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Abstract: Fickian assumptions are used in deriving the advection-dispersion equation which models the 
solute transport in porous media. The hydrodynamic dispersion coefficient defined as a result of these 
assumptions has been found to be scale dependent. Kulasiri and Verwoerd [1999] developed a stochastic 
computational model for solute transport in saturated porous media without using Fickian assumptions. The 
model consists of two main parameters; correlation length and variance, and the velocity of solute was 
assumed as a fundamental stochastic variable. In this paper, the stochastic model was investigated to 
understand its behaviour. As the statistical nature of the model changes with the parameters, the 
computational solution of the model was explored in relation to the parameters. The variance is found to be 
the dominant parameter, however, there is a correlation between two parameters and they influence the 
stochasticity of the flow in a complex manner. We hypothesised that the variance is inversely proportional to 
the pore size and the correlation length represents the geometry of flow. The computational results of 
different scales show that the hypotheses are reasonable. The model illustrates that it could capture the scale 
dependence of dispersivity and mimic the advection-dispersion equation in more deterministic situations. 
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1.  INTRODUCTION 
 

The applied groundwater forecasting and 
management problems largely rest on formulation 
of mathematical models. Most of the models, 
which are commonly used by the practitioners, 
represent linear time dependent partial differential 
equations mainly based on deterministic 
consideration. However, real world aquifer 
systems consist of heterogeneous formation of 
porous media, complex boundaries and random 
distribution of parameters with irregular inputs 
(rainfall). The complexities of groundwater 
systems, therefore, cannot be accurately 
understood by deterministic description and need 
to be described by stochastic sense such as 
stochastic differential equations [Unny, 1989]. 
After the pioneering work of Freeze [1975], 
various aspects of heterogeneous formations of 
groundwater systems have been investigated in the 
past by using stochastic models. Gelhar et al. 
[1979], Dagan [1984, 1988], Neuman et al. [1987], 
Russo [1993] and Foussereau et al. [2000] are a 
few to name among a large number of 
contributors.  
 

Kulasiri and Verwoerd [1999] developed a 
stochastic solute transport model (SSTM) 
assuming the velocity of solute as a fundamental 
stochastic variable; 

( , ) ( , ) ( , )v x t v x t x t= + ξ , where ( , )v x t  = average 

velocity described by Darcy’s law and ( , )x tξ  =  

white noise correlated in space and δ - correlated 
in time. This model avoids the use of the Fickian 
assumption that gives rise to the dispersion 
coefficient, D, that proved to be scale dependent 
[Gelhar, 1986; Fetter, 1999].  
 
In this paper, SSTM was investigated for simple 
settings of one-dimensional case to understand its 
behaviour. The computational solution of SSTM 
was explored in relation to the model parameters. 
Further, we attempted to relate the model 
parameters to the real world physical phenomenon.  
 
 
2. STOCHASTIC MODEL 
 
A detail description the stochastic model can be 
found in Kulasiri and Verwoerd [1999 and 2001], 
and brief introduction is given here that enables the 
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reader to easily refer to the essential components 
of the model. As shown earlier, when the velocity 
is described as a stochastic quantity, the 
formulation of SSTM can be expressed by the 
following stochastic differential equation; 

( ( , ) ( , )) ( ( , ) ( ))dC S v x t C x t dt S C x t d t�� � ,     (1) 

where   C = solute concentration,  
v  = mean velocity, 

( ) ( )
m

m j j j
j 1

d t f db t
=

β = λ∑ ,                       (2) 

m = number of terms used, 
( )jdb t  = increments of standard Wiener processes, 

jf  = eigenfunctions of velocity covariance 

function, 
 jλ  = eigenvalues of velocity covariance function, 

2

22
xh

S
xx

� �� � �� ���� � �� ���� ��	 

 is an operator in space and 

.xh dx�  
 
An exponential covariance kernel was assumed 
based on plausible arguments to model the spatial 
correlation of the noise component of the velocity 
function, and that can be given by 

( , )
y

2 b
1 2q x x e

−

=σ ,                (3) 

where    1 2y x x= − ,  

    b = correlation length, and 

 2σ  = variance. 

