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Abstract: Atmospheric aerosol particle formation is frequently observed in various environments. Yet, despite
numerous studies, processes behind these so called nucleation events remain unclear. In this work we describe
the use of data mining techniques to detect factors influencing particle formation. These techniques are applied
to a dataset of eight years of 80 variables collected at the boreal forest station (SMEAR II) in Southern Finland,
including air pollutant, weather, gas and particle measurements. In a previous study classification methods have
been used together with feature selection in order to understand what causes nucleation. Each day was classi-
fied as an event day, when a nucleation event occurs, or as a nonevent day, and looking at which features were
selected gives us information on which factors are important for the aerosol formation process. This way it was
possible to identify two key variables, relative humidity and preexisting aerosol particle surface (condensation
sink), capable of explaining 88% of the nucleation events. Using these two variables a nucleation probability
function could be derived. In this paper this nucleation probability function has been tested on data collected
from other sites, V̈arriö in Northern Lapland and Aspvreten in Sweden. We show that in the extreme conditions
in Värriö the nucleation parameter does not work, whereas in Aspvreten the two key variables can be used to
identify nucleation events, though the nucleation parameter has to be adjusted slightly. The two key variables
are related to mechanisms that prevent nucleation. One reason for the domination of preventive mechanisms
could be the existence of more than one mechanism causing nucleation. Another intriguing phenomenon, pos-
sibly related to this, is the temporal variation of nucleation events. We have investigated temporal phenomena
in nucleation by using classification methods in a sliding window.We discuss some aspects of this approach
and present some results obtained.

Keywords: atmospheric aerosols; particle formation; data mining; classification

1 INTRODUCTION

Understanding atmospheric aerosol particle forma-
tion is an important issue in understanding the con-
tribution of aerosols to climate change. Aerosol par-
ticle formation bursts, also called nucleation events,
are frequently observed in various environments
[Kulmala et al., 2004]; yet the driving mechanisms
behind nucleation events are in many cases poorly

understood [Hellmuth, 2005]. The physical and
chemical complexity of the atmosphere makes it
difficult to focus on the most relevant processes
causing nucleation. This is where data mining tech-
niques come to aid.

Previous studies have demonstrated that low atmo-
spheric water content, low preexisting particle con-
centration and high solar radiation imply favorable



conditions for nucleation events [Boy and Kulmala,
2002]. Also the physical mechanisms, meteorolog-
ical conditions [Nilsson et al., 2001] and chemi-
cal compounds related to particle formation [We-
ber et al., 1995; Korhonen et al., 1999; Birmili and
Wiedensohler, 2000; O’Dowd et al., 2002; Bonn
and Moortgat, 2003; Kulmala et al., 2004] have
been studied.

Data mining techniques have been used by Hyvönen
et al. [2005] to study atmospheric aerosol formation.
Here we review some of those results, test them on
data collected from other sites, and extend those re-
sults by applying classification methods in a sliding
window to gain insight on temporal phenomena in
nucleation.

2 DATA

Measurements used in this study where performed
during the years 1996–2003 at the SMEAR II
station, which is located in Hyytiälä, (61◦51’N,
24◦17’E, 180 m a.s.l.). Rannik [1998] describes the
micrometeorology of the site. Measured variables
include meteorological data: temperature, pressure,
wind speed, wind direction, humidity and radiation
(UV-A, UV-B, PAR, global, net, reflected global
and reflected PAR); gas concentrations of NO, NOx,
SO2, O3, H2O, CO and CO2; and flux measure-
ments of sensible heat, latent heat, momentum,
CO2, H2O and O3. More details on the data and
measurements can be found in [Hyvönen et al.,
2005; Vesala et al., 1998]. The continuous measure-
ments of these variables have been averaged over
30 minute intervals. The meteorological and gas
concentration measurements where performed at six
different heights. Some of these variables corre-
late strongly. For this reason, we have removed a
number of variables. These include latent heat flux,
which correlates with water vapour flux; all radi-
ations but one, as these correlate with each other.
Note that it is impossible to remove all correla-
tions due to the nature of atmospheric data; once
the strong correlations are removed, one still must
take care in interpreting the results.

In addition to this measurement data we include the
condensation sink as one of our variables. The con-
densation sink is roughly related to the surface area
of particles present in the air. For details on the def-
inition and significance of the condensation sink see
[Hyvönen et al., 2005; Pirjola and Kulmala, 1998].

The data set we analyzed consists of eight years of
measurements averaged over 30 minute time inter-

vals, with a large number of missing data. This
data set is preprocessed as follows. First we cal-
culate for each day the mean and standard deviation
of each variable during daylight hours. This time
window was chosen because in boreal regions such
as Hyytïalä (situated 61 degrees North) the length
of the day depends strongly on the time of the year.
Next all variables with more than 800 days of miss-
ing values were excluded from the data set; after
this we exclude any day with any missing variable.
Missing data is mostly due to equipment failure or
maintenance during which measurements are miss-
ing for several days or even weeks. These are not
completely random, as maintenance breaks tend to
occur when nucleation events are known to be rare.
We do not use all different height measurements, but
an average over all heights. Finally, the data is nor-
malized to have zero mean and unit variance. This
is done to make sure that all variables are treated
equally; otherwise, variables with large numerical
values would appear to be more important when
days are compared.

