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Cell Speed is Independent of Force in a
Mathematical Model of Amoeboidal Cell Motion
with Random Switching Terms
J. C. Dallon ∗, E. J. Evans ∗ , Christopher P. Grant ∗ and W. V. Smith ∗

∗Department of Mathematics, Brigham Young University, Provo, UT 84602

In this paper the motion of a single cell is modeled as a nucleus and
multiple integrin based adhesion sites. Numerical simulations and
analysis of the model indicate that when the stochastic nature of
the adhesion sites is a memoryless and force independent random
process, the cell speed is independent of the force these adhesion
sites exert on the cell. Furthermore, understanding the dynamics of
the attachment and detachment of the adhesion sites is key to pre-
dicting cell speed. We introduce a differential equation describing
the cell motion and then introduce a conjecture about the expected
drift of the cell, the expected average velocity relation conjecture.
Using Markov chain theory, we analyze our conjecture in the context
of a related (but simpler) model of cell motion, and then numerically
compare the results for the simpler model and the full differential
equation model. We also heuristically describe the relationship be-
tween the simplified and full models as well as provide a discussion
of the biological significance of these results.

adhesion sites | integrins | cell motion | Markov chain | switching terms

1 Introduction
Cell motion is fundamental in many systems including wound
healing [1, 2], cancer [3], and morphogenesis [4, 5, 6]. In this
paper we analyze the drift of an individual cell whose mo-
tion is described by an existing model which includes ran-
dom switching terms [7]. The analysis reveals properties of the
drift which have important implications for the measurement
of cell velocities.

The main merits of the differential equation model found
in [7] are the focus on discrete attachment site dynamics and
the treatment of the cellular forces with the purpose of investi-
gating whole cell migration. The modeling of discrete attach-
ment site dynamics is not a detailed biochemical treatment; it
focuses on a phenomenological treatment at the focal adhesion
level. The main intent is to capture the affect of the random
binding and unbinding of cell attachments on global cell mo-
tion while achieving tractable model complexity.

There are many mathematical models of cell migration
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] which can be classified
in diverse ways. One convenient classification involves three
space-time scales: an intracellular scale, a whole cell scale, and
a multi-cellular scale [19]. All of these models can be classified
in one of the three categories above and each one has traits in
common with the differential equation model.

The models which focus in detail on the subcellular scale
include those which model different subcellular regions of the
cell with viscoelastic elements like Sandersius and Newman
[8]. The focus of their modeling is to capture whole cell be-
havior by linking subcellular forces. Other models focus on
subcellular processes like actin polymerization [9, 10, 11] or
integrin attachments [12] which are essential for cell migra-
tion. Schreiber et. al. [11] investigate cell forces-velocity re-
lationships but not at the whole cell level and their modeling
is very different from ours. Paszek et. al. [12] model the in-

tegrin attachment process in a detailed biochemical manner
using force terms with a Hookean law to help explain integrin
clustering. Although there are similar details in their model-
ing compared to ours, the focus is entirely different and at a
different scale.

Of the four whole cell models mentioned here [13, 14, 15,
16], the first three are force based. Of the force based models
two model the cytoskeletal structure and the actin polymer-
ization forces in a phenomenological way [13, 14]. The first
uses the immersed boundary method and the second uses con-
servation equations, which consider the network drag, pres-
sure, and stress to determine equations representing the flow
of the network and the motion of the cell. The final force based
model [15] focuses on attachments as does the model pre-
sented here. They also use Hookean laws to determine forces
and cell motion but the model formulation is quite different
and does not focus on the stochastic nature of the binding and
unbinding events. The last whole cell model [16] is one that
models motion with stochastic ordinary differential equations
using white noise. It does consider the stochastic nature of the
cell motion but in a very different formulation than the way it
is modeled in this paper.

Finally we mention two multi-cell force based models
[17, 18]. The first uses viscoelastic forces for the cell but does
not treat the binding site attachment forces in a stochastic or
discrete manner [17]. The cell is treated as the fundamental
object. The other model does focus on attachments in a phe-
nomenological manner with a continuum description of inte-
grin based adhesions [18].

