di+2,t, etc.) by means of a correlation
matrix of the residuals of the individual serial
correlation models. This formulation reduces
greatly the number of parameters to estimate with
respect to the vector model, without significant loss
of information. In addition, univariate models for
serial correlation can be different from one station
to another. This property has not yet been fully
exploited in the literature, where the cumbersome
tools for parameter estimation have left little room

for deeper studies on the identification phase [see
e.g. Salas et al., 1985].

To date, a full-featured contemporaneous periodic-
ARMA model for monthly runoff is available
[Rasmussen et al., 1996], in which serial and
spatial correlations are reproduced season by
season thanks to a large parameter set. In most
practical cases, however, insufficient data prevents
one to use the above, powerful but demanding,
model. On the other hand, conceptually-derived
models [Salas and Obeysekera, 1992; Claps et al.,
1993] provide  physical-like bases for supporting
parsimonious model identification and estimation.
They also present features allowing one to validate
results of models applied on short or discontinuous
time series. These approaches have been so far
proposed only in the univariate form.

Conceptually-based models can help to overcome
the following shortcomings of empirical models: i)
reliance on long, continuous and contemporaneous
runoff records; ii) sensitivity to normality of
residuals; iii) uncertainties in identification of
individual models for serial correlation. In this
paper it will be shown how a CARMA model
structure, that fits into the conceptually-based
ARMA framework proposed by Claps et al.
[1993], addresses the issues above.
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2. NON GAUSSIAN CONCEPTUALLY
BASED  CARMA MODEL BUILDING

 2. 1 Univariate model identification

 In a CARMA formulation, serial correlation is
reproduced in the individual stations by univariate
models, that can differ among stations. In the
present case, the univariate model building follows
the methodology proposed by Claps et al. [1993],
in which the type and the order of ARMA models
are identified on the basis of a conceptualisation of
the runoff process. Identification is made a-priori,
as also proposed by Salas and Obeysekera [1992],
considering runoff as the output of a linear system
(the watershed) fed by the effective rainfall It (i.e.
rainfall minus evapotranspiration). The system is
made up of two groundwater terms, having over-
year and over-month time constant, plus a quick
(zero-lag) surface component.

 In nature, the process It is skewed but uncorrelated.
Therefore, the stochastic model obtained is an
ARMA(2,2) model with non-gaussian residual:

 t-22t-11tt-22t-11t  εΘ εΘ = ε dΦ dΦ d −−−−    (1)

 The zero-mean effective rainfall it (=It – E[It] ) is
not known a-priori: it is obtained, as in inverse
problems, from the residual term εt:

 ( ) ( )[ ]qk
tt ebqeaki /1/1 111/ −− −−−−= ε       (2)

 The four conceptual model parameters (a,b,k,q) are
directly related [see Claps et al., 1993] to their
stochastic counterparts (Φ1,Φ2,Θ1,Θ2). In the same
paper, identification of runoff components and
parameter estimation are described in detail. These
phases take advantage of the different characters
exhibited by the time series at aggregated scales: at
the annual scale, for instance, groundwater
components with under-year time constant are
hidden; this allows one to better identify possible
over-year components. In case only one (over-
month) groundwater system is identified, the model
reduces to an ARMA(1,1).

Relation (2) clarifies that the ARMA residual
contains information on the input process that
produces the catchment runoff. Therefore, to
generate synthetic runoff series one can either
reproduce the residual εt as it is, or (as chosen
here) obtain the estimated effective rainfall series
through (2) and generate it as a random variable
with hydrological meaning. As such, It must be non
negative and can have a finite probability at zero.
Possible negative values resulting in the estimated
It series are set to zero, while locally preserving the
mean.

 The distribution proposed for It is a compound

square-root normal, with pdf as:
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in which P0 is the zero finite probability and µr, σr
are the mean and standard deviation of the square-
root transformed variable Ir = . Parameters of
the continuous part I+ ( =I>0) of the distribution.
are estimated by the method of moments on the
original (untransformed) data, using the relations:
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 The zero probability P0 is evaluated as the sample
frequency of zeros. This set of three parameters is
assumed to vary month by month, with the
possibility of a Fourier smoothing for more
compact intra-annual representation.

 To generate runoff series, synthetic series of It

must be transformed in the residual εt by inverting
(2), so to introduce it into the estimated ARMA
model.

 
 2. 2 Spatial correlation of effective rainfall

 Based on the above premises, it can be more clear
now that the focus of this paper is on the estimation
of the spatial correlation of the effective rainfall, as
the only step needed for the multivariate extension
of the univariate conceptual ARMA model.

