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A Microsimulation Model for Assessing Urine Flows in
Urban Wastewater Management

Irene Petersa, Kai-H. Brasselb, and Christian Spörria

a EAWAG (Swiss Federal Institute for Environmental Science and Technology) (ipeters@eawag.ch)
b Department of Computer Sciences, University of Rostock, Germany

Abstract: We report on a microsimulation model under development whose purpose it is to construct
scenarios for the assessment of a novel wastewater management technology: the separate collection,
transport, and handling of human urine. Levelling the urine flow to the treatment plant or removing it from
conventional treatment altogether has many benefits for wastewater management. For an effective
technology implementation, it is useful to know the spatial and temporal distribution of urine generation.
This can be achieved with microsimulation modelling which depicts the objects under study on a one-to-one
basis and thus allows capturing the co-variation of different variables across these microunits. In our case,
microunits are buildings, apartments, toilets, and people; technology impacts are driven by physical
characteristics of the building infrastructure and sociodemographic characteristics of people, including their
mobility behavior. We are modelling a Swiss region comprised of 18 small municipalities that form the
catchment area of a wastewater treatment plant. Swiss census data provides us with information on
residential buildings and their approximate geographical location, apartments, and residents and their
sociodemographic and employment profile. Using event-based simulation, we set up a daily agenda for every
person in our model, sending them to work and on other trips and letting them urinate in different locations.
In work to date, we could replicate the typical morning peak in urine generation and identify the areas with
the greatest urine density. In future work, we will construct scenarios describing the diffusion of the
technology. Diffusion can be modelled endogenously as we depict the behavior of microunits and can let
them react to geographical and social information contagion. We find microsimulation advantageous because
it captures the heterogenity of microunits, facilitates the linking of data from different sources, and allows
many different questions to be addressed in one and the same flexible modelling framework.

Keywords:  Microsimulation;  Scenario Analysis;  Technology Assessment;  Wastewater Management.

1. INTRODUCTION:  THE APPLICATION

We report on a modelling effort whose ultimate
purpose it is to assess the cost-effectiveness of a
novel wastewater management technology. The
model is still under construction, and more data is
needed for a complete assessment. Yet part of the
model already stands, and we can generate
interesting results with practical applicability: the
spatial and temporal pattern of urine flows in a
model region. These flows matter for wastewater
management technology decisions as they are
being discussed in Switzerland and other European
countries. In the following, we present the
technology to be assessed; motivate our modeling
strategy; describe the model, the data, and the
software we are using; present first results and end
with conclusions and an outlook on work to be
done.

The technology to be assessed is the separate
collection of human urine in a special “NoMix”
toilet (Larsen and Gujer 1996, Larsen et al. 2001).
Urine is stored in tanks located in building
basements, transported through the sewer system
at night when it is almost empty, diverted before it
reaches the treatment plant, and guided to a
separate treatment facility. Alternatively, the urine
could be fetched by trucks.

The rationale for the separate handling of urine is
its crucial role in urban wastewater management.
Urine accounts for a large share of the nitrogen in
residential wastewater, in terms of both overall
quantity and temporal distribution. There is a
characteristic daily nitrogen peak caused by people
urinating after they get up in the morning; the size
of this peak is the main factor driving treatment
plant capacity (for plants yet to be built) or
limiting the effectiveness of wastewater treatment
(for plants that already exist). Also, urine contains
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residues of pharmaceuticals and natural hormones
that are not completely eliminated during
treatment; they are strongly suspected to contribute
to the declining health of aquatic ecosystems.

Separate collection, transport, and treatment of
human urine can be quite advantageous for
wastewater management, reducing the need for
chemicals and energy in treatment plant operation
and improving the quality of plant effluent. Also, it
could lessen the damage inflicted on surface water
bodies by “combined sewer overflows” (releases
of raw sewage during rain events). Last, not least,
urine is rich in nutrients; provided it can be treated
appropriately and harmful substances be
eliminated, urine could substitute for synthetic
industrial fertilizer and thus save phosphorus and
other scarce natural resources, much better than
sewage sludge which is so contaminated that it is
about to be banned from agricultural applications
in a number of countries. – Yet another advantage
of urine source-separation is water conservation, as
the urine toilet flush uses little or no water at all.

An intermediate version of the technology would
store the urine temporarily and release it in
controlled fashion to level the nitrogen peak
arriving at the treatment plant.  In that case, urine
storage tanks built into the toilets would suffice.
This technology version would be cheaper but still
advantageous: Leveling the nitrogen peak still
improves treatment (though not as much as
removing urine from the wastewater), and the
impacts of combined sewer overflows would still
be lessened, if urine can be successfully withheld
during rain events.

