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Data-Based M echanistic and Top-Down M odelling *
Peter C. Young

Centre for Research on Environmental Systems and Satistics,
[.LE.N.S, Lancaster University, U.K.; and
Centre for Resource and Environmental Studies, Australian National University

Abstract: The paper discusses the problems associated with environmental modelling and the need to develop
simple, ‘top-down’, stochastic models that match the information content of the data. It introduces the con-
cept of Data-Based Mechanistic (DBM) modelling and contrasts its inductive approach with the hypothetico-
deductive approaches that dominate most environmental modelling research at the present time. The major
methodological procedures utilized in DBM modelling are outlined and two practical examples illustrate how
it has been applied in a hydrological and water quality context. The use of this same methodology as a basis

for the evaluation and simplification of large deterministic simulation models is also discussed briefly.

Keywords: Top-down; Data-Based Mechanistic (DBM); inductive; stochastic; transfer function.

1 INTRODUCTION

The environment is a complex assemblage of inter-
acting physical, chemical, and biological processes,
many of which are inherently nonlinear, with con-
siderable uncertainty about both their nature and
their interconnections. It is surprising, therefore,
that stochastic, dynamic models are the exception
rather than the rule in environmental science re-
search. One reason for this anomaly lies in the
very successful history of physical science over the
last century. Modelling in deterministic terms has
permeated scientific endeavour over this period and
has led to a pattern of scientific investigation which
is heavily reductionist in nature. Such determinis-
tic reductionism appears to be guided by a belief
that physical systems can be described very well,
if not exactly, by deterministic mathematical equa-
tions based on well known scientific laws, provided
only that sufficient detail can be included to describe
all the physical processes that grerceived to be
important by the scientists involved. This leads in-
exorably to large, nonlinear models reflecting the
scientist's perception of the environment as an ex-
ceedingly complex dynamic system.

Although deterministic reductionism still dominates
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environmental modelling, there are some signs that
attitudes may be changing. There is a growing real-
ization that, despite their superficially rigorous sci-
entific appearance, simulation models of the envi-
ronment based on deterministic concepts are more
extensions of our mental models and perceptions of
the real world than necessarily accurate represen-
tations of the real world itself. The recent revived
interest in the ‘top-down’ approach to modelling in
the hydrological literature (e.g. [12] and the refer-
ences therein), for instance, is a response to the rel-
ative failure of the alternative reductionist (‘bottom-
up’) philosophy in this area of study.

But such scepticism is not new. It has its parallels
in the environmental (e.g. [25][26][2]) and ecosys-
tems (e.g. see prior references cited in [19]) lit-
erature of the 1970s and early 1980s . Over this
period, the present author’s contributions were set
within the context of ‘badly defined’ environmental
systems. These early papers ([25][26]) then went
on to present initial thoughts on an objective, sta-
tistical approach to modelling poorly defined sys-
tems that tried to avoid the dangers of placing too
much confidence in prior perceptions about the na-
ture of the model. They also adumbrate very sim-
ilar anti-reductionist arguments that have appeared
recently in the hydrological literature and express
some of these same views within a hydrological
context ([10][5]). In the subsequent period since
the earlier papers were published, however, the au-
thor has sought to develop this statistical approach



within a more rigorous systems setting that he has
termed Data-Based Mechanistic (DBM) modelling.
Prior to discussing the DBM approach, the present
paper will first discuss briefly the philosophical ba-
sis for modelling natural systems and outline the
major concepts of statistical modelling that are im-
portant in any modelling process. Subsequently,
two examples will be presented that illustrate the
utility of DBM modelling in practical environmen-
tal science and systems analysis.

2 PHILOSOPHIES OF MODELLING

Within the history of science, two main approaches
to mathematical modelling can be discerned; ap-
proaches which, not surprisingly, can be related
to the more general deductive and inductive ap-
proaches to scientific inference that have been iden-
tified by philosophers of science from Francis Ba
con to Karl Popper and Thomas Kuhn.

e The hypothetico-deductive approach. Here,
the a priori conceptual model structure is
effectively a theory of behaviour based on
the perception of the scientist/modeller and is
strongly conditioned by assumptions that de-
rive from current scientific paradigms.

e The inductive approach. Here, theoretical
preconceptions are avoided as much as pos-
sible in the initial stages of the anadysis. In
particular, the model structure is not pre-
specified by the modeller but, wherever pos-
sible, it isinferred directly from the observa-
tional datain relation to a more general class
of models. Only then isthe model interpreted
in a physically meaningful manner, most of-
ten (but not always) within the context of the
current scientific paradigms.

In common with much of the scientific investigation
that occurred prior to the 20" Century, The DBM
approach to modelling is of thislatter inductive type
and it forms the basis for the research described in
the rest of this paper. Previous publications ([30]
and the prior references therein) map the evolution
of this DBM philosophy and its methodological un-
derpinning in considerable detail. As these refer-
ences demonstrate, DBM models can be of vari-
ous kinds depending upon the nature of the system
under study. In the context of the present paper,
however, they take the form of linear and nonlinear,
stochastic Transfer Function (TF) models.

