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Abstract: Despite of promising results in research, advanced control strategies fail to gain trust in 
wastewater treatment practice. Due to the sensitivity of the biological processes to disturbances, operators are 
often unable to find the causes of faults due to the lack of effective real-time on-line monitoring. Strategies 
for on-line monitoring are therefore essential to enhance biological process control. Therefore, a suitable 
multivariate soft-sensor is desired for fault detection and control for a pilot-scale sequencing batch reactor 
(SBR) system to allow effluent quality to be estimated well before off-line analysis is finished. For this 
purpose, several multivariate methods are available, including (linear) partial least squares (PLS), Neural Net 
PLS (NNPLS) and Kernel PLS (KPLS). While non-linear extensions of PLS such as NNPLS require fitting 
of non-linear functions, KPLS does not. KPLS is based on a non-linear transformation of the process data, 
followed by the fitting of a linear PLS model between the transformed inputs and outputs. PLS, NNPLS and 
KPLS were compared regarding their ability to predict effluent quality data and their computational 
requirements. While (linear) PLS and NNPLS lead to acceptable prediction, KPLS results in poor model 
performance. Moreover, the computational requirement of KPLS were large compared to PLS and NNPLS. 
When comparing PLS and NNPLS to each other, it was found that NNPLS leads to the best possible 
prediction given the experimental data set, while the extra computational requirements are minimal. 
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1. INTRODUCTION 
 
SBR technology has received increasing attention 
in the framework of wastewater treatment in the 
past decades. One of the most attractive features of 
such systems is their high degree of operational 
flexibility. Inspired by the increasing amounts of 
data that can be collected, PCA- and PLS-based 
tools have been introduced for data dimension 
reduction and process monitoring since the works 
of Nomikos and MacGregor [1994] and Wold et 
al. [1998]. Applications of PLS to continuous 
activated sludge systems can be found in Teppola 

et al. [1997] and Mujunen et al. [1998] and Lee et 
al. [2005].  

A PLS-based approach to effluent quality 
prediction of batch processes for wastewater 
treatment is presented in this work. Three different 
PLS-based models are evaluated for prediction of 
effluent quality of a pilot-scale SBR for nutrient 
removal. These techniques include (linear) partial 
least squares (PLS), neural net partial least squares 
(NNPLS) and kernel partial least squares (KPLS). 
In section 2, a short description of the used data set 
is given, next to an overview of the applied 
methods. In section 3, results are shown, followed 



 

by section 4 providing the discussion. Section 5 
holds conclusions and suggestions for further 
research. 
 
2. MATERIALS AND METHODS 
 
2.1 Data 
 
The data was derived from a pilot-scale SBR for 
nutrient removal from December 16th, 2003 until 
May 12th, 2005. A technical description of the 
setup and the synthetic influent can be found in 
Insel et al. [2004]. The details of the time-based 
control scheme that was applied are described in 
Sin et al. [2005]. The complete dataset consists of 
1587 observations (batches).  
The data of the on-line sensors were used as 
predictors (inputs). For each batch, this 
corresponds to the (6) trajectories of the volume, 
temperature, dissolved oxygen (DO), pH, oxido-
reduction potential (ORP) and conductivity. Each 
trajectory consists of 300 measurements, taken 
with 1-minute intervals in the first 5 hours of each 
batch. The last hour of each batch was not taken 
into account as changed sensor positions prevent 
straightforward interpretation of the (non-mixed) 
settling phase data. The outputs or responses 
consist of the effluent concentrations of total 
nitrogen (TN), nitrate nitrogen (NO3

-) and total 
phosphorous (TP). 
The data set was split into a model (calibration) 
and test (validation) set, representing respectively 
80% and 20% of the dataset. As the process was 
subjected to significant changes in operation 
during the studied timeframe, the observations 
were randomly assigned to one of the sets. 
 
2.2 Data unfolding and scaling 
 
The process data of a batch process is of 3-
dimensional nature where the 3 axes represent 
batch number, sensor or variable number and the 
batch runtime. For reasons of interpretation 
Gurden et al. (2001) prefer the use of N-PLS 
models over Unfolding PLS (U-PLS). However, 
this preference is constrained to the existence of a 
multi-linear structure in the data, which is not 
evident in our case. Therefore, Unfolded PLS (U-
PLS) was selected and performed as described in 
Nomikos and MacGregor (1995).  
 
2.3 Partial Least Squares 
 
PLS is a tool aimed at a dimension reduction of the 
inputs, denoted X, by extraction of latent variables 
which are maximally correlated with the outputs, 
Y, while maximizing the amount of variance 
captured in the input matrix (X). 