The paper is organized in the following manner. In the
next section we review the differential equation model for cell
motion introduced in [7]. In Section 2 we also introduce the
expected (average) velocity relation (EVR) conjecture by giving
the equation describing the property of the expected drift of a
cell. In Section 3, a related but simplified model of the cell cen-
troid is introduced and analyzed using Markov chain theory.
In Section 4 numerical results from the simplified model are
compared to results from the full differential equation model.
In Section 5, we give a heuristic argument that explains why
the centroid model should approximate the differential equa-
tion model. Finally in Section 6, the paper concludes with a
discussion of the results and their biological significance.

2 Model and Drift
2.1 Differential Equation Model. The cell is modeled as a nu-
cleus and multiple interaction sites which exert force on the
nucleus as shown in Figure 1. These interaction sites are inte-
grin based adhesion sites (I-sites) [20, 21, 22]. We consider the
I-sites as an adhesion complex which is part of the cell mem-
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brane and not the location of the bound complex although the
distinction is not important. I-sites attach to an external sub-
strate and once attached remain fixed to that substrate location
[23]. The duration of the attachment is determined by a given
probability distribution. The same is true for the time the I-
site remains unattached, although the distributions need not
be the same.

Fig. 1: The left panel depicts the way a cell is modeled mathematically. The right panel is
a fibroblast in a collagen lattice. Note the similarity of the model formation with the typical
spindal morphology of a fibroblast in a three dimensional lattice. The cell is a center location
(nucleus) with attached springs. The other end of the springs are attached to sites which can
interact with the extracellular matrix (membrane bound adhesion sites) depicted by “x”.

The model assumes the I-sites exert forces on the nucleus
according to Hooke’s law, i.e., the force is proportional to dis-
tance. Thus it is as if the sites are attached to the cell cen-
ter with springs which have a rest length assumed to be zero.
Moreover, there is a drag force on the cell nucleus which is
modeled assuming the center (nucleus) is a sphere in a liquid
with low Reynold’s number and is proportional to the veloc-
ity (Stoke’s law) [17]. We denote the location of the cell cen-
ter as x, a point in R2. Likewise the location of each I-site ui
are points in R2, where i ranges from 1 to n. Due to the low
Reynolds number the acceleration term can be ignored and the
equations of motion are first order [17]. The equations are

Cx′ =
n∑
i=1

−αi (x−ui )ψi (t), [1]

where ui is given by

ui (t) =
{

x(tpi ) +bi for tpi ≤ t < tpi +wpi and ψi , 0
0 otherwise

, [2]

tpi is the most recent time thatψi made the transition from 0 to
1, and wpi is the duration time that ψi remains 1 for the most
recent transition. Here, ψi is the random variable which indi-
cates if the ith I-site is attached. The spring constants which
define the cell force are αi , and the drag coefficient is C. Fi-
nally bi are random vectors that describe the outreach to the
I-sites from the nucleus.

2.2 EVR Conjecture. Numerical simulations given in [7] in-
dicate that the cell speed for the differential equation model
appears to be independent of the spring constants αi (see
Figure 2) for a wide range of physiologically relevant values.
These numerical simulations led to the following conjecture
about the cell drift which is referred to as the EVR (expected
average velocity relation) conjecture. In the next section we

prove an EVR result for a simplified model under special con-
ditions.

Fig. 2: The speed of a single cell is plotted in grayscale against the mean attach time and
strength of the cell. The cell speed is remarkably constant with respect to the strength of
the cell. The contour lines are plotted over the shading. The plot shows the average of 50
random runs for each data point. The mean detach time is 25 seconds with a Poisson distri-
bution and the attach time is taken from a Poisson distribution. The speed was calculated in
the simulations by averaging over a 60 second time interval.

The EVR for the differential equation model may be stated
very simply as

lim
ζ→∞

E[x(t +∆t)− x(t)] = λ,

where ζ = αC−1 and α = minαi . Here ∆t is an arbitrary posi-
tive increment of time bounded away from zero. The meaning
of the EVR is that the expectation of the increment of motion
approaches a constant value as the ratio of the spring constants
to the drag increases. Recall that x(t) is the location of the cell
and is a random process and therefore the expectation is taken
relative to the outcome space. For further details see [24] and
for a concrete example see Section 3.2.