2. ASSESSMENT METHOD: SCENARIO
ANALYSIS BASED ON MICRODATA

The impacts of the urine source-separation
technology are driven by a number of factors.
Improvements in wastewater treatment and
reductions of environmental effects are the greater,
the more urine is withheld temporarily to flatten
the nitrogen peak, and/or the more urine is kept out
of the treatment plant altogether. The costs of the
new technology arise per toilet replaced, per tank
installed in a building, and per litre of urine
collected in an area served by a tributary sewer
(which is the “density” of urine yield, so to speak).
Furthermore, the timing of the technology
implementation will matter greatly for its cost.
Implementation will be cheaper when it happens in
the course of independently occurring bathroom
re-modelling or building renovations and new
construction.

The cost-effectiveness of the technology (how
much positive impact can be achieved per dollar
expended) thus is not easily expressed by a single

common denominator, but depends on the
combination of different variables with different
dimensions. An approach that suggests itself for
assessing the interaction of these different
variables is to construct scenarios that represent
different possible states of the real-world system to
be studied. In our case, this real-world system is a
model region that reflects a typical pattern of
housing infrastructure; the scenarios include a
reference scenario representing business as usual,
i.e. without the technology in place, and a number
of scenarios representing different degrees of
technology implementation, which are compared
to the reference scenario.

There are two major strands of analysis to be
carried out with such an approach:
• a “snapshot”-type analysis of the material

flows resulting from a given level and pattern
of technology implementation;

• the exploration of strategies for technology
implementation: Where and when could the
technology conceivably be installed; and what
would these different installations cost?

Clearly, it would be desirable to capture the
characteristics of our units of analysis – size and
age of buildings and apartments, and number of
people living therein – as they co-vary across
microunits, i.e., across the individual study objects,
rather than aggregates. Also, tracing microunits
through time and allowing them to interact would
facilitate the modeling of technology diffusion in
the long run, and the spatial and temporal pattern
of urine generation in the short run, as people
move about, spend time at home, at work, etc..

Capturing the variation of characteristics of
microunits is facilitated by the use of microdata,
i.e. one-to-one representations of the units of
study. If such data is not directly available, it can
be constructed (or “imputed”) from aggregate data
distributions, as they are typically reported in
census publications (see Clarke 1996b). We
obtained Swiss census data that contains detail on
individual buildings and persons, including their
geographical location. We chose two model
regions in Switzerland, one urban, one rural, that
are typical of the densely populated, industrialized
countries of West-Central Europe. The software
we are using lets us simulate technology diffusion
endogenously, rather than by exogenously
assuming certain market penetration rates. This
allows us to explore the effectiveness of policies,
given assumptions about the reaction of actors to
policy incentives.

The use of microdata places our exercize in the
tradition of microsimulation models, which have
long been applied for tax policy and urban
transportation analysis (for recent discussions, see
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Gupta and Kapur 2000, Harding 1996, and
Wegener and Spiekermann 1996).  Tracing objects
individually through time would qualify our model
as “dynamic microsimulation” (e.g., Harding
2000). We plan to do this for the building stock, if
not for the human population in our model.

This paper reports on first results of the snapshot-
analysis for the reference scenario of the rural
model region: the catchment area of a wastewater
treatment plant, comprising an area of some
hundred square kilometres, and some 23,000
residents.  The area lies within commuting distance
to several larger cities (e.g., Basel), but is rural in
character, for industrialized Europe’s standards.

3. DATA AND SIMULATION TOOL

We obtained anonymized data from the Swiss
Census of 1990 on residential buildings,
apartments, and residents, and how they are linked
to each other, down to a geographical detail of 100
m squares, or hectares, in the metric system. (We
hope to get access to 2000 census data over the
course of the next year.) The data contains
information on the demographic characteristics of
people which affects the amount of urine they
generate (e.g., age), the time they spend outside
their homes (employment status and weekly work
hours) and which may influence their inclination to
install a new technology (income, tenant or owner,
education, etc.). Of residential buildings, we have
size, owner type, use type, age, and year of last
renovation. From auxiliary data sources, we have
data on the location of work places. We use this
data to replicate buildings and their geographical
location and to simulate how people move between
and stay at these different locations.

