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HOOFS - a Multi-scale, Agent-based Simulation Framework for
Studying the Impact of Grazing Animals on the Environment

J.A. Beecham, S.P. Oom and C.P.D. Birch
a Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom

(j.beecham@macaulay.ac.uk)

Abstract: An agent based system (HOOFS) has been developed in order to examine the interactions between
foraging animals and a spatially explicit description of the environment, including vegetation growth
processes. HOOFS makes use of the agent-based approach to develop a model of foraging in which animal
decision making processes are explicitly modelled. The model has evolved from one where foraging decisions
are based on a simple biased random walk model with an information weighting parameter, through one in
which animals decide between direct walking towards an object as against continuous foraging, ending with a
model where memory is used. The model was used to study utilisation of heather around grass patches in a
heather-grass mosaic. Model refinement using remote imaging and animal GPS data together with appropriate
statistical methods shows the way forward in making a model formulation suitable for predictive modelling.

 Keywords: Herbivore Foraging, Cognitive models, Animal Behaviour, Individual-based model, vegetation.

  
1. INTRODUCTION

Agent-based approaches and have been predicted to
be the way forward for disciplines such as ecological
and socio-economic modelling (Judson 1994,
Uchmanski & Grimm 1996) The reasons behind
these approaches are well rehearsed: Agent-based
models are able to represent environmental
heterogeneity, biological complexity, emergent
properties resulting from rare events and
demographic stochasticities (Gross et al.  1992).

However, their take up in applied modelling has
generally been confined to the realm of exploratory
models  (Janssen et al. 2001, Bousquet et al. 2000
see Railsback 2001 for critique). Predictive models
such as those used for the recent Foot and Mouth
epidemic have avoided explicit modelling of animal
movements and infection (Ferguson et al. 2001). 

Levins (1966) characterised models in terms of
realism, precision and generality. Good agent-based
models are intrinsically more realistic than their
mean field equivalents and many agent-based models
can be general. However we would question whether
simple rules (such as the biased random walk model
Farnsworth & Beecham 1999) are sufficient to
explain many aspects of actual animal behaviour
which are required to make accurate predictions
about how animals interact with their environment.
More thorough analysis of the patterns of animal

movements and their interactions with the
environment has led us towards cognitive models
(models of the animals’ decision making processes)
which take into account perception, information
processing  and memory (Bailey 1996, papers in
Dukas 1998). When we move from physical to
cognitive models, we have moved from highly
general models with some realism, through highly
realistic models which are still imprecise, to,
eventually, precise models which can be used
predictively, for  specific situations. The challenges
involved in this process include modelling, data
collection and data analysis. In this paper we will
examine how we have developed cognitive models
of herbivore foraging and how we intend to meet
these challenges in terms of large scale data
collection methods and statistical modelling of
cognitive foraging mechanisms. 

2. HOOFS MODELS

2.1 The Environmental Substrate

All the animal models used in the simulations have a
common object-orientated model of the
environment. A raster map of the vegetation
classification is combined with one or more layers
representing state variables for the vegetation
components (biomass, age, maximum relative
growth rate etc.) and projected onto a hexagonal
mesh. Each cell (or patch) of the landscape is an
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object with a link to appropriate models of plant
growth, and nutritional value for the vegetation. The
state variables are used to determine initial biomass
and growth rates. 

Typically an asymmetrical sigmoid growth function
(Birch 1999) is combined with a Holling type II
(Spallinger & Hobbs 1992) functional response (a
description of how in intake rate of an animal
foraging in a location varies with the amount of food
there) and an optional sigmoid digestibility function,
to give a function for the food value of a given patch
at a given time, t.

For a patch i this quality is designated as  Qi,0. The
patches are arranged in a hexagonal hierarchy as
shown in fig 1. Clusters of seven patches are referred
to as superpatches of order 1. These superpatches
can be further grouped into higher order
superpatches. Each superpatch i of order n has an
aggregate quality Qi,n which can be obtained by
calculating the power law mean:
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In fig 2 there is an example landscape made up of 75

small patches of two types.