To better understand this conjecture we first consider a
simplified model where the differential equation becomes an
algebraic equation. We will assume that the cell instantly
moves to the equilibrium position, i.e., moves instantly to its
centroid. In this simplified model elapsed time is replaced by
an index which depends on the latest binding event.

3 Simplified Centroid Model
3.1 The Model. In this section we consider a simpler but re-
lated problem in order to better understand the EVR conjec-
ture for the differential equation model. The differential equa-
tion model can be approximated heuristically by a problem
that tracks the centroid of the cell, cj . This new problem is
motivated by informally considering the limit of our model as
the cell spring constants, αi in Equation (1), become very large.
In this limit, one expects the cell nucleus to jump from cen-
troid to centroid. Let j denote the number of binding events
(attach or detach events) that have occurred and n the number
of I-sites. The equation describing cj is

0 =
n∑
i=1

αi (c
j − vji )ψ

j
i [3]
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where v
j
i is the location of the ith attachment site at stage j.

3.2 Analysis of the centroid model. We begin by describing a
formal setting for the centroid model. Let n ∈ N, r > 0, and a
probability measure η on the Borel sets of R2 be given. Con-
sider a cell in 2-dimensional space with n I-sites, each of which
has a position and a status, either “attached” or “detached”.
(Since the numerical calculations are for cells in R2 we restrict
ourselves to two dimensions, but all the results are valid for a
cell in RN .) The state of the cell evolves through a sequence
of stages in the following way. At each stage, exactly one of
the I-sites randomly changes status, with the probability of a
given detached I-site changing status being r times the proba-
bility of a given attached I-site changing status. If the I-site’s
status goes from detached to attached in stage j then its loca-

tion changes to b
j
i + c, where b

j
i : Ω→ R2 is an η-distributed

random variable independent of {bki : k < j, 1 ≤ i ≤ n}, and c
is the centroid of the locations of I-sites that were attached in
stage j − 1 unless there were no such I-sites; if no I-sites were
attached in stage j − 1, c is the location of the last I-site to de-
tach. (If the I-site detaches, it does not move.)

Letting ψi be 1 if I-site i is attached and 0 if it’s detached,
and letting vi be the location of the ith I-site, the state of the
organism is conveniently viewed as an element in

X :=
{

((ψ1, . . . ,ψn), (v1, . . . ,vn),c) ∈ {0,1}n × (R2)n ×R2

:
n∑
i=1

ψi (vi − c) = 0
}
.

(Endow X with the product topology, where {0,1} has the
discrete topology and R has its standard topology.) The c-
component of the state represents the value of c that will be
used in the next stage, if it is an attachment stage. Given sub-
sets A1,A2, . . . ,An of {0,1}, Borel subsets B1,B2, . . . ,Bn of R2,
and a Borel subset D of R2, we can compute the probabil-
ity that an organism in state sj := ((ψ1, . . . ,ψn), (v1, . . . ,vn),c) at
stage j will have a state sj+1 contained in S := (A1 × · · · ×An)×
(B1 × · · · ×Bn)×D at stage j + 1 as follows.

1. There are n different I-sites that can change status. Each
attached I-site has a certain probability p of changing sta-
tus, and each detached I-site has probability rp of changing
status. There are |ψ| :=

∑n
i=1ψi of the former and (n − |ψ|)

of the latter. Since exactly one I-site changes status, we
know that |ψ|p + (n − |ψ|)rp = 1, so p = 1/(|ψ| + (n − |ψ|)r)
and rp = r/(|ψ|+ (n− |ψ|)r).

2. Given that the ith I-site changes status, sj+1 will certainly
not be in S unless 1−ψi ∈ Ai and ψk ∈ Ak for all k , i. Since
I-sites only move when they change status (from detached
to attached), sj+1 will also not be in S unless vk ∈ Bk for all
k , i.

3. Given that the ith I-site changes status, we consider 3 cases:

(a) Suppose |ψ| = ψi = 1. Then the ith I-site will detach
and not move, and (since this will result in all I-sites de-
tached) the final component of sj+1 will equal vi , which
equals c, since sj ∈ X. Thus, sj+1 will not be in S unless
vi ∈ Bi and c ∈D.