3 STATISTICAL IDENTIFICATION, ESTIMA-
TION AND VALIDATION

Inductive modelling is concerned with the analysis
of datafrom planned experiments or monitoring ex-
ercises. As a result, the methodology required for
inductive modelling is strongly statistical in its mo-
tivation. This statistical approach to modelling as-
sumes that the model is stochastic: in other words,
no matter how good the model and how low the
noise on the observational data happensto be, a cer-
tain level of uncertainty will remain after modelling
has been completed. Consequently, full stochastic
modelling requires that this uncertainty, which is
associated with both the model parameters and the
stochastic inputs, should be quantified in some man-
ner as an inherent part of the modelling analysis.

In the statistical time series literature, stochas-
tic modelling is normally considered in two main
stages: identification of an appropriate, identifiable
model structure; and estimation (optimization, cal-
ibration) of the parameters that characterize this
structure, using some form of estimation or opti-
mization. Normally, a further stage of validation
(or conditional validation; see later) is defined, in
which the ability of the model to explain the ob-
served data is evaluated on data sets different to
those used in the model identification and estima-
tion stages.

In the DBM approach to modelling, the identifica-
tion stage is considered as a most important and es-
sentia prelude to the later stages of model building.
It usually involves the identification of the most ap-
propriate model order, as defined in dynamic sys-
tem terms. However, the model structure itself can
be the subject of the analysis if thisis also consid-
ered to be ill-defined. In the inductive DBM ap-
proach, for instance, the nature of linearity and non-
linearity inthemodel isnot assumed a priori (unless
there are good reasons for such assumptions based
on previous data-based modelling studies). Rather
it is identified from the data using non-parametric
and parametric statistical estimation methods based
on a suitable generic model class. Once a suitable
model structure has been defined within this class,
there are a variety of statistical methods for iden-
tifying model order, some of which are mentioned
later. In general, however, they exploit some or-
der identification statistics, such as the correlation-
based statistics popularized by Box and Jenkins[7],
the well known Akaike Information Criterion (AIC:
[1]), and the more heuristic YIC statistic (see e.g.
[35][37][42]) which provides an aternative to the
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tends to identify over-parameterized models).

Once the model structure and order have been iden-
tified, the parameters that characterize this structure
need to be estimated in some manner. There are
many automatic methods of estimation or optimiza-
tion available in this age of the digital computer.
These range from the simplest, deterministic pro-
cedures, usually based on the minimization of least
squares cost functions, to more complex numerical
optimization methods based on statistical concepts,
such as Maximum Likelihood (ML). In general, the
|atter are more restricted, because of their underly-
ing statistical assumptions, but they provide a more
thoughtful and reliable approach to statistical in-
ference. It is an approach which, when used cor-
rectly, includes the associated statistical diagnostic
tests that are considered so important in statistical
inference. In the present DBM modelling context,
the estimation methods are based on optimal, lin-
ear Instrumental Variable (1V) methods for transfer
function models (e.g. [27] and the prior references
therein) and nonlinear modifications of these meth-
ods[33][34].

Validation is a complex process and even its defi-
nition is controversial. Some academics (e.g. [13],
within a ground-water context; [15], in relation to
the whole of the earth sciences) question even the
possibility of validating models. Nevertheless, one
specific, quantitative aspect of validation is widely
accepted; namely ‘predictive validation’ (often re-
ferred to as just ‘validation’), in which the predic-
tive potential of the model is evaluated on data other
than that used in the identification and estimation
stages of the analysis. While the authors of [15] dis-
missthisapproach, which they term ‘ calibration and
verification’, their criticismsare rather weak and ap-
pear to be based on a perception that “models almost
invariably need additional tuning during the verifi-
cation stage”. While some modellers may be un-
able to resist the temptation to carry out such addi-
tional tuning, so negating the objectivity of the val-
idation exercise, it is arather odd reason for calling
the whole methodology into question.

On the contrary, provided it is practically feasible,
there seems no doubt that conditional validation, in
the predictive sense used here, is an essentia pre-
requisite for any definition of model efficacy, if not
vaidity in a wider sense. In the rainfall-flow con-
text considered later, for example, it impliesthat, on
the basis of the new measurements of the model in-
put (rainfall) from the validation data set, the model
produces flow predictions that are acceptable within
the predicted uncertainty bounds.

365

4 DATA-BASED MECHANISTIC (DBM) MoOD-
ELLING

The term ‘data-based mechanistic modelling’ was
first used in [38] but the basic concepts of this ap-
proach to modelling dynamic systems have devel-
oped over many years. It was first applied within
a hydrological context in the early 1970s, with ap-
plication to modelling water quality in rivers ([3])
and rainfall-flow processes ([22][24]). Indeed, the
DBM water quality and rainfall-flow models dis-
cussed later in the present paper are a direct devel-
opment of these early models.