To distinguish between days with new particle for-
mation and days with no particle formation we used
a database created by Dal Maso et al. [2005]. Days
displaying a growing new mode in the nucleation
size range prevailing over several hours are clas-
sified as event days. Days which are clear of all
traces of particle formation are classified as non-
event days. Days which can not unambiguously
be classified as either event or non-event days are
termed ’undefined’ days, and removed from the data
pool used in this study.

3 CLASSIFICATION METHODS

In studying the causes behind nucleation events one
can consider the task as a classification problem:
using the atmospheric data set we wish to classify
each day as an event day or a non-event day. In
fact, we are not only interested in finding a reason-
able classifier, but finding out which variables are
significant in separating event days from non-event
days. The application of a wide range of classifi-
cation methods applied to this data set has been re-
ported by Hyv̈onen et al. [2005]; we mention here
two of them, used later in this paper as well. For
details, see e.g. [Hand et al., 2001; Hastie et al.,
2001].

Linear discriminant analysis (LDA) aims to find a
set of linear combinations of the original variables
that best separates the classes. Such linear combi-
nations are called linear discriminants. In a two-



class case only one linear discriminant is sought af-
ter. This gives the direction which separates the two
classes best; it is thus the normal to the plane sepa-
rating the classes.

Linear regression in turn predicts the outputy via a
linear modely = β0+

∑n
j=1 βjxj , where(xj)n

j=1 is
ourn−dimensional input data. This is usually used
to predict quantitative outputs, but it can be used for
classification tasks too. In the classification case we
definey to be one for event days and zero for non-
event days, and fit the regression model accordingly.
Our input data consists of the measurement vectors
for each day. Linear regression is computationally
fast compared to e.g. LDA; which makes it attrac-
tive when a large number of classification tasks is to
be performed.

Because of the correlations still present in the data,
neither of these methods can be reliably used to esti-
mate the significance of different variables in classi-
fication. But we are interested in particular in find-
ing out which variables are significant in separat-
ing event days from non-event days. This can be
done using foward stepwise selection of variables.
In this approach we start with the variable which
gives the best classification performance alone, and
on each step we add the variable which results in
the best classification performance together with the
variable(s) already selected.

We have used cross-validation to estimate the per-
formance of the classification methods used.

4 NUCLEATION PARAMETER

The main result obtained by Hyvönen et al. [2005]
using a wide range of classification methods is that
the most important variables in explaining nucle-
ation events are the means of relative humidity (RH)
and the logarithm of the condensation sink (CS).
The data in terms of these two variables is presented
in Figure 1a. This finding was supported by a num-
ber of different approaches. Different classification
methods perform slightly differently, but these two
key variables remain unchanged, while including
further parameters does not improve the results no-
tably. Linear discriminant analysis has the best per-
formance. Using LDA together with the two key
variables results in a 12% classification error. When
the data is projected onto the first linear discrimi-
nant, points at one end of the line are mainly event,
whereas points at the opposite end are mainly non-
events. From this projected data it is possible to
compute the probability of having an event day at
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Figure 1: Event days (grey) and nonevent days
(black) in the RH,log10CS-plane in (a) Hyytïalä
[Hyvönen et al., 2005], (b) Aspvreten and (c)
Värriö.



each point. This was done in [Hyvönen et al., 2005],
where the following nucleation parameter describ-
ing the probability of nucleation was derived:

Pnucl =
1

1 + exp(β1 log(CS) + β2(RH))
,

whereβ1 = 1.7 andβ2 = 0.13. This nucleation
parameter was derived using data from the Hyytiälä
measuring station, so therefore it is certainly biased
towards the conditions there. We have also tested
it on data from other sites. The SMEAR I measur-
ing station is situated in V̈arriö, in Eastern Lapland,
way above the arctic circle (67◦45’N, 29◦37’E, 375
m a.s.l.). Stockholm University has a measuring sta-
tion in Aspvreten, situated about 80 km southwest
of Stockholm and 2km west of the Baltic coast (58◦

48’N, 17◦23’E, 20 m a.s.l.). Comparing Figures
1a–1c it is evident, that both of the more southern
locations events and nonevents are nicely separated
in the RH,log10CS-plane, whereas in the northern-
most V̈arriö, where are very different from those in
Hyytiälä, this clearly is not the case, so the nucle-
ation parameter will not work there.

The nucleation parameter together with the propor-
tions of events along the first linear discriminant in
all three sites is given in Figure 2. We notice, that
the Aspvreten data agrees with the nucleation pa-
rameter in shape, but there is a shift towards the
right, so the nucleation parameter should be ad-
justed by a constant. This may indicate a latitudi-
nal dependency that should be incorporated in the
nucleation parameter.
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Figure 2: Nucleation parameter and proportion of
events along the first linear discriminant. Black for
Hyytiälä, grey for Aspvreten and white for Värriö.