The software which lets us do this is VSEit,
(pronounced as “use it”), the “Versatile Simulation
Environment for the Internet” (Brassel 2001a, b).
VSEit is a Java-based object-oriented simulation
framework that supports efficient event-based
simulation (see, e.g., Cassandras and Lafortune
1999). Events are scheduled for certain points in
time during the period to be simulated and are
placed in an event queue. They are processed one
after the other, according to their place in the
queue, regardless of how much real-world time is
supposed to pass between the real-world events
they are representing.

The reason we favor event-driven over time-driven
simulation (which runs the model in small equi-
distant time steps) is computing performance. In
the snapshot analysis, several ten thousand people
are each pursuing their own course of action over
the day; in the long-run technology diffusion
analysis, we have several thousand buildings
whose individual histories we want to trace.

4. MODEL DESIGN DECISIONS

So far, we have worked out the detail and
performed the largest part of the snapshot analysis
for the reference scenario, simulating the spatial
and temporal distribution of urine produced by the
population of the rural model region during a day.
The spatial distribution results from estimates
about the amounts of urine produced per person
and day (Rauch et al., 2002), adjusted by the
person’s age group; from the primary residence of
persons, as indicated in the data; and from persons’
simulated mobility behavior, which is partly based
on our assumptions, partly indicated in the data.
The temporal distribution results from assumptions
about persons’ daily time awake and data on
urination patterns (the latter in Rauch et al., 2002).

We simulate a 24 hr day, differentiating between
weekday, Saturday, and Sunday. These days differ
in terms of the frequency with which people go to
work, consult services, go for recreation and
shopping, and so on. To correctly initialize the
model, we actually simulate two days, the first of
which serves to establish consistent behavior
patterns for the model actors. After 24 hours,
everyone is properly initialized; the day for which
we report results begins at 6 a.m..

What matters for spatial and temporal urine
generation is where, when, and how much people
urinate. Regarding where people spend their time
during the day, we distinguish between different
groups with different mobility behaviors:
• small children who partly stay at home, partly

attend daycare or kindergarten;
• students who attend school and university;
• full-time and part-time workers;
• people with no reported commercial work

activity, including housewifes and -husbands,
pensioners, and  the unemployed.

For all of the above (except small children), we
differentiate between four different age groups:  15
to 19, 20 to 39, 40 to 65, and over 65 years of age.

People spend time away from their home for the
following purposes:
• going to work and lunch;
• going to school or university and for lunch;
• going shopping;
• using services (e.g., doctor’s office, agency,

restaurants);
• taking recreation trips (cinema, gym, etc.)

Any given person in the model is assigned a daily
agenda describing whether, when, and for what
amount of time she engages in any of the above
activities. This agenda is partly based on the data,
partly based on the probabilities we assign given a
person’s sociodemographic profile, plus some
additional assumptions like shares of normal work
times vs. shift work. At this stage, these
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probabilities and assumptions are largely our best
guesses; we intend to consult auxiliary material
later to refine them.

A person’s daily agenda is planned in three steps.
All points in time that events are scheduled for are
drawn from probability distributions.

1. First, a skeleton of daily trips is planned.
Given the person’s employment status and
weekly work hours, time at work and at lunch
is planned; then, depending on time spent
commuting (given in the data),  the time they
get up is planned; then recreation trips, then
the time of going to bed and getting up the
next day.

2. Depending on getting-up time, the person’s
first urination of the day is planned, then the
other urinations subsequently. Here, we draw
on data reported in Rauch et al. 2002, which
we adjust for age, also allowing for a larger
morning urination at the expense of the other
urinations during the day.

3. Service trips (shopping, visiting doctor’s
office, renewing driver’s license, etc.) are
scheduled independently of the other stays a
person has planned for the day.

Scheduling conflicts between events can occur in
steps 2 and 3. They are resolved when they arise,
through re-scheduling or unscheduling. For
example, a person may want to urinate when no
toilet is around; we assume he puts off urination
until there is one. Another example is when
urination is scheduled for a time that a person is
already in bed at night.  (Recall that going-to-bed
time is scheduled before urination times.) In that
case, the urination event is unscheduled. Finally,
stays at services are set up to conflict with existing
schedules; they receive priority over whatever
other activity the person happens to be engaged in
(work, recreation, etc.).

5. FIRST RESULTS

So far, we have simulated the mobility behavior of
workers, and have not yet included their service
trips except for lunch. All other persons in our
model stay at home all day. As we have designed
workers to be the population group with the most
intricate mobility behavior (they stay at more
locations than the other population groups), having
tackled them makes it easy to model the other
groups. Also, we do not yet have detail on non-
residential buildings; therefore, we assume one
virtual building for work, lunch, and  recreation,
respectively, as well as a virtual space for the
commute (representing trains, train stations, etc.).