(b) Suppose |ψ| > ψi = 1. Then the ith I-site will detach
and not move, while the centroid of attached I-sites
will move to adjust for the ith I-site’s absence. Thus,

∑n
k=1ψk(vk − c) = 0 and

∑
k,i ψk(vk − ĉ) = 0, where ĉ is

the last component of sj+1. Solving these two equations
for ĉ yields ĉ = c+(c−vi )/(|ψ| −1), and sj+1 will not be in
S unless vi ∈ Bi and ĉ ∈D.

(c) Suppose ψi = 0. Then the ith I-site will attach and move
to a new location v̂i whose displacement from c is given
by η, and the location of the centroid will change from
c to some new value ĉ, specified by the two equations∑n
k=1ψk(vk−c) = 0 and

∑n
k=1ψk(vk− ĉ)+ v̂i − ĉ = 0. These

two equations imply that v̂i will be in Bi , and ĉ will be in
D if and only if v̂i −c is in (Bi −c)∩ (|ψ|+ 1)(D −c). To see
this, note that v̂i − ĉ = −

∑n
k=1ψk(vk− ĉ) = −

∑n
k=1ψk(c− ĉ)

thus v̂i + |ψ|c = (|ψ|+ 1)ĉ and v̂i − c = (|ψ|+ 1)(ĉ− c).

Thus, the probability of transitioning from state sj to S is

P (((ψ1, . . . ,ψn), (v1, . . . ,vn),c),
( n�
i=1

Ai
)
×
( n�
i=1

Bi
)
×D) :=

n∑
i=1

r + (1− r)ψi
rn+ (1− r)|ψ|

δ1−ψi (Ai )

∏
k,i

δψk (Ak)δvk (Bk)

×
η((Bi − c)∩ (|ψ|+ 1)(D − c)) if ψi = 0,
δvi (Bi )δc(D) if |ψ| = ψi = 1,
δvi (Bi )δc+(c−vi )/(|ψ|−1)(D) if |ψ| > ψi = 1.

[4]

This formula extends to a transition probability kernel P :
X × B(X) → [0,1] (where B(·) denotes the collection of Borel
sets of a topological space). It can be shown that for any initial
distribution ρ on B(X), there is a probability measure Pρ on

B(XN) and a stochastic process Φ such that

Pρ(Φ0 ∈ A0,Φ1 ∈ A1, . . . ,Φk ∈ Ak) =∫
yk−1∈Ak−1

· · ·
∫
y0∈A0

ρ(dy0)P (y0,dy1) · · ·P (yk−1,Ak);

i.e., Φ is a Markov chain on (XN,B(XN),Pρ) with initial distri-
bution ρ [25]. (Here, we follow the convention that if λ is a
measure on a set A, then

∫
x∈Aλ(dx) :=

∫
A dλ.)

Because η-distributed random vectors b
j
i describing the

outreach to the I-sites from the centroid need not be rotation-
ally symmetric, it is not expected that there is a stationary
distribution associated with the transition kernel P . There is,
however, a simple Markov chain connected with P that has a
stationary distribution. This is the embedded Markov chain
associated with the attachment-detachment status of each I-
site.

Consider the stochastic process governing the evolution of
|ψ| alone; it has a state space of {0, . . . ,n} and a transition matrix
(Pi`)

n
i,`=0 given by the formula

Pi` =


i/((n− i)r + i) if ` − i = −1
(n− i)r/((n− i)r + i) if ` − i = 1
0 otherwise.

Thus Pi` is the probability that the state transitions from i I-
sites bound to ` I-sites bound. Since for any state i there is a
positive probability for a transition either up i+1 or down i−1
at every stage, the Markov chain is irreducible. The state space
is finite so the Markov chain is positive recurrent and there ex-
ists a unique stationary distribution. That is, there is a vector
(π0, . . . ,πn) with non-negative components such that

∑
i πi = 1

and
∑
i πiPi` = π` [26]. The stationary distribution (π0, . . . ,πn)
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of this latter chain is given by the formulas π0 = 1/(2(1+r)n−1)
and

πk =
rk−1(1− r)

(n−1
k−1

)
+ rk

(n
k
)

2(1 + r)n−1

for 0 < k ≤ n.
We now propose the following theorem.

