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An Architecture for Modelling Individual Behaviour and
Landscape Scale Outcomes in an Intelligent Agent-Based

Simulation of Environmental Management

L.J. Smitha, R Itamib and I.D.Bishopa

a Department of Geomatics, The University of Melbourne, Parkville VIC 3010 Australia
(lsmith@vicnet.net.au)

b GeoDimensions Pty Ltd, 22 Dunstan Avenue Brunswick VIC 3056 Australia

Abstract:This work describes a software architecture that couples intelligent agent technology with
Geographic Information System (GIS). The agents simulate individual behaviour, while GIS-based
simulation models represent the landscape that is observed and acted upon by the agents.
 Our motivation in developing the software is to assist in understanding and resolving complex, semi-
structured, environmental management problems, where multiple actors participate in decision-making and
management. Like real stakeholders, agents are individuals and have different knowledge and interests. The
agents’ design is based upon the Belief, Desire, and Intention (BDI) theory of intelligent agents and
implemented in Visual Basic. Agents are initialised with a set of goals they want to achieve and a library of
plans that stores knowledge about landscape management actions. Each plan is like a ‘if-then’ rule where the
‘if’ is a set of conditions that need to be matched to agents beliefs for execution and the ’then’ part, which
describes an outcome when the plan is executed. Agents act by looking for plans that match their goals and
their current beliefs. At each time step, for each outstanding goal they examine their plan library and choose
the best plan, if any, which satisfies the goal. Plan choice is influenced by the agent’s current belief state and
values.  Plans can be linked together in a hierarchy providing flexible and responsive reasoning to the agents.
Landscape scale outcomes of the collective agent’s actions are simulated using GIS-based simulation models.
Agents can have goals and plans that relate to the system wide state simulated by the GIS models and can
observe changes in system state.  By comparing these changes with existing conditions agents can determine
if catchment resources are degrading or improving. If there is a degradation in one or more landscape
resources the agent will act to revise its management actions in an attempt to improve its performance and if
the goal is a system wide resource the performance of the catchment as a whole. This process is iterated until
no improvement in system performance is detected. We demonstrate the potential of this decision-making
framework on an abstract landscape.

Keywords: Intelligent Agents, Simulation, Environmental Management, GIS

1. INTRODUCTION

Today more and better environmental information
is available, communities are more informed and
participatory and pressing environmental problems
have become more obvious and urgent. As a result
environmental planning decisions are increasingly
complex and difficult to resolve.

Modelling and simulation are means to support
complex environmental decision-making. They
have long been used to provide evaluative
information for proposed human actions that
change the landscape. A simulation environment
offers the ability to generate, evaluate and compare
alternative hypothesis before implementation and

hence can provide action or outcome-focused
results.

With most environmental planning decisions
multiple stakeholders are involved. These
stakeholders usually have widely divergent
interests, knowledge and values. Incorporating
these values in alternative proposals and their
evaluation is clearly needed for decision-making to
be seen as accountable and participatory. There is a
pressing need for environmental simulation tools
that can illuminate the social and political nature of
environmental planning and decision-making.
Crucial to many environmental planning disciplines
is an ability to incorporate and consider a wide
range of stakeholder knowledge, values and
interests explicitly as part of the planning process.
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Intelligent agents offer a means to represent
stakeholders explicitly in a simulated environment.
Similar to real environmental planning situations it
becomes possible to simulate the complex
interactions between stakeholders and their
environments. Just like real stakeholders these
simulated agents can possess varying values, spatial
domains, knowledge and interests. Together they
can act to generate alternative environmental
management scenarios.

2. AGENT REQUIREMENTS FOR
ENVIRONMENTAL SIMULATION

In order to be useful for complex environmental
management applications our agents need five
attributes: 1) Deliberative reasoning combined with
responsiveness to changes in system state 2) An
ability to use complex spatial and domain specific
knowledge that in many cases is held by a few
stakeholders; 3) An ability to manipulate a GIS and
observe the outputs of implemented environmental
simulation models. 4) A capacity to be different to
other agents in terms of the values, knowledge and
behaviours implemented in the simulation. 5) An
ability to be autonomous in terms of observing and
acting in their environment.