 In a multisite CARMA model, spatial correlation is
reproduced by generation of contemporaneous
series of residuals, which must maintain the spatial
correlation found in the original ARMA residuals
obtained in each station. This can be made using a
standard procedure [e.g. Salas et al., 1980], in
which generic gaussian correlated data et can be
generated using the matrix equation:

 et = B ξξξξt      (5)

 where ξξξξt  is a nx1 vector of normal uncorrelated
standardised values at time t and B is a nxn
matrix. B is linked to the sample correlation matrix
G of the original et series by the ‘gramian’
equation: BBT = G. Application of (5) to a non
gaussian residual, like εt, requires a transformation
of the variable (εt ) to make it gaussian.

 In the present case, the variable on which spatial
correlation is reconstructed is the effective rainfall
It, obtained through equation (2). Analysing It
instead of εt gives the advantage of dealing with  a
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variable with hydrological meaning, whose
characteristics in a region may be related to prior
climatic knowledge (e.g. total precipitation). This
provides diagnostic features to the stochastic
model and makes it possible, in principle, to deal
with runoff generation in ungauged stations.

On the other hand, It is a (non-gaussian) compound
variable, and this complicates considerably the
transformation. It was decided not to transform the
entire distribution but to deal independently with
the spatial correlation for the zero – non zero
occurrence of the variable and for the continuous
part I+ of the distribution. This has been done by
adapting for the spatial case a procedure
implemented by Chebaane et al. [1995] for
reproducing the serial correlation of a univariate
intermittent process. In practice, the generated
multisite correlated sequences of It are obtained by
first generating spatially correlated (0,1)
sequences, with a two-state Markov chain; these
sequences are then multiplied with generated
values of the continuous distribution of I+, by
applying (5) to the square-root of the variable, to
make it gaussian.

In the following, the multisite generation of
effective rainfall will be discussed with reference
to series with gaps, by considering separately the
continuous and the intermittent part of the process.
For the latter, the relations used derive directly
from the transition probability method described
in Chebaane et al. [1995].

 3.  CORRELATION MATRIX ESTIMATION
IN SERIES WITH GAPS

Well-established procedures for statistical analysis
with missing data tend to become quite
sophisticated for multivariate cases and depend
critically on the hypothesis of normality [see e.g.
Schafer, 1997]. The approach presented here tries
to tackle the missing data problem directly in the
simulation phase without data reconstruction.
Schemes for approximated, yet objective,
estimation of parameters and correlation matrices
are devised, preserving the mutual information
among stations by considering dataset pairs instead
of the entire matrix. It must be also considered that
the proposed procedure is built to deal with
datasets presenting long interruptions, or where
information must be extracted from time series of
reduced length.

In CARMA models, methods for dealing with
missing data can be different for the two phases of
reconstruction of serial and spatial correlation. For
the serial correlation, the method used to deal with
discontinuous series (see e.g. Table 1) is based on

the assumption of a unique set of ARMA
parameters, obtained by weighted average of those
estimated in the continuous sub-series.

Effective rainfall values estimated in the subseries
are transferred to the next stage without
modifications. In practice, the matrix made up of
the effective rainfall series resulting by the
univariate estimation will contain all the gaps of
the original data matrix. The next two subsections
describe the techniques used for the estimation of
spatial correlation on these gapped matrices.

 3. 1 Spatial correlation of the effective rainfall:
continuous part

Two main methods for estimating the correlation
matrix G on series with gaps were found in
literature. The first is referred to as case deletion
[Schafer, 1997, p. 23] and works so as only the
cases (rows) in which all of the stations have data
are accepted and processed. Using data matrices of
equal length ensures that the correlation matrix is
positive definite, which is a sufficient condition to
solve the ‘gramian’ equation BBT = G (and have
the matrix B available to generate spatially
correlated variables using (5)). The problem with
this simple and intuitive technique is that the
resulting dataset can be too short to retain enough
information about the spatial correlation structure.

The second method, the one adopted here, was
proposed by Basson et al. [1994] and is based on
the reproduction of the original correlation
between couples of stations. In this method the
case deletion is applied between each pair of
stations, reducing greatly the number of deleted
data. On the other hand, the data considered for a
given station can vary depending on which other
station is considered in turn. As a consequence of
this procedure, it is not assured that the resulting
correlation matrix is even positive semidefinite,
which is a necessary condition for decomposition
of  BBT = G. If the computed correlation matrix
comes out as negative definite, a reconditioning
technique must be applied to make it at least
positive semidefinite. This method ensures
reasonable preservation of sample spatial
correlation even when data are quite sparse,
without requiring data infilling.