1x  and 2x  are any two points within the spatial 

range, [ , ]0 a , considered. The eigenfunctions, nf  

and eigenvalues, nλ  of  ( , )1 2q x x  are obtained as 

the solution to the following integral equation: 

( , ) ( ) ( )
a

1 2 n 2 2 n n 1

0

q x x f x dx f x=λ∫ .       (4) 

Assuming 2σ  is a constant over [ , ]0 a , the 

solution to (4) can be obtained by: 
2

n 2 2

n

2θσλ =
ω − θ

,         (5) 

where θ= 1/b and nω s are the roots of the 

following equation: 

tan n
n 2 2

n

2
a

ω θ
ω =

ω − θ
.        (6) 

The basic function of (2) can be obtained by 

solving (4). The thn  basis function is given by 

( ) sin cosn
n n n

1
f x x x

N

ω = ω + ω θ 
,              (7) 

where sin
2 2

2 2

1 1
N a 1 1 2 a

2 4

   ω ω= + − + ω   θ ω θ   

       ( )cos
1

2 a 1
2

− ω −
θ

.      (8) 

 

3.  COMPUTATIONAL INVESTIGATION 
 
SSTM was investigated for simple settings of one-
dimensional case to understand its behaviour. The 
main parameters of the model are the correlation 

length, b and the variance, 2σ . As the statistical 
nature of the computational solution changes with 

different b and 2σ , the main objective of this 
exercise is to identify effect of these parameters to 
the solution of the model.  
 
Distributed concentration values of (1) were 
obtained by using the finite difference numerical 
solution taking the numerical convergence and 
stability into account. We first illustrate the 
behaviour of the model by solving one-
dimensional problem for the spatial domain of 1 m 
( 10 ≤≤ x ). We solved (6) to generate the roots for 
a given set of parameters. For an instance, for the 
correlation length, b = 0.1 m we obtained 29 roots: 

1ω  = 2.62768, 2ω  = 5.30732, 3ω  = 8.06714, 

……, 29ω  = 88.1904. Generally 29 terms are more 

than sufficient to produce converging numerical 
solution. We generated the standard Wiener 
process increments in Hilbert space for the time 
intervals of 0.001 days for total time of 3 days. 
Then eigenvalues nλ  of (5) were computed for 

required 2σ . With these roots, ω  and nλ , we 

calculated the basic function (7). Those values 
were used to generate ( )d tβ  in (2). The numerical 

scheme of SSTM was then used to calculate the 
concentration profile for spatial-temporal 
development for the mean velocity of 0.5 m/day.  
 
We used spatial grid length of 0.1m for the 
numerical calculation. Initial concentration value 
of 1.0 unit was considered at x = 0 and it was 
assumed as a continuous source for the entire time 
period of the solution. Exponentially distributed 
point source concentration values at e-5k x∆ , where 
k = 1, 2, …,10 and x∆ = grid size, were considered 
as the initial conditions of other spatial 
coordinates.   
 
To investigate the general behaviour of the model, 
we obtained the temporal development of the 
concentration profiles at the mid point of the 
domain (x = 0.5m) for various parameter 

combinations of b and 2σ . The same realisation of 
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standard Wiener process increments and constant 
mean velocity of 0.5 m/day were used for all the 
computational experiments.  

First we illustrate that SSTM can mimic the 
solution of advection-dispersion equation. We 
used the concentration values of the stochastic 
model to estimate the appropriate D of advection-
dispersion model by using a stochastic inverse 
method [Rajanayaka et al., 2001]. The parameters 

of SSTM, 2σ  = 0.001 and b = 0.0001, gave the 
corresponding estimate of 0.01 m2/day for D. 
SSTM can represent the advection-dispersion 
model with the estimated D (Figure 1).  

1 2 3 t (days) 
0.2 

0.4 

0.6 

0.8 

1.0 
C 

DET 

SDE 

Figure 1. Comparison of deterministic (D=0.01) 

and stochastic ( 2σ = 0.001 and b = 0.0001) model 
concentration profiles for 1 m domain. 

 
Figure 2 illustrates that SSTM could mimic the 
advection-dispersion model even for a larger scale, 
0 10x� � m, for 30 day time period. We used the 
same SSTM parameters that were used in 1 m case 
and obtained the estimate of 0.037 m2/day for D.  
 