2.2 The biased random walk model with variable
discounting

In the original version of the HOOFS (Hierarchical
Object Orientated Foraging Simulator) (Beecham &
Farnsworth 1998) model animals foraging
movements were described in terms of a biased
random walk model with two main parameters � and
�. The animal moves between adjacent patches
according to the relationship: 
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The A constants correct for the non-adjacent
alignment of alternative layers of the hierarchy. N is
the number of levels in the hierarchy. � is the
determinism of the patch choice, ranging from 0 for
random to infinity for optimal patch choice. �

determines the impact of long range information on
patch choice, so that when ��= −� the decision by
the animal of where to move is always based on the
perceived quality of adjacent patches to 0 where all
scales are equally rate. � is an example of a cognitive
parameter. The animal is receiving information about
patch quality at a variety of scales and has to
combine this information in order to 

make the best decision. The best value of � will vary
with the kind of environment the animal is in and
with the amount of competition – short range
foraging (i.e. low value of � ) is more profitable
when there are lots of competitors. A detailed
discussion of these parameters and a sensitivity
analysis of their effects on different aspects of
grazing is given in Farnsworth & Beecham (1999).   

In fig. 2 there are two examples of the model on a
simulated mosaic with parameters for the two
vegetation types set to those of grass and heather. It
can be seen that the animals graze a varying distance
into the heather depending, primarily on �. We can
estimate � for empirical data on offtake around a
grass patch (Hester et al. 1999).

2.3 Walk and Forage action selection model

The diffusional model performed well at explaining
foraging within a number of simple landscapes.  It
did not allow for sufficient speed of movement on
landscapes with restricted connectivity, such as when
patches of the preferred vegetation are linked by thin
paths. In this case the animals are entering a patch
primarily to cross it, so food value is irrelevent
(Hester et al. 1999). 

Figure 1: Construction of hexagonal hierarchy and
Animal movement evaluation of multiple scales.

Figure 2: Simulated foraging in grass-heather
mosaic  a) high �, high � b) low �, low �.

221



In our next model animals could choose to foraging
or walk. The cost of foraging in a patch is
represented by the fixed time of foraging in an empty
patch (tf) plus the time to walk to that patch (tw,n), the
cost of walking merely by tw,n (n is the number of
levels in the hierarchy being traversed). The
energetic loss is the time taken multiplied by the
maintenance energy, the gain the amount of food
obtained times its specific energy. Switching from
walking to foraging occurs when:
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The model was modified to deal with the problems
of error and expectation. Error is defined as an
adjustment to the expected value of the more distant
patch, it is represented as a symmetrical uniform
deviate of range defined as a fixed proportion of the
true value. The expected advantage of moving to a
new location will depend upon how many patches
will be visited once the move is made. If only a
single patch is visited then the travel cost will
increase linearly with distance. If the expected
number of patches between subsequent moves is
proportional to the distance moved then movement
cost should be fixed since the cost of moving is
divided by a proportional number of patches. A
power law expression between the 0th and 1st
powers will encompass anything between these
extremes. Both the error value and the expectational
power law are examples of cognitive model
components. 

A final enhancement is the decision to follow a line
of least resistance even if it is an indirect route. A
complex path structure exists on Finella Hill, near
Aberdeen, where observations on sheep foraging
were made, showing that sheep also have a path
following strategy. In the model sheep are allowed to
deviate � 60� from the best direction providing the

travel costs are sufficiently low that tw,n for the
indirect route is a specified fraction of that for the
direct route (Oom & Hester 1999, fig. 3). Although
this model allowed for animal movement across a
landscape it was not as accurate at predicting the
distribution of heather offtake round grass patches. 

2.4 Memory Model

Experience is an adaptive addition to expectation
information because it can allow expectation to be
updated, and provide a known reference for decision
making. Empirical studies support the importance of
spatial memory in foraging (Dumont &  Petit 1998,
Laca 1998). Memory can be categorized in terms of
function – spatial memory for location, episodic
memory for the sequence of events and associative
memory for linking items. Another distinction is
between long- and short-term memory. The
organisation of memory involves the chunking of
memory items (Miller 1956, Healy & Hurly 1998),
the relationship between the value of a signal and its
persistence (Mackney & Hughes 1995) and effective
memory capacity. In addition there is a need for
action selection between using memory, using the
best perceptual information and adventitious
exploration. Our memory model is not a mechanistic
model – there are mechanistic models based around
neural networks (see Benhamou et al. 1995,
Aharonov-Barki et al. 2001), instead it can be
characterized as a flexible teleological model. That
is to say it is a model designed to achieve a specific
functionality, but where that functionality is flexible.
Specific features of our model are:
1.) Representation of patches as memory items
2.) Storage of information on location, time and