Theorem 1. Let Eρ be the expectation operator corresponding to
Pρ, and let E[η] =

∫
R2 xdη, the expected value of any η-distributed

random variable; then

Eρ[cj − cj−1] =1 +
n∑
k=1

(
rk−1(1− r)

(n−1
k−1

)
+ rk

(n
k
))
r(n− k)

(k + r(n− k))(k + 1)

 E[η]

2(1 + r)n−1 .
[5]

Proof. Let ρ be any probability measure on B(X) such that

ρ(({(ψ1, . . . ,ψn)} × (R2)n ×R2 ∩X) = π|ψ|

for every (ψ1, . . . ,ψn) ∈ {0,1}n, and consider the evolution of
a Markov chain Φ = Φ0,Φ1, . . . on (XN,B(XN),Pρ) with ini-

tial distribution ρ. Let Φj = ((ψ
j
1, . . . ,ψ

j
n), (x

j
1, . . . ,x

j
n),cj ) and

|ψj | :=
∑n
i=1ψ

j
i = k for each j.

If |ψ| = k, then there is probability k/(k + r(n − k)) that the
next change will involve detachment, and probability r(n −
k)/(k + r(n − k)) that the next change will involve attachment.
Also, Eρ[cj+1 − cj | |ψj+1| = k − 1, |ψj | = k] = 0 (by symmetry),

while Eρ[cj+1 − cj | |ψj+1| = k + 1, |ψj | = k] = E[η]/(k + 1). Using
these conditional expected values and the formula for πk , we
see that the expected translation

Eρ[cj − cj−1] =
n∑
k=0

πk ·
r(n− k)

k + r(n− k)
·
E[η]
k + 1

=

1 +
n∑
k=1

(
rk−1(1− r)

(n−1
k−1

)
+ rk

(n
k
))
r(n− k)

(k + r(n− k))(k + 1)

×
E[η]

2(1 + r)n−1 .

[6]

For the special case when r = 1 this formula simplifies to

Eρ[cj − cj−1] = E[η]
(2n − 1)
n2n

. [7]

As the number of I-sites becomes very large the right hand side
of equation 5 asymptotically approaches the function

E[η]
(r + 1)

2rn
. [8]

4 Numerical Verification
In this section we compare numerical results for both the cen-
troid model and the differential equation model with the theo-
retical results. To numerically solve the centroid model we use

a random number generator to generate b
j
i , set v

j
i = cj−1 + b

j
i ,

and then solve Equation (3). The vectors b
j
i were generated by

choosing an angle from a uniform distribution in the interval

−π to π and choosing a length from a uniform distribution on
the interval 0 to 10. We then determine the cell drift by averag-
ing the cell displacement over the number of binding events.
To numerically solve the differential equation model, we again

generate the vectors b
j
i in the same manner but we must also

generate attach times and detach times. Then starting at time
t and continuing to time t +∆t, we solve equation 1 using the
software package CVODE [27], update the binding status as
necessary at the I-sites, and repeat the process with new initial
conditions for the differential equation and the new location
for the adhesion site. In this numerical solution all the bind-
ing events that happen in the time interval ∆t occur simulta-
neously at the end of the interval. The cell drift is determined
in the same manner as for the centroid model.

We numerically verify the expected value given by [5],
by simulating the centroid model and calculating the average
drift of multiple runs. Figure 3 shows the results of this com-
parison where ’×’ denotes the results from the simulations and
the solid line is calculated from [5]. Anticipating the results
should be similar for the differential equation model, we com-
pare simulations for Equation (1) to the theoretical prediction
where all the spring constants are the same, thus αi = α for
all i, and where the waiting time for both attachment and de-
tachment of I-sites are exponentially distributed with a mean
attach time of 20 and a mean detach time of 60, making the
random component a Markov process. We hypothesize that
for larger values of α

C the theoretical result will better predict
the expected drift. The numerical results confirm our hypoth-
esis and are shown in Figure 4 for three values of the ratio
α
C . Physiologically realistic ratios of α

C are between 24.9-900
minute−1. These are determined by considering that cell forces
range from 0.116-4.44 nN per micron [7] and assuming C is
the drag coefficient of a sphere of 1.5 micron radius in water
(about 0.28 nN s per micron). In Figure 5, simulations with
different distributions for the waiting times are compared.