10 20 30 
t(days) 

 0.2 

0.4 

0.6 

0.8 

1.0 

C 

DET 

SDE 

Figure 2. Comparison of deterministic (D=0.037) 

and stochastic ( 2σ = 0.001 and b = 0.0001) model 
concentration profiles for 10 m domain. 

 
We explored the changes of the statistical nature of 

the model with different b and 2σ . The 
behavioural change of the concentration 
breakthrough curves was examined by keeping one 
parameter at a constant and changing the other. 
Figure 3 shows the concentration profile at x = 
0.5m of 1 m domain, for a smaller value of 

2σ (0.0001) when b varies from 0.0001m to 
0.25m. The stochastic behaviour of almost all five 
curves are insignificant. Even with the help of the 
legend, it is difficult to distinguish the different 
profiles. Although, range of b varies from 0.0001to 
0.25m (a change of 2500 times) the change of 

stochasticity is negligible for smaller 2σ . When 

2σ approaches 0, flow is advective and the 
dispersion is negligible. 

 

1 2 3 
t (days) 0.2 

0.4 

0.6 

0.8 

1 
C 

b � 0.25 
b � 0.1 
b � 0.01 
b � 0.001 
b � 0.0001 

Figure 3. Concentration profile at x = 0.5m for 
2σ = 0.0001. 

With the increase of 2σ  by 10 times for the same 
regime of b (0.0001m to 0.25m), Figure 4 shows 
visually distinguishable differences between 
concentration breakthrough curves. Furthermore, 
we can observe some curves have undergone 
notable stochasticity, especially when b = 0.1m. 
The high values of variance not only directly 
increase the stochastic nature of the flow but also 
influence the ways in which b affects the flow. 
Another observation we can make from Figure 4 is 
that with the increase of stochasticity the 
concentration profile reaches its asymptotic value 
(sill) early and the maximum concentration value 
is less than the more deterministic profiles.  

 

1 2 3 t (days) 
0.2 

0.4 

0.6 

0.8 

1 
C 

b = 0.25 

b = 0.1 

b = 0.01 

b = 0.001 

b = 0.0001 

Figure 4. Concentration profile at x = 0.5m for 
2σ = 0.001. 

One can expect to see the increase of stochasticity 
with the increase of correlation length. When b is 
very small, flow is smooth and stable. However, it 
is interesting to see that, b at 0.1m makes the 
concentration profile more variable. When b at 
higher regime, 0.25m for example, the flow is less 
stochastic than it was at 0.1m. This may cause by a 
sensitive range of b around 0.01 m. Figure 5 shows 
the concentration breakthrough curves for the 

similar b ranges at 2σ =0.01. Flow tends to be 
unsteady for larger correlation lengths; however, 
stochasticity of smaller b values is still trivial. 

Increase of 2σ intensifies stochasticity and effect 
of b in the flow a great deal. The unpredictable 
behaviour of the flow around 0.01 m of b shown in 

Figure 4 exists in current 2σ  as well. 
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1 2 3 t
 (days) 

0.2 

0.4 

0.6 

0.8 

C 

b = 0.25 

b = 0.1 

b = 0.01 

b = 0.001 

b = 0.0001 

Figure 5. Concentration profile at x = 0.5m for 
2σ = 0.01. 

 
We extended the investigation by keeping b at a 

constant and changing 2σ . Figure 6 shows the 

concentration profiles at b = 0.0001 for varying 2σ  

(0.0001 to 0.25). In Figure 3, small 2σ  
demonstrates negligible stochasticity even for very 
high b values, whereas, in Figure 6, irrespective of 

smaller b, 2σ  influences the stochasticity of the 
flow. However, it is difficult to distinguish the 

concentration profiles for smaller 2σ (0.0001 and 

0.001). With the increase of 2σ  stochasticity 
increases rapidly. Therefore, we can assume that 

2σ  is the dominant parameter which regulates the 
behaviour of the flow. 
 

1 2 3 
t (days) 

0.2 

0.4 

0.6 

0.8 

1 
C 

s 2 
= 0.25 

s 2 
= 0.1 

s 2 
= 0.01 

s 2 
= 0.001 

s 2 
= 0.0001 

Figure 6. Concentration profile at  x = 0.5m for b 
= 0.0001. 