In DBM modelling, the most parametrically effi-
cient (parsimonious) model structureisfirst inferred
statistically from the available time series datain an
inductive manner, based on a generic class of black-
box models (normally linear or nonlinear differen-
tial equations or their difference equation equiva-
lents). After this initial black-box modelling stage
is complete, the model isinterpreted in a physically
meaningful, mechanistic manner based on the na-
ture of the system under study and the physical,
chemical, biological or socio-economic laws that
aremost likely to control its behaviour. By delaying
the mechanistic interpretation of the model in this
manner, the DBM modeller avoids the temptation
to attach too much importance to prior, subjective
judgement when formulating the model equations.
This inductive approach can be contrasted with the
alternative hypothetico-deductive ‘ Grey-Box’ mod-
eling, approach. Here, the physically meaning-
ful but smple model structure is based on prior,
physically-based and possibly subjective assump-
tions; and the parameters that characterize this sim-
plified structure are estimated from data only after
this structure has been specified by the modeller.

Other previous publications, as cited in [30], map
the evolution of the DBM philosophy and its
methodol ogical underpinning in considerable detail,
and so it will suffice here to merely outline the main
aspects of the approach:

1. The important first step is to define the ob-
jectives of the modelling exercise and to con-
sider the type of model that is most appropri-
ate to meeting these objectives. Since DBM
modelling requires adequate data if it is to
be completely successful, this stage also in-
cludes considerations of scale and the data
availability at this scale, particularly as they
relate to the defined modelling objectives.
However, the prior assumptions about the



form and structure of this model are kept at
a minimum in order to avoid the prejudicial
imposition of untested perceptions about the
nature and complexity of the model needed
to meet the defined objectives.

. Appropriate model structures are identified
by a process of objective statistical inference
applied directly to the time-series data and
based initially on a given generic class of lin-
ear Transfer Function (TF) models whose pa-
rameters are allowed to vary over time, if this
seems necessary to satisfactorily explain the
data

. If the modé is identified as predominantly
linear, linear with slowly varying parameters
or piece-wise linear, then the parameters that
characterize the identified model structure in
step 2. are estimated using advanced meth-
ods of statistical estimation for dynamic sys-
tems. The methods used in the present pa-
per are based on optimal, recursive Instru-
mental Variable (1V) estimation agorithms
(see [27]) that provide a robust approach to
model identification and estimation and have
been well tested in practical applications over
many years. Here the important identifica
tion stage means the application of objective
statistical methods to determine the dynamic
model order and structure. Full details of
these time series methods are provided in the
above references and they are outlined more
briefly in [35], [37] and [42].

. If significant parameter variation is detected
over the observation interval, then the model
parameters are estimated by the application of
an approach to time dependent parameter es-
timation based on the application of recursive
Fixed Interval Smoothing (FIS) algorithms
(eg. [8][214][27]). Such parameter varia
tion will tend to reflect statistically significant
nonstationary and nonlinear aspects of the ob-
served system behaviour. In effect, the FISal-
gorithm provides a method of non-parametric
estimation, with the Time Variable Parame-
ter (TVP) estimates (e.g. [32]) defining the
non-parametric relationship, which can often
be interpreted in Sate-Dependent Parameter
(SDP) terms (see later).

. If nonlinear phenomena have been detected
and identified in stage 4, the non-parametric
state dependent rel ationships are normally pa-
rameterized in a finite form and the result-

form of numerical optimization, such as non-
linear least squares or Maximum Likelihood
(ML) optimization.

6. Regardless of whether the model is identi-
fied and estimated in linear or nonlinear form,
it is only accepted as a credible representa-
tion of the system if, in addition to explain-
ing the data well, it also provides a descrip-
tion that has direct relevance to the physi-
cal reality of the system under study. This
is a most important aspect of DBM mod-
elling and differentiates it from more clas-
sical ‘black-box’ and ‘grey-box’ modelling
methodologies, such as those associated
with standard TF, nonlinear autoregressive-
moving average-exogenous variables (NAR-
MAX), neural network and neuro-fuzzy mod-
els (see discussion in [36]).

7. Finaly, the estimated model is tested in var-
ious ways to ensure that it is conditionally
valid (see above discussion and [34][35]).
This can involve standard statistical diagnos-
tic tests for stochastic, dynamic models, in-
cluding analysis which ensures that the non-
linear effects have been modelled adequately
(eg. [6]). It also involves validation exer-
cises, aswell as exercises in stochastic uncer-
tainty and sensitivity analysis.

Of course, while step 6 should ensure that the model
equations have an acceptable physical interpreta-
tion, it does not guarantee that this interpretation
will necessarily conform exactly with the current
scientific paradigms. Indeed, one of the most ex-
citing, abeit controversial, aspects of DBM models
is that they can tend to question such paradigms.
For example, DBM methods have been applied
very successfully to the characterization of imper-
fect mixing in fluid flow processes and, in the case
of pollutant transport in rivers, have led to the devel -
opment of the Aggregated Dead Zone (ADZ) model
([41[20][31]). Despiteitsinitially unusua physical
interpretation, the acceptance of this ADZ model
(e.g. [9] and the prior referencestherein) and itsfor-
mulation in terms of physically meaningful parame-
ters, seriously questions certain aspects of the ubig-
uitous Advection-Dispersion Model (ADE) which
preceded it as the most credible theory of pollutant
transport in stream channels (see the comparative
discussion in [40]).