Fig. 3: This figure compares the numerical simulations for the centroid model (3) with the
theoretical results (5). The ’x’ denote the numerical simulations and the line shows the theo-
retical results. The horizontal axis indicates the number of I-sites for the cell and the vertical
axis shows the average displacement per binding event in the x direction (results are similar
for the y direction). The three different set of ’x’ and lines in decreasing order are for r = 1/3,
r = 1, and r = 10. Other values of r show equally good fits. The displacement is in microns.
The simulations had 100,000 binding events for each run with a fixed number of I-sites.

The mean attach time for all the distributions is 20 and
the mean detach time for all the distributions is 60. When
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the distributions are exponential the process has the Markov
property and the fit is good. Simulations with Poisson distri-
butions or normal distributions give expected drifts which are
different from the theoretical prediction indicating the results
do not hold for processes which have a memory.

Fig. 4: This figure compares the numerical simulations for the differential equation model (1)
with the theoretical result (5). The symbols indicate the numerical simulations and the line
shows the theoretical results. The squares denote results with the ratio of αC = 16.6, the tri-
angles a ratio of 166.6, and the * a ratio of 1666.6. The horizontal axis indicates the number
of I-sites for the cell and the vertical axis shows the average displacement per binding event
in the x direction. The simulations had 100,000 binding events for each run with a fixed num-
ber of I-sites. The distribution for the attach time was an exponential distribution with mean
20 and the distribution for the detach time was exponential with mean 60. The time interval
∆t = 1.

Fig. 5: This figure shows a comparison between the numerical simulations for the differential
equation model (1) with different waiting time distributions and the theoretical results (5). The
symbols indicate the numerical simulations and the line shows the theoretical results. The *
denote simulations with exponential distributions, the triangle normal distributions with de-
viation 1, and the square Poisson distributions. The ratio of αC = 1666.6. The horizontal axis
indicates the number of I-sites for the cell and the vertical axis shows the average displace-
ment per binding event in the x direction. The simulations had 100,000 binding events for
each run with a fixed number of I-sites. Distributions for the attach time had mean 20 and
the distributions for the detach time had mean 60 for all the simulations. The time interval
∆t = 1.

5 Heuristic Relation Between the Centroid and Differ-

ential Equation Models
As stated previously for most physiologically realistic parame-
ters we expect the centroid model to approximate the differen-
tial equation model. Consider the differential equation model
(Equation (1)) with initial condition xo, uoi , and ψoi for each
i. For t < τ (τ corresponds to the first adhesion site binding
event), Equation (1) has the solution

x(t) =
∑
i αiuiψi∑
i αiψi

+ (xo −
∑
i αiuiψi∑
i αiψi

)e−
∑
i αiψi t
C .

The solution changes as t passes the first binding time, but
its form remains similar. It is reasonable to expect that x(t)
will approach the behavior of∑

i αiuiψi∑
i αiψi

provided event times do not crowd together. If they do not
crowd together the exponential term in the solution is domi-
nated by the behavior of t and hence tends to zero. It is also
reasonable to assume that the term

xo −
∑
i αiuiψi∑
i αiψi

is bounded and therefore dominated by the exponential.
The centroid model,

0 =
n∑
i=1

αi (c− vi )ψi

has the solution ∑
i αiviψi∑
i αiψi

and therefore may be thought of as a limit system for the dif-
ferential equation model.

6 Discussion
In this paper we analyzed a mathematical model of cell mo-
tion which was previously introduced in [7]. Numerical re-
sults there indicated that measured cell speed was indepen-
dent of the force the cell exerted. These results inspired the
EVR (expected average velocity relationship) conjecture pre-
sented here. The first step to understand the EVR conjecture
was to analyze a simplified centroid model. A formula for the
expected drift of cell motion governed by this model was de-
termined using Markov chain theory. A heuristic argument for
why the centroid model should approximate the differential
equation model was given. Numerical results indicate that the
EVR conjecture is accurate and that the centroid model does
approximate the differential equation model for a wide range
of physiologically relevant values. Additional numerical re-
sults considered the differential equation model with different
distributions for the binding dynamics. Future work will ex-
plore the behavior of the cells for more biologically relevant
binding dynamic distributions, i.e. not memoryless and force
dependent.