The choice of the reconditioning method can be
made in a restricted lot, beginning with Fiering
[1968] and arriving at Rasmussen et al. [1996].
The former is very simple and intuitive, while the
latter is part of a wider method applied to families
of correlation matrices required in periodic
contemporaneous models. For the constant-
parameter ARMA model considered here, the

442



Fiering method performed best, and was the one
adopted throughout the procedure. Decomposition
of the gramian equation BBT = G is achieved
through the singular value decomposition (SVD)
method [e.g. Press et al., 1986].

Based on the method by Basson et al. [1994] and
on the reconditioning technique by Fiering [1968],
spatially correlated non-zero values of effective
rainfall are generated with the following steps:

1. The sample correlation matrix G is estimated on
the square-root transformed (non-zero) values of
estimated effective rainfall
2. If G is negative-definite, the reconditioning
method by Fiering is applied.
3. Equation BBT = G is decomposed by the SVD
method, implemented in the Matlab® environment.
4. Once B is computed, generated series of I+ are
obtained through (5), in which et is squared to
preserve the original distribution.

3.2. Spatial correlation of the effective rainfall:
Intermittent part

A two-state (0,1) occurrence variable X represents
the intermittent part of the effective rainfall
compound distribution. Estimation of the spatial
correlation matrix on X is obtained through the
transition probabilities (TP) method proposed by
Chebaane et al. [1995]. This method is formulated
for a 2-site case, and is applied here to pairs of
stations, sequentially.

If XS0,τ is the variable X referred to the month τ in
the station s0 and XS1,τ is the contemporaneous
variable referred to the station s1, the transition
probability (TP) )|( ,, 01

iXjXPP ssij === ττ  is the

conditional probability of having j∈ {0,1} in station
s1 given i∈ {0,1} in station s0. Estimates of Pij are
obtained, for each month τ, directly from the
sample, by counting the numbers nij of the actual
i→j transitions and dividing them by the total
number ni of the starting states.

This bivariate procedure cannot be immediately
extended to a general multivariate case. However,
the application devised here is based on the
presence of nested and adjacent basins (a quite
frequent configuration in this kind of problems)
and proceeds filling up the correlation matrix
according to reasonable sequences of station pairs
(upstream or downstream in the same basin and
continuing towards adjacent basins). Practical
applications on different sequences of station pairs
showed that the final correlation matrix does not
change much, independently of the choice of the
sequence. However, this result is not necessarily
expected in a more general context and is matter

for further model development.

The presence of uneven datasets does not affect the
nature of the transition matrix, but rather the inner
congruence of transition probabilities. In
particular, the following congruence equations
must hold:

( ) ( ) ( ) τττ += ,110,000,0 001 SSS PPPPP                (7.a)

( ) ( ) ( ) τττ += ,111,001,1 001 SSS PPPPP                 (7.b)

P00 + P01 =1 ;   P10 + P11 =1   (7.c)

In the (7), (P0)S1,τ represents the marginal
probability (MP) of zero effective rainfall for the
month τ at the station S1, while P10 is the TP Pij
with i=1 and j=0.

Uneven datasets will actually have different record
lengths as, for instance, NS0 and NS1. The case
deletion makes it possible to compute the four Pij
TP’s on even subsets of data, which will have
length NS0S1 ≤ min(NS0,NS1). On the other hand,
marginal probabilities (e.g. (P0)S1,τ) re-computed
on these shorter subsets can change even
considerably with respect to the original values. If
MP’s were retained to their original values,
congruence would not be ensured in relations (7).
In reconciling this incongruent situation it was
chosen to save the original information related to
marginal probabilities, modifying the estimation of
TP’s so as to respect conditions (7). Keeping the
MP’s to the original values, they will constrain the
coefficients of the linear relations represented by
(7.a) and (7.b). For instance, (7.a) represents the
equation of a straight line in the (P00, P10) plane,
that can be written as 0010 bPaP += , with
coefficients:
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After the case deletion, the TP’s *
10

*
00  P,P  computed

on the sample will be the coordinates of a point P*,
as indicated in Figure 1. The point P* will not lie,
in general, on the straight line (7.a), that has
coefficients obtained through (8) using the original
MP’s. The P* coordinates will be then corrected
moving the point orthogonally towards the
congruence line (Figure 1a). If the interception
point falls outside the (1,1) congruence square, it
must further move on the line until the square is
reached (Figure 1b).

With respect to the case of equation (7.a), the
corrected coordinates, obtained for the simpler
situation depicted in Figure 1.a, result by:

443



b
b

a
b

1

*P1*P
 P

0010

00
+

−+
=  ;   0010  PP ba +=           (9)

(a)         (b)

Figure 1. Definition sketch for correction of
transition probabilities Pij.