One aspect of the above DBM approach which dif-
ferentiates it from aternative deterministic ‘top-

ing nonlinear model! is estimated using some 5 down’ approaches is its inherently stochastic na-



ture. This means that the uncertainty in the esti-
mated model is always quantified and this informa-
tion can then be utilized in various ways. For in-
stance, it allows for the application of Monte Carlo-
based uncertainty and sensitivity analysis, as well
as the use of the model in statistical forecasting and
data assimilation algorithms, such as the Kalman
filter. The uncertainty analysis is particularly use-
ful because it is able to evaluate how the covari-
ance properties of the parameter estimates affect the
probability distributions of physically meaningful,
derived parameters, such asresidencetimes and par-
tition percentagesin parallel hydrological pathways
(see e.g. [28] [31] and the examples bel ow).

Finaly, it should be emphasized that the DBM ap-
proach to modelling is widely applicable: it has
been applied successfully to the characterization of
numerous environmental and other systems (seee.g.
[30] and the prior references therein), including the
macro-economy of the USA [39].

5 PRACTICAL EXAMPLES

Two practical examples will be considered here,
both concerned with hydrological systems. Thefirst
will show how even purely linear DBM modelling
can provide a powerful approach to analyzing ex-
perimental data. However, many environmental sys-
tems are nonlinear and so the second example will
show how State Dependent Parameter (SDP) mod-
eling procedures can be exploited to handle such
nonlinearity.

51 A Linear Example:
Transport

Modelling Solute

The first model to be considered seriously in DBM
termswas the ADZ model for the transport and dis-
persion of solutes in river systems, as mentioned
earlier. This model has also led to related mod-
elsthat describe the imperfect mixing processes that
characterize mass and energy flow processes in the
wider environment (see e.g. [17][38])

This example is concerned with the DBM/ADZ
modelling of input-output data obtained from a
‘guip’ (impulsive input) bromide tracer experiment
carried out in a Florida wetland area receiving
treated domestic wastewater for further nutrient re-
moval. The experiment was part of a study car-
ried out by Chris Martinez and Dr. William R.
Wise of the Environmental Engineering Sciences
Department, University of Florida for the City of

idence times for each wetland cell in the system
and to assess whether the same degree of treatment
could be maintained should the wastewater loading
be raised from 16 to 20 million gallons per day. The
bromide tracer was injected 765 metres upstream of
awaeir, at which sampleswere taken with asampling
interval At of 2 hours.

The first step in DBM modelling is to identify a
suitable model from a generic model class that is
both capable of explaining the data in a parametri-
caly efficient manner and producing a model that
can be interpreted in physical terms. Based on the
previous research described in the above references,
a reasonable model class is the linear TF model
in continuous or discrete time form. As we shall
see, such TF models are not only able to explain
the tracer data well, they can aso be interpreted in
multi-reach ADZ model terms that have physical
meaning. Here, we will consider the discrete-time
TF model and utilize the SRIV agorithm (asimpli-
fied version of the optimal 1V algorithm mentioned
earlier) to identify the model order and estimate the
parameters’.

The impulsive input is not persistently exciting but
the SRIV agorithm has no difficulty identifying and
estimating a low order model. The best identified
TF, based on the YIC criterion, is either 37¢ or 4"
order but subsequent analysis, described bel ow, sug-
geststhat thelatter is superior from aphysical stand-
point. The estimated [4, 2, 22] (4" order denomina-
tor, 2 order numerator and a 22 sampling interval
pure time delay) TF model takes the form:

G
(=)

o

Yt = Ug_22 + &t ()

Y

where,

Az =1-3672"1 +5.062"2 - 3.11273
+0.72274
B(z™) = 0.00103 — 0.00101z*

Here the ‘hat’ denotes the estimated value; 2z~ is
the backward shift operator (i.e. 2z 'y, = y,—;);
y¢ is the observed tracer concentration at the weir
and u; istheimpulsiveinput of tracer (186.33 mg/l),
both measured at the t* sampling instant. Note that
the large ‘advective' time delay of 22 sampling in-
tervals (44 hrs.) is the time taken for the solute to
first reach the weir. The noise &;, which represents
the quantification of all stochastic influences, in-
cluding unmeasured inputs and measurement noise,

2 Continuous time TF estimation using the continuous-time SRIV
algorithm yields very similar results but the discrete-time analy-

Orlando. The study objective was to determineres- g4,  sisis more convenient in this paper.



is small and the model explains the data very well
with a Coefficient of Determination (or Nash Effi-
ciency in the hydrological literature) based on the
simulation or ‘response error’ of R2. = 0.997 (i.e.
99.7% of the output variance is explained by the
model).

