Jul 1st, 12:00 AM

Best practice guidelines for biodiversity DSS and prioritisation tools: useful or useless?

Neville D. Crossman

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference


https://scholarsarchive.byu.edu/iemssconference/2006/all/446

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Best practice guidelines for biodiversity prioritisation tools: useful or useless?

Dr Neville Crossman
Policy and Economic Research Unit
CSIRO Land and Water
PMB2
Glen Osmond, SA, Australia, 5064
Neville.crossman@csiro.au

Australia has recently moved to a regional, integrated and target-based model of delivery for natural resource management (NRM). There are now 57 NRM regions operating across the country. Each region is required to develop an integrated NRM Plan and associated Investment Strategy as a way of identifying regional NRM priorities and planning for investment in managing and meeting those priorities. Targets are set that involve temporal, quantitative and qualitative goals. Significant planning and decision-making is going into the development of projects and programs for meeting these targets and monitoring and evaluation of progress toward meeting these targets. Decision support systems (DSS) are playing an important role in identifying priorities for on-ground NRM work. This is particularly the case in efforts to plan for biodiversity conservation. Several NRM regional projects are employing DSS and spatial modelling to identify priorities for protecting and managing biodiversity. However, the application of these DSS can be clouded by a limited understanding of their development, their suitability for the application to which they are being applied and their general limitations. Consequently there is a strong need, in response to demand from NRM regional bodies, to develop best practice guidelines that succinctly review and summarise existing DSS and recommend particular DSS for particular applications. The question is whether best practice guidelines will be of any use given the unique application for which many DSS have been developed, the disparate availability and utility of data needed for input into DSS, and the significant heterogeneity of NRM and biodiversity problems in Australia. If there is agreement among workshop participants that best practice guidelines would be useful, then what would they look like?