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Abstract: A significant challenge of an uncertainty assessment is the presentation of the results, since a
quantitative uncertainty analysis dramatically increases the already considerable amount of data that needs to
be communicated in an LCA study. This paper investigates three graphical options to interpret output
samples from quantitative uncertainty analyses. The output samples are from case studies within the coal-
fired power generation sector, and include an assessment of empirical uncertainty from a stochastic
uncertainty assessment and an assessment of uncertainty in decision variables from a parametric sensitivity
analysis. Two commonly used representations of probabilistic samples are demonstrated, namely “box and
whisker” plots and plots of the cumulative probability density function, as well as the multivariate geometric
technique, principal component analysis (PCA). Cumulative probability plots are useful representations of
uncertainty where a quantitative estimate of the relative uncertainty between options is required, but they
become extremely tedious (many pair-wise combinations) and difficult to interpret when a large number of
options are compared over many criteria. In such cases, PCA can be used to provide a valuable overview of
the results, where it is able to clearly present any trade-offs that have to be made between selection criteria,
and the “spread” of the options under consideration over the decision space. Box and whisker plots are good
at representing the relative importance of empirical parameter uncertainty and the uncertainty arising from
the choice of decision variables, and show the degree of shifting between the options as well as the full range
over which the options potentially act. The three representations of uncertainty are found to complement each
other, as each enhances different aspects of the results. The most appropriate graphical presentation method
is found to depend on the particular decision context and the particular stage of the analysis.

Keywords: Stochastic results; Uncertain LCA results; Principal Component Analysis; Presentation

1. INTRODUCTION

A quantitative analysis of the uncertainty is
becoming an increasingly accepted component of
a life cycle assessment (LCA) study. The use of
stochastic models and the presentation of results
in ranges or as confidence intervals have been
shown by a number of authors to enhance the
decision support capabilities of an LCA study
(e.g. Meier [1997]; Maurice et al. [2000]).
Nonetheless, considerable challenges remain with
regard to incorporating quantitative uncertainty
analyses into life cycle assessment [Notten,
2002], notably with characterising the uncertainty
of the input parameters, modelling correlated
inputs, and analysing the considerable volume of
data resulting from the analysis. This paper
focuses only on the latter aspect of the uncertainty
analysis.

Presenting and analysing the large data sets
resulting from an LCA study is already a
demanding process. These demands increase
considerably when the results are extended to
include a consideration of uncertainty, with each
data point replaced by an output sample, as well
as an increase in the number of scenarios
requiring consideration. This paper therefore
looks at ways of analysing and communicating
uncertain results, including a novel technique
using principal component analysis (PCA). The
paper demonstrates the use of the methods with
respect to a case study looking at technology
options in coal-fired power generation, and draws
conclusions as to the relative strengths of the
different methods.



2. GRAPHICAL REPRESENTATIONS OF
UNCERTAINTY

 2. 1 Commonly used statistical methods

Uncertain data are often defined using common
statistical measures, such as the variance,
confidence intervals etc. Whilst such statistics are
efficient at summarising the uncertainty of the
data sample, graphical methods are typically the
most effective in communicating insights into
uncertain data sets. Three basic ways of
presenting probabilistic results are:

• The probability density function (PDF),
• The integral of the PDF, the cumulative

density function (CDF), and
• Displaying selected fractiles, as in box and

whisker plots.

Examples of these commonly used graphical
representations of uncertainty can be found in the
following case study section. Each of the
representations  emphasise different aspects of the
probability distribution of the output sample.
PDFs give the relative probabilities of the
different values and show the shape of the
distribution. Box and whisker plots emphasise
confidence intervals and means, and are thus a
simple way to represent uncertain results when
the range and not the distribution shape is
primarily of interest.