Unfortunately, despite its ability to describe the data
very well, the model (1) is not immediately accept-
able from aDBM standpoint, primarily because the
eigenvalues are {0.988,0.964, 0.860 4 0.132;} and
the pair of complex roots is difficult to justify in
ADZ modelling terms. In particular, the elemen-
tal, single reach, ADZ model [4][20][31] is a first
order, mass conservation, differential equation and
S0, other than in exceptional circumstances, multi-
plereach ADZ models must be characterized by real
eigenvalues when considered in TF terms.

In the present circumstances, the most obvious ap-
proach is to re-estimate the model in a form where
the eigenvalues are constrained to be real. Thiswas
carried out by means of constrained nonlinear least
sguares optimization using the leastsg optimization
procedure in Matlab™. To ensure that the most
parametrically efficient model was obtained, both
[3, 2, 22] and [4, 2, 22] models were considered
in this analysis but the latter yielded much the best
constrained model, which has the following form:

G
(z71)

U:b

Y = Ug—22 + & 2

Y

where,
A(z7Y) = (1 -0.980z71)(1 — 0.855271)3
B(z™') = 0.00127 — 0.001212 7}

This model is well defined statistically and it ex-
plains 99.7% of the output data variance (R% =
0.997), the same as the unconstrained model (1).
Figure 1 compares the model output (full line) with
the measured tracer output y; (circular points).

Unlike the TF model (1), the model (2) not only
has four real eigenvalues, as required, but three of
these are repeated, so defining three identical ADZ
reaches. These eigenvalues define ADZ residence
times (time constants) of 99 hours and 12.8 hours
(x3), giving atotal estimated residence time for the
wetland cell of 137.4 hours (99+3x12.8). One par-
ticular physically meaningful decomposition andin-
terpretation of the model defined in this manner is
obtained by partial fraction expansion of the TF in
(2). This consists of two paralel pathways, each
consisting of three ADZ reaches, as shown in the
top block diagram of Figure 2.

Fourth Order ADZ Model: data (0); model (full); quick (dotted); slow (dashed)
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Figure 1: Comparison of the DBM model output (full
line) and tracer experiment data (circular points). Also
shown are the inferred slow flow (dashed line) and quick
flow (dotted line) components.
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Figure 2: Block diagram of transfer function decomposi-
tionsthat can beinterpreted in physical terms: fully paral-
lel decomposition (upper plot); equivalent parallel-serial
decomposition (lower plot).

The ‘quick-flow’ pathway has three identical ADZ
reaches connected in series, each with a residence
time of 12.8 hours; while the ‘slow-flow’ pathway
is similar but with one of the reaches replaced by
the longer ADZ residence time of 99 hours asso-
ciated with the other identified eigenvalue (0.98).
The total travel time for this complete system is
181.4 hours (the sum of the 44 hour advective time
delay and the cumulative overall time constant of
137.4 hours). This means that the ‘dispersive frac-
tion’ (see[20][31][40]) is0.76 (i.e. 137.4 + 181.5):
in other words, 76% of the water appears to be
effective in dispersing the solute. This is a very
high proportion, reflecting the nature of the sys-
tem in this case, with a much higher potentia for
dispersion of tracer than in normal, faster moving

368 Streams, where the dispersive fraction is normally



in the range 0.3-0.4 (see e.g. [4][20]). Theinferred
responses of thetwo parallel pathways are plotted in
Figure 1: the dotted line shows the estimated con-
centration changes in the quick pathway, which ac-
counts mainly for the initial response measured at
the weir; the dashed line are the estimated changes
in the dow pathway, and these are responsible for
the raised tail of the measured response.

It is possible to compute estimates of other physi-
cal attributes associated with the model. First, the
steady state gains associated with the two parallel
pathways define the partitioning of the flow, with
33% of flow associated with the quick pathway and
67% with the slow pathway. And sincethe flow rate
is known in this example, the Active Mixing Vol-
umes (AMVs:. [38]), based on the estimated parti-
tioned flow, are 361 m? in the quick pathway and
5,656 m3 in the slow pathway. As aresult, the to-
tal estimated AMV is 5,656 + 3x361 = 6739 m3,
which seems reasonable when compared with the
9,749 m3 for the total volume of the wetland, es-
timated by physica measurement. This suggests
that about 70% of the wetland is important in dis-
persing the tracer (and, therefore, the waste water)
and compares reasonably with the dispersive frac-
tion derived percentage of 76%.

Of coursg, all of the results above are statistical esti-
mates and so they are inherently uncertain. The ad-
vantage of the DBM approach is that we can quan-
tify and consider the consequences of this uncer-
tainty. For instance, based on the covariance ma-
trix of the parameters produced by the SRIV esti-
mation analysis, empirical probability distributions,
in the form of histograms, can be computed for the
‘derived’ physical parameters, such asthe residence
times, partition percentages, AMVSs, total AMV and
steady state gains, using Monte Carlo Simulation
(MCS) andysis. Figure 3 is a typica example of
such analysis: it shows the normalized empirical
distributions for the two residence times obtained
by MCS using 10,000 random redlizations (the pro-
cedure used hereisdiscussed in [31]).