2.1 Deliberative Reasoning and
Responsiveness

Complex environmental management problems
require deliberation and reasoning to determine the
best course of action for a given situation. In a
simulation setting, agent deliberation will take time.
At the same time, the simulated environment in
which the agents exist is dynamic and will change
as other agents act and as the coupled simulation
models execute. Agents need to remain responsive
to these constant system changes for decisions and
behaviour to remain relevant. They need to drop
behaviours that conflict with new changes in the
system and find new actions to deal with arising
circumstances.  They must also check to ensure
their desired goals / system states are being met and
modify behaviour appropriately.

Deliberation and responsiveness then must
balanced for agents to act appropriately in dynamic,
unpredictable systems. Without this balance agents
will either deliberate for so long that their actions
are no longer relevant to the current system state or
simulation performance is unacceptably slow.
Otherwise, if the agent is too reactive, an agent may
implement actions without necessarily finding a
good or the best action to execute.

2.2 Domain and Location Specific Knowledge

Environmental management problems tend to be
domain and location specific. Often the general
information that is available is not suitably detailed
to be useful for specific real-world environmental
management problems. As such many

environmental management problems rely on the
expertise of domain specific experts or local
stakeholders. Our agents need to be able integrate
and leverage the general, expert and local
knowledge that is available to provide useful
results.

2.3 GIS and Environmental Model
Integration

Our agents will be situated within a simulated
environment. They need to be able manipulate and
observe this environment. The environment will be
simulated using standard Geographic Information
Software (ESRI ArcGIS 8.1) and some off-the-
shelf environmental simulation models. These
simulation models will need to use the GIS and a
record of the agents actions as inputs for updating
the GIS and generating simulation outputs. Our
agents then need to be able to observe these results
and incorporate them into their reasoning. ArcGIS
8.1 now provides a COM programmable interface
called ArcObjects as the standard customisation
interface. Agents programmed in a COM compliant
programming language will be able to manipulate
and observe the GIS and other simulation outputs
stored as database tables.

2.4 Variation in Agent Values, Knowledge
and Behaviour

Environmental management problems involve
many stakeholder views, interests and behaviours .
Accurate simulation requires that our agents be
variable in terms of the knowledge, values and
actions they implement. The reasoning behind this
behaviour needs to defensible and communicable as
outputs to the end users of the simulation.

2.5 Encapsulation and Autonomy

The reasoning and behaviours of the agent need to
be encapsulated within the agent as much as
possible to reduce complexity of integration.
Agents also need to be autonomous in terms of
pursuing their own goals and implementing actions.
They need to autonomously observe relevant
system changes and change their behaviours based
upon these observations.

3. RELATED WORK

Agent-based simulations have been applied to
several applications where humans interact with a
natural system, for example recreation behaviour
(Itami et.al. 1997), ancient societies (Dean et.al.
1999). Itami’s et.al.  (1997) RBSim II agents have
many of the same requirements as our agents.
RBSim II agents plan and move along complex
routes. In order to handle the complexity of moving
along these networks the agents use deliberate
reasoning to find the best path and reactive
reasoning to respond to local events and conditions.
Similar to our requirements the RBSIM II agents
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alternate between reactive behaviour and
deliberative reasoning. Limiting the amount of
forward reasoning required finding the next best
step or move reduces complexity.

Our requirements differ somewhat however from
RBSim II. The complexity of simulation, where the
environment is unpredictable and highly dynamic
and the agents can implement many different
behaviours requires a different approach to agent
reasoning and action. It would be unfeasible to plan
all possible alternatives at the beginning of the
simulation and have these alternatives remain
relevant to the changing system. Our agents need a
more fine-grained approach to alternating
deliberation and action.