4. CASE STUDY

The procedures shown in the preceding paragraphs
have been applied to a system of 9 gauging stations
located in Basilicata (Southern Italy). Names and
main characteristics of the basins considered are
reported in Table 1. Data records available are
highly variable in length and continuity: the longest
period of continuous observation in all stations is
of 6 years (see Table 1). Given the type of climatic
regime, with one summer minimum and one winter
maximum of precipitation and runoff, a water year
beginning in October has been considered.

Owing to the high percentage of zeros in the
effective rainfall series, correlation matrix of the
continuous part of I+ becomes insignificant in some
months of the dry season. Consequently, the spatial
correlation structure related to I+ has been
evaluated on a seasonal basis and considered to
hold for all of the months within each season. Even
after aggregation, it was necessary to apply the
reconditioning method of Fiering [1968] to obtain
positive semidefinite correlation matrices of I+.
This problem does not apply to the transition
matrix used for the intermittent part of the process,
which can be maintained with its monthly detail.

Summarising, generation of monthly effective
rainfall derives from the marginal monthly
distribution using constant (within a season)
correlation for the continuous part and monthly
correlation for the intermittent part of the process.

Final results obtained are shown in Figures 2-3,
which relate to reproduction of the correlation
structure of the effective rainfall process in the dry
and wet seasons. Matrices reproduced in the figure
present, in gray scale, the relative variations found
between observed and generated correlations

between all series pairs. Correlations are computed
on complete effective rainfall series (i.e. including
zeros) generated at monthly scale and aggregated
seasonally.

Table 1. Main characteristics of the time series
considered.

Code Station Basin
Area
(Km2)

Mean
monthly
runoff
(mm)

Continuous
sub-records

1 Bradano 1 2743 7.60  1933- 1942
 1948- 1960

2 Bradano 2 459 12.50  1928- 1943
 1955- 1971

3 Basento 1 1405 21.67 1948- 1969
4 Basento 2 848 30.13  1927- 1943

 1948- 1966
5 Basento 3 42.4 48.75  1926- 1943

 1947- 1971
6 Agri 1 507 52.40  1926- 1942

 1946- 1962
7 Agri 2 174 69.07  1929- 1943

 1946- 1971
8 Sinni 1 1142 45.04  1950- 1976
9 Sinni 2 233 83.80  1930- 1942

 1948- 1967
 1970- 1980
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Figure 2. Fraction of the relative errors
[abs(ρgen−ρobs)/ρobs] in the reproduction of the
spatial correlation of the effective rainfall in the

wet season (November-April).

When considering spatial correlation of runoff, the
results (not reported here) look very similar,
because univariate linear models fed by spatially
correlated inputs produce runoff series which
preserve closely the spatial correlation structure
embodied in the input process.

445



0

0.2

0.4

0.6

0.8

1.0

Station #

St
at

io
n 

#

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Figure 3. Fraction of the relative errors
[abs(ρgen−ρobs)/ρobs] in the reproduction of the
spatial correlation of the effective rainfall in the

dry season (May-October).

Overall, the proposed procedure performs quite
well, presenting only less efficient results in the dry
season with regard to stations located in opposite
corners of the region. The inefficient reproduction
of correlation in these cases, in terms of relative
errors, is mitigated by the fact that for those
stations absolute correlations are actually almost
negligible in the dry season.

Moreover, the high number of zeros found in the
dry season reduces greatly the importance of
spatial correlation effects, as compared to the wet
season. In fact, summer runoff volumes are only a
small fraction of those in the wet season. For this
reason, and in the framework of the Mediterranean
climate, correct reproduction of the variability and
correlation of the runoff process in the wet season
must be considered crucial for planning and
management purposes.

5.     CONCLUSIONS

A procedure based on contemporaneous constant-
parameters ARMA models is proposed for
multisite generation of monthly runoff. As the
conceptual analogy plays a role in all phases of
model building [see Claps et al., 1993], it is
suggested here to analyze and reproduce the spatial
correlation using the estimated effective rainfall in
place of the ARMA residual, using that variable as
the innovation for multisite runoff generation. The
aim is to better understand the variability of net
rainfall in the space, and within seasons, and to
constitute a base to investigate total to effective
rainfall transformations.

Problems arising by this choice have been faced
with an adapted technique that reproduces
correlation of compound distributions. Further

adjustments have been introduced for the analysis
of series with gaps, trying to maximize the
information available without data reconstruction.

The case study presented here shows that relative
estimation errors increase with the increase of zero
values and with the reduction of correlation. Future
applications in regions with different climates are
expected to provide additional indications in this
sense. Further steps of model development will
include full matrix estimation of the spatial
correlation structure of intermittent variables.
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