 
We increased b by 10 times and obtained Figure 7 
which shows that stochasticity increases 
considerably. 
 

1 2 3 
t (days) 

0.2 

0.4 

0.6 

0.8 

1 
C 

s 2 = 0.25 

s 2 
= 0.1 

s 2 
= 0.01 

s 2 
= 0.001 

s 2 
= 0.0001 

Figure 7. Concentration profile at  x = 0.5m for b 
= 0.001. 

 
It may be more appropriate and statistically sound 
to use confidence intervals rather than depend on a 
few realisations of standard Wiener increments to 

understand the effect of 2σ . We used 50 different 
Wiener increments to calculate the 95% 

confidence intervals. Figure 8(a) clearly shows that 

for smaller values of parameters ( 2σ =0.001, b= 
0.01), which represent less heterogeneity of the 
system, variation of concentration profile is 
negligible and hardly distinguishable. Figure 8(b) 
exhibits that when parameter values are increased 
the stochasticity inflates. The confidence intervals 
of Figure 8(b) demonstrate that the model is quite 
stable even for highly stochastic flow. 

 

1 2 3 
t 

0.2 
0.4 
0.6 
0.8 

C  

1 2 3 
t 

0.2 
0.4 
0.6 
0.8 
C 

 
    (a)   (b) 
Figure 8. 95% of confidence interval profiles with 

50 different Wiener increments; (a) 2σ =0.001, 

b=0.01 (b) 2σ =0.1, b= 0.1. 

We explored the effect of different random Wiener 
process increments. Figure 9 and 10 show the 
concentration profiles for five different Wiener 
processes for two different combinations of 
parameters. There is no considerable difference 
among these breakthrough curves, i.e. the 
influence of the Wiener process is minimal to the 
nature of the flow. 

   

 

1 2 3 
t 0.2 

0.4

0.6 

0.8 

C

 
Figure 9. Concentration profiles for five different 

Wiener process increments at  x = 0.5m for 2σ = 
0.001 and b=0.01.  

   

 

1 2 3 
t 

0.5 

1 
C

 
Figure 10. Concentration profiles for five different 

Wiener process increments at  x = 0.5m for 2σ = 
0.01 and b=0.1. 

 
 

3.1  Hypotheses   
 
Having understood some of the features of the 
model behaviour, we can develop hypotheses 
about the parameters of the stochastic model 
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relating to the physical phenomenon. It was 

hypothesised that the variance, 2σ , is a function of 
pore size and  inversely proportional to the 

porosity ( 2 (1/ )σ ∝ ϕ , where � = porosity).   Low 
2σ  represents larger pore size and more possible 

travel paths, i.e. solute can travel with water with 
fewer disturbances in less heterogeneous media. 
As a result, randomness of the travel paths and the 
occurrence of random mixing decrease. On other 

hand, larger 2σ  represents a medium of smaller 
pore size. Therefore, there are less straight travel 
paths and water tends to travel in various 
directions. This phenomenon can increase the 
mixing of the solute and, hence, increases 
dispersion and stochasticity.  
 
We further hypothesised that the correlation 
length, b is representative of the geometry of the 
pores. The small b represents the medium of 
isotropic and homogeneous formation, and larger b 
represents anistropic and heterogeneous porous 
medium.  
 
When the pore sizes are fairly large the effect of 
the geometry is negligible. Flow paths can find 
easier ways through larger pores irrespective of the 
shapes of particles. Figure 3 shows that hypotheses 

are reasonable. Low 2σ , 0.0001, represents large 
pores, therefore the flow is stable for all the shapes 
of geometry (any b value).  In the case of larger 

2σ , where pore size is smaller, the geometry can 
play a vital role. Even though the effective pore 
size is  smaller, if geometry of the pores are 
regular, particles could find a reasonably 
homogeneous paths and that comparatively 
reduces the random mixing of flow (Figure 4 and 
5). In addition, the geometry and size of pores are 
interrelated in a complex manner. 
 