5 TEMPORAL VARIATION IN NUCLEATION

Doing classification together with feature selec-
tion on the whole data set has given us the two
variables, relative humidity and the condensation
sink, capable of explaining 88% of the nucleation
events. However, seasonal variation of all variables
is strong, and nucleation also has a strong seasonal
behaviour (see Figure 3). Hence, it is natural to ask
whether explaining the events would be easier if we
only wanted to do it in one season. Instead of fixing
the definition of the seasons we approach this ques-
tion by doing classification together with feature se-
lection in a sliding window to see how the variables
selected for classification vary seasonally. After a
preliminary round involving a larger set of 20 vari-
ables we have picked only the five variables fre-
quently selected by the classification methods. The
results are presented for these variables only.
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Figure 3: Proportion of events and errors in a sliding
window of width 60 days.

We have used linear regression together with fea-
ture selection in a sliding window. Too short win-
dows yield unstable results, because we do not have
enough data in each window, so we have used a win-
dow width of 100 days. The regression weights in a
sliding window are shown in Figure 4. A clear sea-
sonal behaviour is present here. One can roughly
distinguish between the four models presented in
Table 1. LDA detects the same time intervals with
models involving the same variables. Also using a
shorter window gives similar results with slightly
more noise. The erratic behavior of the models to-
wards the end of the year is due to lack of events
and low variation of parameters in the winter. This
is not really a problem, because most models valid
elsewhere work well also in the winter period.



variables model1 model2 model3 model4
const 0.50 0.42 0.51 0.44
RH 0 0 0 -0.40
PAR 0.29 0 0 0
RPAR 0 0 0.33 0
logCS -0.21 -0.31 -0.29 -0.10
sensheat 0 0.18 0 0

Table 1: Models picked from the results obtained by
regression in a sliding window, see Figure 4.

Because we use sliding windows, the models over-
lap. To determine where the best switching points
from one model to another are segmentation meth-
ods [Gionis and Mannila, 2003] can be used. Com-
paring the error rates of different numbers of time
segments we concluded, that the best choice is us-
ing three time segments, see Table 2. So we use
model 1 (Table 1) for days before April 6th, model
4 for days after September 7th, and model 2 in the
time interval in between.
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Figure 4: Regression weights in a sliding window
of width 100 days. The starting point of the interval
is indicated on the x-axis. The solid line shows the
error in the sliding window.

Now if we use the three segment model instead of
the one model valid all year, we get an approxi-
mately 10% error rate compared to the ca. 13% er-
ror rate obtained for linear regression.

Further insight into seasonal behaviour is gained if
we look at how the error rate varies seasonally. Fig-
ure 5 shows the error rates and false negative error
rates in a sliding window for the one model case in
black and the three model case in grey. Results are
similar for LDA.

segments breaking points models used error
2 249 2,4 12.5
3 96,250 1,2,4 10.4
4 101,165,249 1,2,3,4 10.4
5 15,104,165,249 1,1,2,3,4 10.5

Table 2: Segmentation results, when the four mod-
els in Table 1 were used.
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Figure 5: Proportion of events and errors in a slid-
ing window of width 60 days for one model for the
whole year in black and the three segment model in
grey.

6 CONCLUSIONS

In our previous work [Hyv̈onen et al., 2005] we used
a wide range of classification methods to gain in-
sight on atmospheric aerosol formation. We were
able to identify two key variables, relative humid-
ity and the condensation sink, capable of explaining
88% of the nucleation events. Furthermore, a nucle-
ation parameter describing the probability of nucle-
ation was presented.

Here we have tested this parameter on data collected
from other sites. We conclude that if the conditions
are sufficiently similar, as they are in Aspvreten,
then the two key variables still work well in pre-
dicting nucleation, though the nucleation parameter
has to be adjusted slightly; however, if conditions
are very different, as they are in Värriö situated far
above the arctic circle, then the parameter no longer
is valid.

Furthermore, we have investigated the temporal
variation in the classification models. This has been
done by doing regression in a sliding window. It is



evident, that there is seasonal variation in the opti-
mal model: a natural division into a spring, summer
and fall models appear. No winter model is needed,
because there are practically no events and all mod-
els perform well. That different models work better
in different seasons does not mean, that the mech-
anisms behind nucleation change; rather, it reflects
on changes in event density and general meteoro-
logical conditions. In fact, the different models cor-
relate, so all of them work fairly well on the whole
time segment. It should be noted, that though the
predictive power of the segmented model is higher
than that of the one model case, the main goal here
was not maximizing the classification perfomance,
but gaining insight on the temporal behaviour of nu-
cleation.

The condensation sink and relative humidity both
relate to mechanisms that prevent nucleation from
starting and particles from growing to detectable
sizes. On the contrary, the solar radiation measured
by PAR is known to be one of the key elements in
the reaction chain; also, event days have high val-
ues of sensible heat flux, which describes heat en-
ergy transfer into the atmosphere. Even using this
seasonally segmented model the error rate during
summer is significantly higher than during the other
seasons. The errors are almost exlusively false posi-
tives, since the summer events are in fact fairly rare.
Explaining this remains a future challenge.
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