In summary, a PLS model is defined by the 
following set of equations: 
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where X and Y are  the scaled input and output 
matrices and c defines the number of latent 
variables, being the so-called meta-parameter of 
the PLS model. pi and qi represent the loadings of 
the corresponding latent variables in the input and 
output space respectively, while E and F represent 
the residuals in the input and output space 
respectively. Linear regression of vector ui on ti 
results in the following inner relation: 

iiii b htu +=  (3) 
where bi is the regression coefficient obtained by 
minimisation of the residuals hi. In this work, the 
NIPALS (Nonlinear Iterative Partial Least 
Squares) algorithm as presented in Geladi and 
Kowalski [1986] was used.  
 
2.4 Neural Net Partial Least Squares 
 
Where PLS is limited by its ability to extract linear 
relations only, NNPLS is able to extract non-linear 
relationships by fitting a 3-layer (1 hidden layer) 
neural network between the respective input and 
output scores. While equations (1) and (2) remain 
the same, the inner relation is now defined as: 

iii FBNN h)t(u +=  (4) 
where FBNN(.) represents the fitted feed-forward 
back-propagation neural network (FBNN) and hi 
the residuals. As such, NNPLS is a tool for non-
linear modelling when faced with collinear inputs 
[Wold, 1989]. 
 
2.5 Kernel Partial Least Squares 
 
KPLS is another PLS-based method that is suited 
to model non-linear systems. KPLS is based on the 
non-linear kernel transformation of the input data, 
followed by linear PLS modelling. The nonlinear 
mapping consists of computing the kernel matrix: 
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where d represents the kernel width, a meta-
parameter or tuning parameter of the resulting 
regression model, and the vectors xi, xj, represent 
input observations where i and j indicate the 
sample number. The second step in the procedure 
consists of regression of the output variable onto 
the resulted kernel matrix. The PLS model is then 
derived by means of PLS regression of the outputs 
onto the transformed inputs. More details and 



 

justification of the Kernel Partial Least Squares 
can be found in Schölkopf et al. [1999] and 
Rosipal and Trejo [2001]. 
 
3. RESULTS 
 
3.1 Partial Least Squares 

 
Figure 1 shows the results of PLS and NNPLS 
regression of total nitrogen (TN), nitrate (NO3

-) 
and total phosphorous (TP) onto the process data. 
The figure shows the sum of squared prediction 
errors (RRMSE) over the validation data set for 
the first 15 latent variables (LV’s). Based on the 
first graph (TN), a 7-LV model is selected for TN 
prediction. Figure 2 shows the original and 
estimated data for the validation dataset. As can be 
seen, the model is able to capture the overall long-
term trend in the dataset but fails to provide a fully 
reliable estimate of TN values. 
Similar models were made for nitrate (NO3) and 
phosphorous (TP) prediction. 7 LV’s were 
retained based on the second graph (NO3) in 
Figure 1. Figure 2 shows the original and 
predicted data in the validation dataset. The model 
could capture trends well in the model data set (not 
shown) but is seen to fail quite often in the 
validation dataset.  
On the basis of the third graph in Figure 1 an 8-LV 
model was selected for TP. Original and predicted 
data in the validation data set are shown in Figure 
3. The model is captures major trends in the data 
but the obtained prediction may not be satisfying. 

 

 
Figure 1. PLS and NNPLS prediction of TN, NO3

- 
and TP. RRMSE as function of number of LV’s. 

 
3.2 Neural Net Partial Least Squares 
 

Figure 1 shows the results for NNPLS modelling 
of TN. The optimal number of LV’s is found to be 
4 LV’s. NNPLS thus captures the process 
behaviour in a lesser number of LV’s. The relative 
RRMSE (relative root mean square error) for the 
4-LV NNPLS model is however slightly higher 
(0.92) than the relative RRMSE for the 7-LV PLS 
model (0.89). In concordance with the latter, no 
improvement is seen in the prediction results 
(Figure 5).  
 

 
Figure 2. PLS prediction of TN. Original (y) and 

predicted (y*) data in the validation data set. 
 

 
Figure 3. PLS prediction of NO3

-. Original (y) and 
predicted (y*) data in the validation data set. 

 

 
Figure 4. PLS prediction of P. Original (y) and 

predicted (y*) data in the validation data set. 
 



 

For NO3
- prediction, an 11-LV model was selected 

on the basis of the results shown in Figure 1. The 
resulting RRMSE value (0.64) is considerably 
lower compared to the RRMSE for the PLS model 
(1.04). This improvement is also reflected in 
Figure 6 when compared with Figure 3.  
 

 
Figure 5. NNPLS prediction of TN. Original (y) 
and predicted (y*) data in the validation data set. 

 

 
Figure 6. NNPLS prediction of NO3

-. Original (y) 
and predicted (y*) data in the validation data set. 

 

 
Figure 7. NNPLS prediction of P. Original (y) and 

predicted (y*) data in the validation data set. 
 

Figure 7 presents the results regarding NNPLS 
regression of phosphorous (TP). The 8-LV model 
was selected. The RRMSE value (0.73) is lower 
than the RRMSE of the PLS model (0.80). In 

contrast to this reduction, improvement is harder to 
see when comparing NNPLS predictions (Figure 
7) with PLS predictions (Figure 4). 