The CDF also provides little information on the
shape of the distribution, but is the best option if
information on the fractiles of the distribution is
required (i.e. the probability that the actual value
of the variable is less than a particular value). The
CDF is often preferred to the PDF when
presenting stochastic output samples, because it
looks a lot less noisy with the equivalent sample
size. Comparative studies often share a number of
sub-processes for which identical data have been
used, with the resultant correlation between the
output samples removed by basing the analysis on
the normalised difference between the output
samples [Coulon et al., 1997; Meier, 1997]. This
has the added benefit of producing an easy to
interpret CDF plot, in that the y-intercept of a
CDF plot of the difference between two options
shows the degree of confidence that can be held
that the one option always performs better than
the other.

A significant draw-back of CDF plots is that they
are limited in the number of dimensions they can
display. Conclusions have to be drawn across a
large number of single plots if many options are
to be assessed across many different
environmental indicators. It is therefore difficult
to get an overview of the results. A potential

solution is to use the multivariate data analysis
technique principal component analysis (PCA),
which is able to reduce the dimensionality of the
data set by producing a planar view of the data.
The use of PCA for the presentation and analysis
of LCA results has been demonstrated by Le Teno
[1999], and its use explored in a number of
complex case study situations in Notten [2002].
The following section discusses the main features
of PCA with respect to its use in LCA.

2. 2 Principal component analysis

The goal of PCA is to represent the variation
present in many variables in a small number of
factors (or principal components), which are
found via a mathematical manipulation of the data
matrix. A new space in which to view the data is
constructed by redefining the axes using these
factors, instead of the original variables. The new
axes allow the analyst to view the true
multivariate nature of the data in a relatively
small number of dimensions, allowing the
identification of structures in the data that were
previously obscured. The principal components
are the eigenvalues of a correlation or covariance
matrix of the input data, whilst the co-ordinates of
the transformed variables on the principal
component plane are given by the eigenvectors.
The theory of principal component analysis can
be found in most multivariate data analysis
textbooks, e.g. Murtagh and Heck [1987].

The results of a PCA are best analysed
graphically (see Figure 1). Stochastic output
samples plot as clouds of points, which can be
interpreted as “zones of confidence” [Le Téno,
1999] (see Figure 1). In this figure it is the
structures or patterns in the data that are of
interest, where the distances between the clouds
of points determine similarities (or differences)
between the options, and the overlap between the
clouds visually identifies the significance of the
rankings between the options. The axes do not
have any physical meaning, and are merely
measures of proximity that are interpreted as
similarity. It is thus only the relative distance
between the clouds of points, and their size and
degree of overlap that are of note.

To interpret the principal component plot it is
necessary to look at the factor-variable
correlations given by the eigenvectors. These
provide a measure of each variable’s contribution
to the principal components, and indicate which
variables are best at discriminating between the
options under investigation. In Figure 1, the
eigenvectors are represented by the lines
emanating from the origin, and their length and
orientation indicate which variables have the



greatest influence in “pulling” the data apart to
create the spatial arrangement of the clouds of
points. The eigenvectors also provide insights into
the data structure. Highly correlated variables plot
close together, thereby pointing to redundant
selection criteria, whilst the relative lengths of the
lines provide a measure of the relative ability of
the variables to discriminate between the options
(e.g. impact categories showing no significant
differences between the options plot with short
lines). Thus an analysis of the eigenvectors
identifies the minimum set of impact categories
useful for distinguishing between the options.

PCA is based on correlations between the data
points, and thus finds where the greatest
variations are occurring between the options, not
where the largest absolute changes in indicator
scores occur. It therefore does not provide
information on the relative importance of the
potential impacts. This also means that there is no
need to correct for the problem of common data
elements by basing the analysis on a difference
between samples. However, it may be necessary
to normalise the data so that the analysis is not
skewed by variables operating on very different
scales.

The following section demonstrates these features
of PCA in a case study, and shows how it
complements an analysis using other common
representations of uncertain output samples.