Of course, it should be noted that the parallel de-
composition of the estimated TF used above is not
unique: there are other decompositions that are just
asvalid and give precisely the same y, response. For
example, two other examples are: (i) a paralel de-
composition of the two ADZs with residence times
99 and 12.8 hours, in series with two other iden-
tical ADZs, both with residence times 12.8 hours
(see lower block diagram of Figure 2); (ii) vari-
ous decompositions including feedback processes.
However the latter seem less supportable in phys-
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Figure 3: MCS analyss results: empirical probabil-
ity distributions of the slow (left panel) and quick (right
panel) residence times.

ical terms and are rejected according to the DBM
ethos.

Finaly, how can decompositions of ADZ reaches,
such as those shown in Figure 2 be interpreted in
terms of the wetland system? The most plausible
mechanism is that the quick parallel pathway rep-
resents the ‘main stream-flow’ that is relatively un-
hindered by the vegetation; while the slow pathway
represents the solute that is captured by the heavy
vegetation and so dispersed more widely and slowly
before reaching the weir. It is this latter pathway,
which we have shown above accounts for some 67%
of the flow, together with the large associated dis-
persive fraction of 76%, that is most useful in terms
of nutrient removal, since it allows more time for
the biological activity to take place.

5.2 A Nonlinear Example: Rainfall-Flow M od-
eling

This example is concerned with the analysis of
daily rainfal, flow and temperature data from the
‘ephemeral’ Canning River in Western Australia
which stops flowing over Summer, as shown in Fig-
ure 4. These data have been analyzed before and
reported fully in [41]. The results of this previ-
ous analysis are outlined briefly below but most
attention is focussed on more recent analysis that
shows how the inductive DBM maodelling can help
to enhance alternative hypothetico-deductive, con-
ceptual models that have been devel oped previously
([22][10][11]; see later). In particular, the nonlin-
earity inferred in the DBM modelling suggests sig-

369 hificant modifications to the conceptual model.



Flow, Rainfall and Tempefalure Cannlng River, W.A, 1985-1987.2
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Figure 4: Daily rainfal-flow and temperature data for
the ephemeral Canning River in Western Australiafor the
period 23" March 1985 to 26" February, 1987.

Young et al. [41] show that, in this example, the
most appropriate generic model form is the nonlin-
ear State-Dependent Parameter (SDP) model class
(see above, section 4). Analysis of the rainfall-flow
datain Figure 4, based on this type of model, is ac-
complished in two stages. First, non-parametric es-
timates of the SDPs are obtained using the specific
Sate Dependent parameter Auto-Regressive exoge-
nous Variables (SDARX) model form (see [33][34]
and [35] whereit isdiscussed at some length within
arainfall-flow context). This SDARX model can be
written in the vector form:

Y =2ipi + e et =N(0,0%) (3

where,
Z; =[-1 - Y—n Tt—5--- Ti—6-m)
pr = [a1(2e) .. an(z) bo(2e) ... bm(2)]"

Here, y, and r, are, respectively, the measured flow
and rainfall; § is a pure advective time delay; and
n=2,m = 3,6 = 0. All the model parameters are
assumed initially to be dependent on a state vari-
able z;. In this case, the SDP analysis then shows
that the state dependency is apparently in terms of
the measured flow variable (i.e. z; = y;: see later
explanation) and is limited to those parameters as-
sociated with the rainfall r;.

In the second stage of the analysis, the non-
parametric estimate of the nonlinearity is param-
eterized in the simplest manner possible; in this
case as a power law in y;. The constant parame-
ters of this parameterized nonlinear model are then

(see[35]). Theresulting model isthefollowing sim-
plified version of the nonlinear SDP Transfer Func-
tion (SDTF) model [33][34]:

B(z1 3
/Algzl;ut + & up = c.ytﬁ.rt 4

Y =

where,
A(z71) =1—1.646271 4 0.65822
B(z7') = 0.058 + 0.092z — 0.1382 2

with 3 = 0.85. This showsthat theinput variable u,
isanonlinear function in which the measured rain-
fall r, is multiplied by the flow raised to a power 3,
with the normalization parameter ¢ simply chosen
so that the steady state gain of the linear TF between
u; and g, is unity. In other words, the SDP analy-
sis shows, in arelatively objective manner, that the
underlying dynamics are predominantly linear but
the overall response is made nonlinear because of a
very significant input nonlinearity.

This model not only explains the data well (R2, =
0.96) it is also consistent with hydrological theory,
as required by the tenets of DBM modelling. This
suggests that the changing soil-water storage condi-
tions in the catchment reduce the rainfal to an ‘ef-
fective' level and that the relationship between the
measured rainfall and this effective rainfall (some-
timesreferred to as‘rainfall excess') u; isquite non-
linear. For example, if the catchment isvery dry be-
cause little rain has fallen for some time, then most
new rainfall will be absorbed by the dry soil and lit-
tle, if any, will be effectivein promoting increasesin
river flow. Subsequently, however, if the soil-water
storage increases because of further rainfall, so the
‘run-off’ of excess water from the catchment rises
and the flow increases because of this. In this man-
ner, the effect of rainfall on flow depends upon the
antecedent conditions in the catchment and a simi-
lar rainfall event occurring at different timesand un-
der different soil-water storage conditions can yield
markedly different changesin river flow.