 
3.3 Kernel Partial Least Squares 
 
The RRMSE values for KPLS-based TN 
prediction are shown in Figure 8 as a function of 
the number of LV’s, LV, and the kernel width, d. 
The minimum RRMSE (0.72) was found for 5 
LV’s and a kernel width of 196. Even though a 
lower RRMSE was obtained when comparing to 
the NNPLS model (0.92), the prediction results 
shown in Figure 9 hardly support the use of the 
KPLS model since the model is not able to track 
any but very slow dynamics.  
Figure 10 shows the results for KPLS regression 
of NO3

-. The best model (RRMSE = 0.84) is found 
for 2 LV’s and a kernel width of 1510. The 
obtained RRMSE value is however higher than the 
RRMSE value for the NNPLS model (0.64). When 
the prediction results (Figure 11) are compared to 
the prediction of the NNPLS model, KPLS 
delivers a poor predictor, especially when 
considering the observed dynamics. 

 
Figure 8. KPLS prediction of TN. RRMSE as a 
function of the number of LV’s and the kernel 

width. 

 
Figure 9. KPLS prediction of TN. Original (y) and 

predicted (y*) data in the validation data set. 



 

 
Figure 10. KPLS prediction of NO3

-. RRMSE as a 
function of the number of LV’s. 

 
Figure 11. KPLS prediction of NO3

-. Original (y) 
and predicted (y*) data in the validation data set. 

 
Figure 12. KPLS prediction of TP. RRMSE as a 

function of the number of LV’s. 
 
RRMSE values for the KPLS regression of TP are 
shown in Figure 11. The kernel width, d, was 
increased up to 10000, but no minimum was found 
within the evaluated range. At the border of this 
range, the 16 LV’s and a kernel width of 10000 
deliver the minimal RRMSE. Despite the lower 
RRMSE (0.71), when compared to the PLS (0.80) 
and NNPLS (0.73) model, the slight improvement 
seen in Figure 12 is questionable as KPLS needs 
twice as many LV’s compared to the NNPLS 
model.  

 
Figure 13. KPLS prediction of TP. Original (y) 
and predicted (y*) data in the validation data set. 

 
4. DISCUSSION 
 
Table 1 presents a (subjective) quality mark based 
on the discussed results, the minimal RRMSE 
values and the corresponding number of LV’s 
found for each model type and response variable. 
With respect to NO3

- and TP prediction, the 
NNPLS method delivered better results compared 
to PLS.  For TN, the NNPLS model delivers the 
worst prediction, but in fact all models for TN are 
performing poorly. Despite the improved RRMSE 
values for TN and TP, the KPLS models are put in 
doubt due to their low short-term predictive 
power. Next to this, KPLS models come with large 
computational efforts, which questions their use in 
systems for on-line control. In our case, KPLS 
modelling typically demanded 10 to 20 times more 
time compared to the other models. Extra 
computational demands due to NNPLS modelling 
were negligible. As such, NNPLS is preferred.  
 

Table 1.  Summary of RRMSE values and 
selected number of LV’s for all evaluated models 

 output PLS NNPL
S 

KPL
S 

TN - - - 
NO3 - ++ - quality 
TP + + + 
TN 0.89 0.92 0.72 

NO3 1.04 0.64 0.84 RRMSE 
TP 0.80 0.73 0.71 
TN 7 4 5 

NO3 7 11 2 LV’s 
TP 8 8 16 

 
More importantly, improvement of the resulting 
models may be obtained when accounting for the 
following hypotheses: 
- The on-line data do not capture the TN-related 

processes completely, i.e. the process is not 
observable given the on-line process data. 



 

- The observations were treated as independent 
observations. Ignoring auto-correlation in the 
data may induce a serious deterioration of the 
model quality. 

- The dataset represents batches within a period 
longer than 14 months, exhibiting 
considerable changes in operation. A well-
performing model generalising over the whole 
dataset may not be feasible. 

Model prediction performance may be 
considerably improved if models are made locally 
in time. While they may counter the problem of 
autocorrelation, such an approach may also 
circumvent problematic modelling due to changing 
system behaviour. Next to that, accounting for 
possible autocorrelation in the data set, e.g. by 
means of ARX structuring, may result in 
considerable model improvement. This, however, 
will likely result in a considerable increase of 
computational requirements.  
 
5. CONCLUSIONS 
 
In this work, PLS, NNPLS and KPLS models were 
constructed for prediction of effluent quality 
variables (TN, NO3

- and TP) on the basis of on-
line process data (V, T, conductivity, DO, ORP 
and pH). It was shown that the NNPLS models 
deliver best results compared to the PLS models in 
the case of nitrate and total phosphorous. Less 
trust exists with the KPLS models. Despite these 
conclusions, it is suggested that improvement may 
be obtained when models are made locally in time 
and/or when potential autocorrelation is accounted 
for. 
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