Experimental data has focused recently on measuring cell
forces and speeds [28, 29, 30, 31, 32, 33, 34, 35, 36, 30, 37, 38,
39, 40] and not on the statistical behavior of adhesion sites. In
Figure 6 we show data from simulations discussed in [7]. In
those simulations the differential equation model (1) is used to
calculate average cell speed for a range of cell strengths and a
range of mean attach times. The mean detach time is fixed and
the cell forces for each I-site are set to be the same, i.e. α = αi
for all i. As the figure shows for a range of values the correct
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cell behavior (in terms of speed and force) can be predicted by
the model. The range of values for α and for the mean attach
time respectively are 0.232-4.44 nN/micron and 810-1210 sec-
onds for fibroblasts, 1.17-2.33 nN/micron and 28-88 seconds
for neutrophils, 0.233-0.614 nN/micron and 230-408 seconds
for murine dendritic cells, 1.17-1.18 nN/micron and 206-408
for endothelial cells, and 0.116-0.348 nN/micron and 18-70
seconds for Dd cells. Figure 7 shows the same data plotted us-
ing the mean attach time as the vertical axis. Comparing the
two figures one can see that there is no functional relationship
between the cell force and the cell speed whereas there appears
to be a simple power relationship between the attach time of
the I-sites and the cell speed (the figure is a log log plot).

Fig. 6: The boxes roughly outline the regions where experimental data has been reported
for different cells types. The scatter plots are simulation results with parameters used to
mimic the behavior of the different cells using the differential equation model. Red denotes
fibroblasts, black denotes murine dendritic cells, cyan denotes neutrophils, green denotes
endothelial cells, and blue denotes Dd cells. Figure taken from [7] with permission.

Fig. 7: The same data plotted in Figure 6 is plotted with the vertical axis as the mean attach
time. Notice that there appears to be a linear relationship between the logarithms of the
two variables. Yet in the previous figure there is no functional relationship between the force
and the speed. Red denotes fibroblasts, black denotes murine dendritic cells, cyan denotes
neutrophils, green denotes endothelial cells, and blue denotes Dd cells.

For experimentalists this work indicates that measuring
cell force is not enough to determine the cell speed and like-
wise measuring cell speed is not enough to determine cell
force. The reason for this is cell speed is typically measured
by averaging cell displacement on the order of minutes. How-
ever, the saltatory motion of cells occurs on a shorter time scale
and this saltatory motion is more closely related to the exerted
force. New adhesions sites cause the cell to shift quickly after
the adhesion site is formed as do detachment events at the ad-
hesion site. Between these binding events the cell remains rel-
atively stationary, yet substrate tension can remain high. Our
conjecture says that in the limit force is not important in deter-
mining cell speed when measured by averaging displacement
over larger time scales. The model predicts that averages of
cell displacement on the order of minutes (cell speed) will de-
pend on the binding dynamics of the adhesion sites in partic-
ular the average attach time.

6 Dallon, Evans, Grant, and Smith



1. Krawczyk, W. (1971) A pattern of epidermal cell migration during wound healing. The

Journal of cell biology 49:247–263.

2. Tanner, K., Ferris, D., Lanzano, L., Mandefro, B., Mantulin, W., Gardiner, D., Rugg,

E., and Gratton, E. (2009) Coherent movement of cell layers during wound healing by

image correlation spectroscopy. Biophysical journal 97:2098–2106.

3. Yilmaz, M. and Christofori, G. (2010) Mechanisms of motility in metastasizing cells.

Molecular Cancer Research 8:629–642.

4. Keller, R., Davidson, L., Edlund, A., Elul, T., Ezin, M., Shook, D., and Skoglund, P.

(2000) Mechanisms of convergence and extension by cell intercalation. Philosophical

Transactions of the Royal Society of London. Series B: Biological Sciences 355:897–

922.

5. Mammoto, T. and Ingber, D. (2010) Mechanical control of tissue and organ develop-

ment. Development 137:1407–1420.
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