Thelinear TF part of the model conforms also with
the classical ‘unit hydrograph’ theory of rainfall-
flow dynamics. indeed, its unit impulse response
at any time is, by definition, the unit hydrograph.
And the TF model itself can be seen as a paramet-
rically efficient method of quantifying this unit hy-
drograph. Additionally, as in the solute transport
example, the TF model can be decomposed by par-
tial fraction expansion into a parallel pathway form

3Thisisan arbitrary decision in this case. However, if therainfall
and flow are in the same units, then this ensures that the total

estimated using a nonlinear optimization procedure 57, volume of effective rainfall is the same as the total flow volume.



which has a clear hydrological interpretation. In
particular, it suggests that the effective rainfal is
partitioned into three pathways: the instantaneous
effect which, as might be expected, accounts for
only a small 5.8% of the flow; a fast flow path-
way with a residence time of 2.63 days which ac-
counts for the largest 54.4% of the flow; and aslow
flow pathway of 25.9 days residence time account-
ing for the remaining 39.8% of the flow. It is this
latter pathway that leads to an extended tail on the
associated hydrograph and can be associated with
the dowly changing baseflow in the river. (for a
more detailed explanation and other examples, see
[28](29] [30][35][37][41]).

The most paradoxical and, at first sight, least in-
terpretable model characteristic is that the effective
rainfall nonlinearity is a function flow. Although
thisis physically impossible, the analysis produces
such aclearly defined relationship of this sort that it
must have some physical connotations. The most
hydrologicaly reasonable explanation is that the
flow is acting as a surrogate for soil water storage.
Of course, it would be better to investigate this re-
lationship directly by measuring the soil-water stor-
age in some manner and incorporating these mea-
surements into the SDP analysis. Unfortunately, it
is much more difficult to obtain such * soil moisture’
measures and these were not available in the present
example.

The temperature measurements are available, how-
ever, and this suggests that we should explore the
model (4) further, with the object of enhancing its
physical interpretation using these additional data
Two interesting conceptual (‘grey-box’) models of
rainfall-flow dynamics are the Bedford-Ouse River
model (e.g. [22]); and a development of this, the
IHACRES model ([11]). Both of these ‘Hybrid-
Metric-Conceptual’ (HCM) models ([21]) have the
same basic form as (4), except that the nature of the
effective rainfal nonlinearity is somewhat different.
In the case of the IHACRES model ([10][11]), for
instance, this nonlinearity is modelled by the fol-
lowing equations:

7s(Ty) = 7se = 7 (5a)
1

st = S+ m(% —s1-1) (5h)

w = sl (50)

where T, is the temperature; T, is the mean tem-
perature; s; represents a conceptual soil-water stor-
age variable; and ¢, 7., f and 8 are a priori un-
known parameters. Comparing (5c) with (4), we see

that the measured ¥, in (4), acting as a surrogate
for soil-water storage, has been replaced by a mod-
elled (or latent) soil-water storage variable s;. The
model (5b) that generates this variable is afirst or-
der discrete-time storage equation with a residence
time 7, (7}) defined as 7, multiplied by an exponen-
tial function of the difference between the tempera-
ture T; and its mean value T, as defined in (5a).

In the original IHACRES model (e.g. [10][11]),
T, is normally set at 20°C, but the estimation re-
sults are not sensitive to this value. Also, s; is not
raised to a power, asin (5¢). Some later versions
of IHACRES have incorporated this parameter, but
it has been added here so that the two nonlinear-
ities in (4) and (5c) can be compared. More im-
portantly, itsintroduction is practically important in
this particular example since, without modification,
the standard IHACRES model is not able to model
the ephemeral Canning flow very well.

Using a constrained nonlinear optimization proce-
dure procedure similar to that in the previous ex-
ample, the parameters in this modified IHACRES
model are estimated as follows:

A(z71) =1 —1.74827 +0.755272
B(z71) = 0.029 4 0.14127! — 016322
7 =65.8, f = 32.6;3 = 6.0; T, = 15.9

These parameters are al dtatisticaly well de-
fined and the model explains 97% of the flow
(R% = 0.97), marginaly better than the DBM
model. Moreover, as shown in Figure 5, it per-
forms well in validation terms when applied, with-
out re-estimation, to the data for the years 1977-
78. In this case, R2. = 0.92 which is again better
than the R = 0.88 achieved by the DBM model.
However, when validated against the 1978-79 data,
the positions are reversed, with only RZ = 0.81
for the modified IHACRES model compared with
RZ% = 0.93 for the DBM model. Overall, therefore,
the two models are comparablein their ability to ex-
plain and predict the Canning River data.