Itami’s (1997) and Dean’s et.al. (1999) agents use
rules to capture and model complex human
behaviour. By following executing a set of rules
when appropriate, the agents can display complex
behaviours like seeking out food, planting crops,
finding scenic viewpoints, using toilets or finding
cover in weather events. These rule-based
approaches demonstrate a feasible way to capture
and model complex, domain specific knowledge of
recreation, ancient and other human communities.

4. BDI AGENTS

The Belief Desire Intention (BDI) theory of agency
provides a well-documented theoretical framework
for implementing intelligent agents. The BDI
framework was developed in the mid 1980’s by
Georgeff and Lansky (1986), and refined later by
Ingrand et.al. (1992) It has since been implemented
as a several functioning software platforms, current
examples being Jack Intelligent Agents (Busetta
et.al. 1999) and Jam Agents (Huber 1999). It
provides a convenient terminology and structure for
describing intelligent agents. Unlike many other
agent systems the BDI framework has been applied
to many practical applications, making the theory
and terminology clearer and more generic than
other systems.

BDI agents fulfil the requirements needed for our
framework. Firstly the BDI framework provides a
way to interleave deliberation with responsiveness
and limit the amount of forward deliberation
required to act rationally. BDI agents can partially
search and expand planned actions allowing them
to select good alternatives, while avoiding constant
deliberation and its associated time penalty.

BDI agents have also been applied and are suited to
highly dynamic and unpredictable situations. By
only partially expanding alternative plans of actions
they can remain responsive to changes in system
state. The frameworks of Huber (1999) and Busetta
et.al. (1999) also describe ways to recover from
failed actions, to customise reasoning for specific
situations, to handle conflicting actions and goals,

and to modify already executing actions, all of
which are needed in dynamic simulations like
environmental management applications.

The BDI framework also provides a means to use
complex domain-specific behaviour. There are
numerous published examples (see for example
Busetta 1999) that demonstrate complex domain
specific behaviour being captured and modelled in
intelligent agent applications.

The BDI agent has a view of the world – a library
of beliefs, a set of goals or desires and a set of
plans, or actions that the agent can intend to carry
out. In a simulation run the agent is able to act
autonomously. It pursues its goals by intending and
executing plans that are appropriate according to its
current belief set. By giving an agent a set of
precompiled plans it becomes possible to imbue an
agent with a number of roles. The plan library
contained within the agent defines a set of
behaviours appropriate to many different situations.
These predefined plans allow the agent to react
quickly and rationally to situations that arise during
a simulation.

Each agent consists of five main components: a
world model, a goal library, a plan library, an
intention stack and an interpreter (Huber 1998).
The world model is a database containing a
collection of beliefs that represent the agent’s
current view of its world. The plan library contains
a set of defined actions or procedures that achieve
the agent’s goals. The intention stack is a model of
the agent’s current goals and currently executing
plans, tracking the progress and status of goal and
plan execution. The interpreter performs agent
reasoning by searching the plan library for plans
relevant to the currently held goals.

4.1 Interpreter

The agent’s internal interpreter carries out
reasoning. The interpreter operates in a loop.

The reasoning loop switches between execution and
deliberation. At each time-step the agent both
considers the actions to undertake next and also
executes any plans that have been previously added
to the intention stack.

Reasoning happens in four main steps: Starting
with the goal library, at any time there will be a
series of pending, unachieved goals and a set of
beliefs that describe the agent’s state or world view.
These facts and goals trigger plan searching and
selection. The best plan found to be relevant to the
current goal and current beliefs is intended for
execution by adding it to the intention stack.

The execution thread then switches to the intention
stack. Any plans existing in the intention stack are
executed. Plan execution may result in new facts
being added to the agent’s belief database,
primitive actions being carried out on the external
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Figure 1 Interpreter Reasoning Loop

environment or new goals being added to the
agent’s goal stack. Execution within a plan
continues until it reaches a defined end point.