3. CASE STUDY

The following case study is an excerpt from a
larger study looking at technology options to
refurbish coal-fired power plants in South Africa
[Notten, 2002]. In particular, possibilities to
utilise discard coal, a waste product from coal
beneficiation, are investigated. An average year’s
performance is chosen as the functional basis for
comparison, because of the need to capture those
environmental interventions (notably those from
solid waste dumps), that only become evident
after the plant has been operating for a number of
years. The study includes all major processes in
the coal-electricity supply chain (mining, coal
preparation, coal combustion, flue gas cleaning
and solid waste disposal), as well as the
production and transport of major ancillary
materials (liquid fuels, treatment chemicals etc.).

A rigorous assessment of uncertainty is
undertaken in the study, including a parametric
sensitivity analysis that systematically
investigates model parameter uncertainty (i.e. the
choice of operating conditions for the technology
options), as well as a probabilistic assessment of
empirical uncertainty. An iterative method based

on successively refining the distributions of the
most influential input parameters is followed,
where the probability distributions take into
account the certainty and completeness of the data
source used to define the parameter, as well as an
assessment of the adequacy of the data source in
the particular context of the case study. Full
details of the uncertainty assessment framework
developed in the study can be found in Notten
[2002].

The primary aim of this paper is to demonstrate
methods for the presentation and analysis of
uncertain results. Thus, in order to clearly present
the extensive results of this case study in a
suitable format (i.e. small, black and white
graphics), it has been necessary to reduce the
number of options considered, as well as to
reduce the scatter of the uncertainty samples
(although conclusions are still based on the full
results). The results presented here are therefore
generated from a random re-sampling of the
interquartile range of the output distributions.
Also, the results are normalised with respect to  a
"base case" option (the technology currently in
operation), and presented on a relative scale on
which the "base case" is assigned a score of 100
for each impact category considered (i.e. a score
of less than 100 represents an improvement
relative to the currently employed technology,
whilst a score greater than 100 represents a higher
contribution to that particular impact potential).

Figure 1 presents the results of a principal
component analysis on the uncertainty samples of
the option sets summarised in Table 1. The
principal component "loadings" (the eigenvectors)
and the principal component "scores" (the
transformed data points) are calculated using
standard statistical algorithms (available in most
statistical software packages, see Notten [2002]
for a summary of the underlying calculations).

Table 1. Primary decision variables causing the
observed differences between the options (four
plant configurations with fluidised bed
combustion (FBC), and one with pulverised fuel
(PF) combustion).

Option PF FBC A FBC B FBC C FBC D
Boiler PF FBC FBC FBC FBC
Cooling wet wet wet dry wet
Fuel coal discard discard discard blend
Sorbent - lime dolomite lime dolomite
SO2
removal - 90% 40% 90% 40%



Figure 1. Normalised output samples transformed onto the 1st and 2nd principal component plane (points),
with the eigenvectors or principal component “loadings” superimposed (labelled dashed lines).

In Figure 1 the output samples are shown
transformed onto the principal component plane
(i.e. placed in the new multivariate space defined
by the principal components instead of the original
variables), together with the relative contributions
of each variable to the 1st and 2nd principal
components (the lines emanating from the origin).
If the lines are thought of as arrows, sample values
plotting strongly in the direction of the arrow
indicate a poor performance against that criterion,
and the reverse for options plotting away from the
direction of the arrow (for all indicators
considered, a lower contribution means  better
performance). The relative length of the line
indicates the strength of the observed difference
between the options.  For example, Figure 1 shows
there is a certain and substantially higher
contribution to fossil fuel extraction by the
pulverised fuel (PF) option than the options with
fluidised bed combustion (FBC). Whilst among the
FBC options, there is a less certain and smaller
observed difference between option D and the
other FBC options (indicating its slightly higher
contribution to fossil fuel extraction).

PCA captures the major sources of variability
between the options, and shows which impact
indicators are responsible for the observed
variations. Although PCA efficiently summarises

all sources of variability, Figure 1 only shows the
first two principal components. Thus when
interpreting Figure 1 it is important to bear in mind
the sources of variance not captured by the first
two principal components. From Table 2 it can be
seen that the first two principal components,
accounting for 63% of the variability, capture the
large differences exhibited between the PF option
and the three FBC options, and the greatest sources
of variability between the FBC options
(contributions to summer smog and ecotoxicity).