Not surprisingly with itsinclusion such ahigh value
power law (B = 6.0), the nonlinear transformation
produced by equations (5a)-(5c) has a marked ef-
fect: in particular, it considerably modifies the soil-
water storage s;, effectively reducing it to zero, in
relative terms, over the Summer period, as required.
The reason why the modified IHACRES and DBM
models perform similarly becomes clear when we
compare the normalized (since they differ by ascale
factor) effective rainfall variables for both models.

that the main difference between the two modelsis 37; The two variables are very similar indeed: in other



words, the optimized nonlinear transformation has
forced the hypothetico-deductive IHACRES model
dynamicsto closely resemble those of the inductive
DBM model.

Predictive Validation Results for 1977-1978

2
o I

0 :
19774 19775 19776 19777 19778  1977.9 1978
Date

Figure 5: DBM rainfall-flow modelling of the Can-
ning River: validation results on 1977-78 data.

It must be emphasized that this example is purely
illustrative and it is not suggested that the modi-
fied IHACRES model identified here cannot be im-
proved upon by the introduction of some alternative
nonlinear mechanism. For instance, the estimation
of apower law nonlinearity with such alarge power
of 6.1 seems arather odd way to handle this type of
nonlinearity, although the reader will see that it is
very effective. Nevertheless, the example illustrates
well how DBM modelling can, in a reasonably ob-
jective manner, reveal the nature of the nonlinearity
required to model the data well and then seek out a
parameterization that achievesthis. In this example,
it clearly demonstrates that the standard IHACRES
model nonlinearity cannot do this unlessit is modi-
fied in some manner. Of course, the power law non-
linearity is not the only, and definitely not the best,
way of achieving this. For example, [23] introduces
a threshol d-type nonlinearity on s, and obtain rea-
sonable results but with R2. values significantly less
than those obtained with the above model (around
0.88-0.89 for estimation and 0.82-0.88 for valida-
tion). Clearly more research isrequired on the char-
acterization of the effective rainfall-flow nonlinear-
ity in models such asthese.

6 THE EVALUATION OF LARGE DETERMINIS-
TIC SIMULATION MODELS

This paper has concentrated on data-based mod-

out, many environmental scientists and engineers,
including the present author, use more speculative
simulation models of the deterministic-reductionist
kind. Although we would not advocate the use of
such models if adequate experimental or monitored
data are available, they can provide a very good
method of extending our ‘mental models’ of envi-
ronmental systems, often as a valuable prelude to
the design of experimental and monitoring exercises
or, more questionably, as an aid in operational con-
trol, management and planning exercises.

If speculative simulation models are exploited in
these latter ways, however, it isimportant that their
construction and use is preceded by considerable
critical evaluation. For instance, in aseriesof papers
([16][31][42]), the author and his colleagues have
shown how Monte Carlo Smulation (MCS) and the
related technique of Generalized Sensitivity Analy-
Sis (GSA) can be used to assess the sensitivity of a
deterministic, 23rd order, nonlinear, globa carbon
cycle simulation model to input and parametric un-
certainties, as defined by climate scientists.

Also in these papers, a technique known as Dom-
inant Mode Analysis (DMA), based on the same
SRIV methods of TF model estimation employed in
the above DBM modelling, is used to obtain much
simpler, reduced (e.g. 4th) order representations of
the high order simulation model that are able to re-
produce its dynamic behaviour to a remarkable de-
gree.

All of these simulation model evaluation procedures
are generally applicable and have been in continual
use over the past few years, particularly in relation
to the modelling and automatic control of the micro-
climate in large horticultural glasshouses and other
agricultura buildings (e.g. [17][42]). They can aso
act as a prelude to the use of similar proceduresin
data assimilation and forecasting, as described el se-
where in this Conference [18].

7 CONCLUSIONS

For too long in the environmental sciences, de-
terministic reductionism has reigned supreme and
has had a dominating influence on mathematical
modelling in almost all areas of the discipline. In
general, such ‘bottom-up’, reductionist models are
over-parameterized in relation to the information
content of the experimental data, and their deter-
minism sits uncomfortably with the acknowledged
uncertainty that characterizes most environmental

elling and analysis. However, as we have pointed 37, systems. This paper has argued that parsimonious,



‘top-down’ models provide a more appropriate pa-
rameterization in most situations and that the un-
certainty which pervades most environmental sys-
tems demands an alternative stochastic approach.
Most often, however, the conventional statistical ap-
proach to stochastic model building is posed in a
‘black-box’ manner that failsto produce modelsthat
can be interpreted in physically meaningful terms.
The Data-Based Mechanistic (DBM) approach to
modelling discussed in the present paper triesto cor-
rect these deficiencies. It provides a parsimonious
modelling strategy that not only exploits powerful
statistical techniques but also produces models that
can be interpreted in physically meaningful terms
and are normally more acceptable to environmental
scientists and engineers.

Finally, it should be noted that most of the analysis
and modelling described in this paper was carried
out using the Lancaster CAPTAIN Toolbox in Mat-
lab (see http://www.es.lancs.ac.uk/cres/captain/).
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