Hierarchical Reasoning

Plans are hierarchical when they post sub goals
during execution and wait while they are achieved.
At the next time step, the interpreter will attempt to
achieve the sub goal by finding and executing a
suitable plan. At two time steps after starting, if the
sub goal has been achieved, the first plan will
continue execution. In this way large, branched
hierarchies of goals and plans can be built. At
higher levels the goals and plans are more abstract
consisting of more sub goals than direct primitive
actions. As execution continues through the
hierarchy more specific actions and goals are
executed.

The alternate deliberation / execution of the plan /

goal hierarchy allows the interpreter to only
partially expand the hierarchy. This limits the
amount of reasoning time required before acting.
The agent can remain responsive to changes in their
beliefs and states, while still remaining committed
to unachieved goals. The partial expansion of the
hierarchy also allows the agent to recover from
failures. If one plan fails to achieve a sub goal then
the interpreter can go back and try other plans that
were appropriate. If at any point changes in beliefs
result in a plan failing or a goal no longer being
relevant the goal can be cancelled or restarted.

4.2 Beliefs

The agent beliefs are held in database. Each belief
consists of a statement and a Yes / No / Unknown
value that represent whether the statement is true
false or unknown. During execution beliefs can be

added, removed or modified through plan
execution.

4.3 Goals

The agent begins the simulation with a set of goals
that it will pursue during the simulation. Goals have
a number of states allowing the agent to track them.
These are: pending, successful, fai led  or i n
progress. These states allow the interpreter to
manage and determine the sequence of execution of
intended plans.

4.4 Plans

Plans are the central component of the agent’s
reasoning system. A plan represents procedural
knowledge - it defines a set of actions the agent will
do, the circumstances under which to use the plan
and the results of executing the plan. Plans are
based on a standard Visual Basic class with the

following properties and methods:

State Property

Plans have a number of states that allow the
intention stack of the agent to track them. A plan
can be idle, executing, failed or successful. At the
end of each cycle of the reasoning loop, by
querying the state of all plans on the intention
structure the agent can add, remove, suspend and
update the goals and plans currently executing.

Goal Handled Property:

Each plan handles a single goal. When an agent is
trying to achieve a goal it searches the plan library
by querying and comparing the goal handled
property of each plan to the search goal.

Figure 2 Interpreter Reasoning Loop
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Relevant Method:

After a plan is found that handles the search goal
the agent queries the relevant method. A plan is
determined to be relevant if the current beliefs of
the agent are not in conflict with any of the
conditions set out in the relevant method. Any
plans that pass the relevant method are added to an
Applicable Plan List (APL).

The APL is a collection of plans that have been
found to be relevant to a goal. From this collection
a single plan is then chosen. Plans will be either
chosen at random or by calculating the utility of
each plan using the context method.

Context Method:

A plan’s context method is used when the utility of
the plan is being used for selection. By comparing
the utility of each of the plans in an applicable plan
list the agent can select the plan and intend the best
plan. Calculation of the utility, like the relevant
method, is based upon the agent’s current beliefs
and values.

4.5 Plan Execution

The plan’s execute method defines what is to occur
once a plan reaches a state of implementation.

From this method any logic can be implemented.
There are four main agent primitives that can be
called from an execute method: Post Goal, Add
Belief, Remove Belief, Update Belief, and
Implement Treatment.

Post Goal

New goals can be posted to the goal stack from
plans. This means plans can trigger further
reasoning and behaviour. The plan can wait for the
goal to be achieved before continuing supporting
hierarchical linking and branching of multiple
plans.

Add Belief, Remove Belief, Update Belief

As a plan executes it becomes necessary to add or
remove beliefs to the agent’s belief set. For
example the agent may remember which plans it
has tried, goals it has satisfied, the time a plan was
completed or other changes as a result of carrying
out actions.

Implement Treatment

Execution of the plan results in the agent
implementing a change on its spatial domain.

5. AGENT BASED SIMULATION

Our agents exist within a simulated landscape.  The
simulated landscape contains data on vegetation,
roads, property boundaries, buildings and slope and
is displayed to the user through a GIS interface.
Agents are situated at discrete locations in the
landscape.