value (Q) of patch  (fig. 4)
3.) Selection based on patch quality
4.) Limited capacity modelled by forgetting
5.) Increased capacity for more noteworthy

information (i.e. best food sources)
6.) Chunking of smaller memories into larger ones
7.) Limited precision
8.) Decision whether to use memory based on

experience versus perception

Location  1,2,3

Location  1,2

Location  1,2,6
Time:  
Value 
Sig Strength 

1234
+0.6

7

Time:  
Value 
Sig Strength 

1241
+0.3

6 Time:  
Value 
Sig Strength 

1241
+0.5

3

ANIMAL 1
Figure 3: Simulated foraging on digitised
landscape with walking and foraging model.

Figure 4: Object structure of memory location
information at multiple scales, specified by the
different no. of  hierarchical coordinates for
location.
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Animals store locational information using the patch
hierarchy. They can store the position of any patch
or superpatch. The location of a superpatch is stored
hierarchically, as its centre, so that precision is less
for higher order superpatches. The signal strength is
related to the value being stored (usually increasing
with value – remember best, or increasing either side
of mean value so that the extremes are more likely to
be remembered (Bailey et al. 1996, fig. 5).

 

Over time the signal strength decays, unless a patch
is revisited, until it falls below a critical threshold
and is forgotten. There is a cost per item
remembered so that forgetting occurs more often
when there is a lot of information to remember.

If a number of patches are stored within a super-
patch, the superpatch is stored (and so on up the
hierarchy). The chunking behaviour sub-model
specifies how any items are needed and how much
stronger the composite memory is than the
components for each level in the hierarchy. 

The animal selects between the perceived value of Q
and the best remembered value. The best
remembered value is found by multiplying value by

signal strength. In addition the value may be reduced
by a temporal discount to represent the temporary
depletion of a resource. In fig. 6 it can be seen that
memory results in a more direct movement of
animals to the best quality patches. Once this
behaviour has been modelled we can compare the
effects on intake of memory use. Observations by
Dumont and Petit (1998) indicated that a rapid return
to high quality patches was observed after repeated
learning.

3. MODEL FITTING STRATEGY

Optimisation approaches are amenable to analytical
or numerical solution, but because they do not
propose explicit mechanisms, they cannot provide a
heuristic for explaining departures from the optima.
Instead optimisation models have tended to collect a
variety of modifications (see Gray 1987 for critique)
to make the model fit the observed data. Cognitive
models have less well defined optima and because of
the limits of cognitive processes are expected to be
sub-optimal.

Because of the potentially large solution space of
cognitive models, including different uses of
memory and variable use of local and global
information, a large amount of data is needed to
parameterise and validate the very large set of
models. Two projects using HOOFS, one in course
and one just starting, have attempted to make a
comparison between large datasets (one of heather
and grass utilisation, the other on animal
movements) and foraging models.

3.1 The datasets

Data has been recorded on sheep foraging in a
landscape consisting mainly of heather but with areas
of grass of varying size connected by a network of
paths. A transect survey has been made of heather
offtake around grass patches and by image analysis
of changes in vegetation. Analyses of the transect
have shown that sheep graze heather close to grass
patches. The use of heather round a grass patch
increases with the size of the patch.

This data has been analysed using a gravity model
(i.e. area over the square of the distance) (Oom et al.
in press). Previous observations have indicated the
tendency for sheep to use path networks (whereas
deer are more likely to traverse heather Hester et al.
1999). This sort of information provides constraints
for the model parameterisation – how much
preference there should be for path movement,
selection preference for grass over heather. The
simplest form of fitting complex model to complex
data is to use judgement to weight these simple
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Figure 5: Typical relationship between value to
animal of patch visited and strength of memory.