Figure 1. Temporal profile of simulated urine
generation in rural model region on a
weekday (litres per quarter hour).
(Analysis based on data from the 1990
population census data provided by the
Swiss Federal Office for Statistics.)

We collect model output in quarter-hour time
steps. Figure 1 shows the temporal profile of urine
generation arising in different types of activities, or
stays: at home, during the commute to work
(workers are assumed to be able to find a toilet on
their commute provided it has a certain duration),
at work, during work-related lunch, and at
recreation. The residential contribution is rather
large as all people except workers stay at home all
day. We observe that given our assumptions about
the distribution of people’s work times and
getting-up times, we replicate the typical morning
urine peak. (Assessing when this peak arrives at
the treatment plant would require including the
time span that urine takes to travel in the sewer
system, which we could estimate based on the
location where it is generated and based on the
layout of the sewer system; information we have
access to for the largest part).

Figure 2 shows the spatial distribution of urine as
it arises in the model region. The region consists of
18 municipalities that form the catchment area of a
treatment plant (which lies at the Southeast of the
area). One can easily make out urine clusters
arising in the different municipalities.

Figure 3 shows individual hectares’ contributions
to total urine generation. We see that 4% of all
hectares contribute 20% of the urine in the model
area. Information such as this can indicate priority
locations for technology implementation. Note that
these figures only illustrate the type of analysis our
model can perform. As long as we assume people
stay at home all day, this information could be
directly computed from the data, without
undertaking simulations. However, as soon as we
acknowledge that people move about, and that
certain parts of a town may house a greater share
of homemakers (who spend more time at home),
simulation with microdata can yield additional
interesting insights.
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Figure 2. Spatial profile of simulated urine
generation in rural model area on a
weekday. Dots represent hectares (100 x
100 m squares); darker shading indicates
a higher urine volume. (Analysis based on
data from the 1990 population census
provided by the Swiss Federal Office for
Statistics.)

Figure 3. Cumulative contribution of hectares to
total urine generation in model area.
(Analysis based on data from the 1990
population census provided by the Swiss
Federal Office for Statistics.)

6. WORK YET TO BE DONE

Clearly, a lot of work remains yet to be done for an
assessment of the cost-effectiveness of technology
implementation strategies. Work to be done for the
snapshot analysis includes extending the
simulation of mobility behavior to all groups of
people. Then, microdata on non-residential
buildings need to be constructed. We already have
microdata on work places and their location, plus
mesodata on non-residential buildings (types of

buildings according to size and use type in
different municipalities). Water consumption from
toilet flushing is already set up for residential
buildings but not reported here. Also, we will
receive estimates for the cost of installing different
elements of the NoMix technology: toilets, tanks,
control devices, and so on, which will have to be
incorporated into the model.

Work to be done for the long-run analysis mainly
consists of constructing credible scenarios of the
development of the housing stock. We have
already run test simulations for future renovations
of existing buildings but need to complete this
analysis by new construction and demolitions.

The most interesting task will be to model
technology diffusion. Here, we could for example
formulate technology implementation strategies of
the public sector exogenously (e.g., having the
public sector install the new technology in certain
public buildings, like hospitals and schools) and
then complement these with diffusion based on the
geographical or social proximity of building and
apartment owners to new technology installations.
(By social proximity, we mean that persons are
exposed to NoMix technology during their daily
activities, for example, at the doctor’s office, at
school, at work, etc.). Also, we could model the
effect of policies that provide incentives for
installing the new technology, including water
pricing, technology subsidies, or leying wastewater
fees on its nitrogen content (a policy that would
raise the issue of monitoring).

7. CONCLUSIONS

The model described herein may sound rather
complicated, especially for those researchers that
work with equation-based models describing the
behavior of system components at some level of
aggregation. To be sure, specifying microbehavior
is a cumbersome task. Yet the microsimulation
approach yields many advantages. It allows the
linking of data from different datasets, as long as
they contain some overlapping information. (For
example, in our case, we can link data from the
population census with data from the work place
census, via the geographical coordinates for
persons and workplaces.)