We investigated the effect of parameters for larger 
scales: 10 m, 20 m, 30 m, 50 m and 100 m. Figure 
11 and Figure 12 show that increase of 

stochasticity with the 2σ for 10 m domain. 
Comparison of  Figure  11  and Figure 13 illustrate  

 

10 20 30 
t(days) 

0.5 

1 
C 

b = 0.25 
b = 0.2 
b =0.15 
b = 0.1 
b = 0.05 
b = 0.01 
b = 0.001 
b = 0.0001 

 
Figure 11. Concentration profile at x = 5m (of 10 

m domain) for 2σ = 0.0001 

that 2σ is the most dominant parameter and our 
hypotheses are valid for larger scales as well. 

 

 

10 20 30 
t(days) 

0.5 

1 
C 

b=0.25 
b=0.2 

b=0.15 
b=0.1 

b=0.05 

b=0.01 
b=0.001 
b=0.0001 

Figure 12. Concentration profile at x = 5m (of 10 

m domain) for 2σ = 0.001 
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Figure 13. Concentration profile at x = 5m (of 10 
m domain) for b = 0.0001 

 
 
3.2  Scale Dependency 
 
As the use of a dispersion coefficient, D, was 
avoided in the formulation of SSTM, the scale 
affect of D would not affect the model solution. 
Therefore, it is important to investigate whether 
the model could capture the scale effect in 
representing stochastic flow.  
 
Comparison of Figure 3 and Figure 11 shows that 
stochasticity of the flow has increased with the 
scale for similar parameters. Figure 4 and Figure 
12, Figure 6 and Figure 13 illustrate the same. 
Figure 3, 11 and 14 demonstrate that the rate of 
increase of stochasticity is decreasing with scale. 
Even though similar model performances are 
evident in other scales, visual comparison may not 
be sufficient to conclusively support capturing of 
scale dependency. Therefore, we investigated the 
ways of estimating D to recognise the increase of 
stochasticity with scale. We employed the 
stochastic inverse method mentioned earlier to 
estimate D by using concentration realisations of 
SSTM [Rajanayaka et al., 2001]. As Figure 1 and 
Figure 2 show, D has increased from 0.01 m2/day 
to 0.037 m2/day with the scale for same 
parameters. However, Rajanayaka et al. [2001] 
showed that the reliability of the estimates 
obtained from the stochastic estimation method 
reduces with the increase of stochasticity. 
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Therefore, such estimation method may not be 
suitable to estimate parameters with highly 

stochastic flows where values of 2σ  and b are 
large. However, flow with low level stochasticity 
illustrates SSTM is capable of capturing the scale 
dependency of D.  
 

10 20 30 40 50 60 t (days) 
0.2 
0.4 
0.6 
0.8 
1 
C 

b = 0.25 
b = 0.2 
b = 0.15 
b = 0.1 
b = 0.05 
b = 0.01 
b = 0.001 
b = 0.0001 

Figure 14. Concentration profile at x = 10m (of 20 

m domain) for 2σ = 0.0001 
 
 
4.  CONCLUSIONS 
 
In this paper, we investigated a stochastic model to 
understand its statistical behaviour for different 
model parameter values. The correlation length, b, 

and the variance, 2σ , are the main parameters of 
the model. The model mimics the advection-
dispersion solution with a greater accuracy 
provided appropriate parameters are selected. It 
was found that the two parameters influence the 
flow in a complex manner and there is a 

correlation between two parameters. However, 2σ  
is more dominant and determines the stochasticity 

of the flow. We hypothesised that 2σ  is inversely 
proportional to the pore size and b represents the 
geometry of the pores; smaller b represents 
isotropic and homogeneous media, and lager b 
characterises the anisotropic and heterogeneous 
medium. The flow profiles of different scales, 1 m 
– 100 m, demonstrate that our hypotheses are 
reasonable. In addition, computational results 
show that SSTM could capture the scale 
dependence of the dispersion flow, however, the 
rate of increase of stochasticity tends to decrease 
with the scale. Since, the accuracy of the estimates 
given by the stochastic inverse parameter 
estimation method, which was employed to obtain 
D, reduces at high stochasticity, it was difficult to 
conclusively determine the nature of the scale 
dependency. The model was stable and robust 
when tested with different realisations of the 
standard Wiener processes and confidence 
intervals. 
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