Figure 2 shows a simplified class diagram of the
agent-modelling framework. At the top of the
framework the Simulation Engine object initialises
and runs the simulations. The simulation contains a
collection of agents and a series of objects that
represent the landscape described in the GIS. The
simulation engine initialises the simulation using a
simulation scenario.

Simulation scenarios define the parameters of the
simulation. They consist of the GIS data layers, a
collection of agents and their associated spatial
domains, global environmental events like weather
conditions or fire events and schedule of when they
occur, the length and start date for the simulation as
well as the outputs to record in the simulation.

5.1 The Simulation Engine

The simulation engine executes a simulation
scenario. The engine reads the parameters of a
simulation scenario from the database and
initialises the necessary objects in the Visual Basic
application. At the beginning of a simulation the
GIS data is loaded into memory. The agent
collection is initialised. The agents are allocated
their plan library, their initial goals and beliefs and
their spatial domains (GIS polygons) upon which
they can carry out actions. Global events are
scheduled. If output statistics are requested the
output database is initialised. The graphics
windows are initialised according to the parameters

requested by the user. For example the user may
monitor changes in land cover or other
management actions graphically with changes in
display colours in the GIS.

The simulation is then ready to start. The
simulation engine starts the simulation clock. At

Figure 3 Simplified Class Hierarchy
Showing Main Methods
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each time step each agent in the collection is given
a turn to deliberate and act. When the execution
thread is given to an agent, the agent’s interpreter
searches for any relevant plans and executes any
already intended plans. When the agent interpreter
has finished a complete loop, execution returns to
the simulation engine who then calls the next agent
and so on. After calling all of the agents the
simulation engine then runs any schedule events for
the time step and any process models that are part
of the simulation. Next any outputs defined in the
simulations scenario are written to the output
database. To avoid problems arising out of the
synchronous execution of agents, the collection of
agents is then reordered at random before the next
loop of the simulation engine begins.

5.2 Agent Communication and Cooperation

At present the agents in our model do not
communicate, cooperate or even rationally compete
for resources in the simulation. This is an area for
further work and there are many examples of BDI
agents that do communicate and cooperate in a
multi-agent environment.

6. PROOF OF CONCEPT

We intend to implement a pilot demonstration of
the framework described here as the first step in
implementing a fully functional simulation model
based upon a real environmental management
situation.

The demonstration will consist of three agents each
having a single land polygon to manage. The agents
will be initialised with four goals – two relating to
their land parcel and two relating the system wide
resources of all of the land parcels. Each agent will
also be initialised with the same library of eight
plans. Each plan will result in different outcomes
upon the resources of the individual land and the
system as a whole.

A simple simulation model will model three,
abstract catchment resources. The plans
implemented by the agents will affect the current
state of each resource at any one time.  Two of
goals the agents will be pursuing will relate to the
levels of these resources. Some plans will result in
improvements in these system wide resources and
some will degrade them.

We aim demonstrate that agents will modify their
behaviours over time to improve system
performance. We want the agents to respond to
system changes brought about by other agents as
evidenced in the outputs of a simple surrogate
catchment model, drop any incompatible plans and
find new plans to improve system performance.
The results and a more thorough description of this
prototype will be subject of future work.

7. CONCLUSION

Agent based modelling allows numerous
simulations to be run to investigate alternative
outcomes of combined environmental / social
processes. We can systematically alter the
quantitative parameters of a model or introduce
completely new procedures, behaviours and events
to the simulation. The approach allows for
continual improvement, any knowledge, values,
models and other information can be plugged into
the simulation environment. While the agent
system may never completely mimic real systems it
can provide a means to rationally, cumulatively
make progress on complex environmental
management issues that are difficult to understand
or manage otherwise.

There still remains considerable work in developing
the framework described here. Agent
communication, agent roles, agent cooperation and
competition for resources, spatial dependencies all
need further work. Model validation, transparency
and the how the results will be used by decision
makers are other issues requiring further
exploration. These issues are the subjects of current
research.
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