Table 2. Percentage contributions of the first four
principal components to the overall variance, and
the percentage contributions from the variables to
these four principal components.

PC 1 PC 2 PC 3 PC 4
% contribution to
overall variance 35 28 19 7.5

Carcinogenic effects 10 2.1 2.9 85
Summer smog 1.2 31 1.2 0.7
Winter smog 13 5.6 20 3.0
Climate change 7.5 11 15 0.1
Ecotoxic emissions 11 21 1.1 0.1
Acidification and
eutrophication 0.6 11 35 0.1
Impacted land footprint 21 7.0 4.5 5.6
Fossil fuel extraction 20 10 1.5 4.9
Water use 15 1.6 19 0.6



The difference in SO2 removal efficiency between
the options causes a different ranking between the
FBC options to that found by the 1st principal
component. This is responsible for the relatively
high contribution to the overall variance by the 3rd

principal component, whilst the contribution by the
4th principal component is a result of the very high
uncertainty in predicting carcinogenic emissions
(i.e. variability within rather than between the
output samples).

A fairly extensive overlap between the output
distributions is evident in Figure 2. Thus a
different representation is required to determine
the degree of confidence that can be held in the
observed differences. For example, before
selecting option A, a decision maker may wish to
know how certain he/she can be that option A does
indeed have a lower contribution to winter smog
than option C. A CDF plot of the difference
between their output samples provides this (see
Figure 3), where the y-intercept gives the degree of
confidence that can be held in the observed
difference (shown by the arrow in Figure 3). In
this case, there is a high degree of confidence in
the relative performance of the options, with 94%
of the sample predicting option C to have a higher
contribution to winter smog than option A (i.e.
their difference is less than zero for only 6% of the
sample values). The precise representation of

uncertainty in Figure 3 is extremely useful, but
since it requires a pairwise comparison of a single
indicator at a time, it was first necessary to narrow
the option set under consideration.

Figure 2. Contributions of the four fluidised bed
combustion options to winter smog, relative to a
“base case” option with a contribution of 100.

Figure 3. Cumulative probability function (CDF) of the difference between options A and C, and the
probability density functions of these two options. The y-intercept of the CDF (shown by the arrow) gives the
degree of confidence that option C performs better than option A.



4. CONCLUSIONS

Principal component analysis provides a valuable
overview of LCA results, capable of highlighting
where the most significant differences between
options are occurring, and the impact categories
responsible for the differences. This is extremely
useful when a large number of scenarios need to be
considered, giving a quick indication of the
significance of the scenarios with respect to each
other. PCA is thus most useful in a strategic type
assessment, where a large number of decision
variables are likely to require assessment as part of
the uncertainty analysis. Even in studies
considering a smaller option set, PCA still
provides valuable assistance by making explicit
the tradeoffs between the impact potentials.
Furthermore, PCA provides useful information on
the underlying structure of the result sample,
particularly with respect to the strength and
independence of the criteria chosen to evaluate the
systems. However, PCA is best used in
combination with other graphical representations
of probabilistic samples. The three methods
explored in the case study (PCA, box and whisker
plots and cumulative probability plots) are found
to complement each other, as each is able to
enhance different aspects of the result sample.

The principal component representation allows a
visualization of the trade-offs that have to be made
between impacts, and the spread of the options
over the operating space. Box and whisker plots
are good at representing the relative importance of
decision variable and empirical parameter
uncertainty, whilst CDF plots are useful when a
quantitative estimate of the relative uncertainty
between options is required (i.e. the degree of
confidence in the observed difference between the
options). Whilst giving the most precise
information, CDFs become extremely tedious and
difficult to interpret when a large number of
options are involved (many pair-wise
combinations). In this case, PCA is invaluable, as
it enables the full data set to be displayed on a
single plot (provided a sufficiently high percentage
of the overall variance is displayed by the first two
principal components). Box and whisker plots
provide a level of information between these two
methods. The three representations of uncertainty
are therefore most useful when used successively
to narrow the option set.
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