Figure 6: Simulated foraging using memory. The
small dark spots are the locations with the highest
value. The dark traces represent animals with
memory, the lighter ones those without.
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metrics. A less subjective approach would be to
make a direct comparison of the predicted offtake
with a complete dataset which could be obtained
through image analysis of aerial photographs. The
disadvantage of this sort of approach is that both the
data and the model have substantial stochastic effects
between replicates, resulting from arbitrary and
unpredictable decisions by the real and virtual
animals. Multiple runs of the model with different
parameter values help us obtain an estimate of
probabilities of one model over another explaining
the observations.

The sort of data that has become available recently is
that of spatiotemporal information on animal
movements obtained from Global Positioning System
information. We have used the data of  Ian Hulbert at
the Scottish Agricultural College (Hulbert & French
2001). As well as GPS time series for individual
movements, the vegetation has been classified using
the British National Vegetation Classification
(Rodwell 1991). In prediciting animal movements it
is apparent that animals have two decision making
criteria – egocentric, based upon the animals’ current
position, state and direction of movement, and
ecocentric – with all decisions being made on the
basis of the environment (including other animals).
The ideal free distribution (Fretwell & Lucas 1970)
model is ecocentric – the animals respond
instantaneously and flexibly to obtain the most
resources from their environment. Random walk
models are egocentric, the position at one moment in
time is a probability distribution of distances and
times away from a previous position. HOOFS uses
both kinds of information and can be adjusted
between the two extremes. New work involving
modelling telemetry (e.g. GPS) data aims to
segregate the ecocentric and egocentric influences on
foraging decisions by a range of grazing animals
(sheep, red deer, moose) in order to better understand
animal decision making.

In both of these projects there is a formidable
challenge in fitting complex dynamic models to large
datasets. The potentially infinite number of cognitive
models that could be fitted to the dataset can be
limited by assuming a finite granularity of models
and systematising the relationship of the different
models to each other. This is already done in a
simple way by running the model over a  number of
parameters in a multi-dimensional rectangular
design. HOOFS is a particularly easy system to use
in this respect because it is a metamodel. The precise
model is specified in a declaration file that can be
automatically generated. Two frameworks for
choosing between models are a genetic algorithm
approach, whereby parameters vary between
individuals and are selected according to an optimal

or statistical criterion. The second is that of using a
Bayesian approach to relative calculate the
probabilities of various models, within a specified
metamodel context. In analysis of GPS data we can
predict the overall distribution of patches visited
with a specific model parameterisation and run for a
long time to generate a likelihood map and the
likelihood of the data fitting this model can be
calculated. We can also examine short-term
likelihood distributions around a fixed point in time
and space which is know to occur both in data and in
the model. A GA approach selects animals (from a
population with different parameters) and hence
models. A Bayesian approach selects between
multiple runs and gives an estimate of relative
likelihood and so gives more of an overview of the
solution but is more cumbersome to operate. The
HOOFS framework will allow both model fitting
methodologies to be used. Both methods can
discriminate between alternative models. Neural
Network models are an alternative which has not
been followed. Although they can be used to explore
a large solution set, their emergent internal
mechanics are not always easy to scrutinize, and so
are more suited to purely predictive modelling than
the largely exploratory models used here.  

4. CONCLUSIONS

The barriers to developing agent-based models that
are likely to be of interest to resource managers and
empirical researchers are formidable. The agent-
based approach needs three elements: the models
themselves, suitable large datasets and statistical
models to relate the two. Recent years have seen
advances in all three, partly as the result of advances
in computer intensive methods. There is still a lack
of synergy between these three advances, probably
because all three are cutting edge methodologies and
it is easier to deal with problems where at least one
of these aspects is straightforward. The HOOFS
framework has shown promise as the basis of a more
applicable model, but we are still some way off
using it predictively. 

Stakeholder  applications for HOOFS will focus on
the spatial information it can generate. As part of a
European wide agenda for linking agricultural
production with environmental and community aims,
the mosaic qualities of landscape are seen as
increasingly important. HOOFS can be used to
examine the stability of mosaics under grazing and
land use scenarios and the implications for
biodiversity both of vegetation species and of other
animals which share semi-natural environments with
productive species. 
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