Microsimulation allows many different questions
to be addressed in one and the same framework.
Any one question may be analyzed with much less
effort using a simpler approach. (For example,
Rauch et al., 2002, use a stochastic analysis where
we use microsimulation, to obtain the temporal the
profile of nitrogen load arriving at the treatment
plant.) However, the strength of a modelling effort
like ours lies in its flexibility. It provides a “virtual
world” in which experiments of all sorts can be
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carried out. It can be expanded to address
questions that were not on the horizon when the
model was conceived and construction began (for
example, simulating the behavior of urine in the
sewer system, provided that information about the
layout of the sewer is added to the model, which in
principle is possible).

A critical issue is model validation. Clearly, we are
pleased if we can replicate generally observable
macropatterns, like the temporal profile of total
urine generation. Typically, though, a given
macropattern can be produced by many different
micropatterns, and often one cannot be sure
whether the assumptions about microbehaviors
that generate the macropattern are correct, even if
statistical analysis is used to identify the
parameters of macro-relationships. This problem
plagues many modelling efforts (esp. economic
models rooted in the neoclassical microeconomic
tradition; see Stoker 1993, and Orcutt et al. 1961).

This issue becomes crucially important when
“structure breaks” are occurring, i.e., changes in
the relationships between the real-world
counterparts of model components. Models that
provide reasonably good prognoses of aggregate
relationships (e.g., macro-econometric business
cycle models) might suffice as long as
micropatterns are stable.  As soon as micropatterns
change (e.g., the determinants of consumers’
purchasing behavior), these models tend to fail.
Microsimulation, if based on careful representation
of microbehaviors, offers at least the chance to
understand, replicate, or even anticipate structure
breaks.  In our context, it lets us explore, in a
consistent fashion, the effects of changing
settlement patterns, household structure, and
mobility behavior.

8. BIBLIOGRAPHY

Brassel, K.-H., Advanced Object-Oriented
Technologies in Modeling and Simulation:
The VSEit Framework, in: Proceedings of
the ESM – European Simulation
Multiconference 2001 in Prague, Czech
Republic, 2001a.

Brassel, K.-H., Flexible Modelling with VSEit, the
Versatile Simulation Environment for the
Internet, Journal of Artificial Societies and
Social Simulation,  4 (3),  2001b.
http://www.soc.surrey.ac.uk/JASSS/4/3/10.
html

Cassandras, C.G., and S. Lafortune, Introduction
to Discrete Event Systems, Kluwer
Academic Publishers, Boston and
Dordrecht, 1999.

Clarke, G.P. (ed.), Microsimulation for Urban and
Regional Policy Analysis, Pion, London,
1996a.

Clarke, G.P., Microsimulation: An Introduction,
in: Clarke (ed.), Microsimulation for Urban
and Regional Policy Analysis, 1-9, 1996b.

Gupta, A., and V. Kapur (eds.), Microsimulation in
Government Policy and Forecasting,
North-Holland, Amsterdam, 2000.

Harding, A. (ed.), Microsimulation and Public
Policy, North-Holland, Amsterdam, 1996.

Harding, A., Dynamic Microsimulation:  Recent
Trends and Future Prospects, in: Gupta and
Kapur (eds.), Microsimulat ion in
Government Policy and Forecasting, 297-
312, 2000.

Larsen, T.A., and W. Gujer, Separate Management
of Anthropogenic Nutrient Solutions
(Human Urine), Water Science &
Technology, 34(3-4), 87-94, 1996.

Larsen, T.A., I. Peters, I., A. Alder, R. Eggen, R.,
M. Maurer, and J. Muncke, Re-engineering
the toilet for sustainable wastewater
management, Environmental Science &
Technology, 35(9), 192A – 197A, 2001.
Harding, A. (ed.), Microsimulation and
Public Policy, North-Holland, Amsterdam,
1996.

Orcutt, G.H., M. Greenberger, J. Korbel, and A.
Rivlin, Microanalysis of Socioeconomic
Systems:  A Simulation Study, Harper &
Row, New York, 1961.

Rauch, W., D. Brockmann, I. Peters, T.A. Larsen,
W. Gujer, A Stochastic Simulation Model
for the Occurrence of Urine, submitted
2002.

Stoker, T.M., Empirical Approaches to the
Problem of Aggregation Over Individuals,
Journal of Economic Literature, 31, 1827-
1874, 1993.

Wegener, M., and K.Spiekermann, The Potential
of Microsimulation for Urban Models, in:
Clarke (ed.), Microsimulation for Urban
and Regional Policy Analysis, 149-163,
1996.

513


	A Microsimulation Model for Assessing Urine Flows in Urban Wastewater Management
	

	Microsoft Word - 14_lotov.doc

