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Abstract: It is important to know to what extent the outcome of an LCA is affected by various types of 
uncertainty, such as parameter, scenario and model uncertainty. These types may occur in the goal and 
scope definition, the inventory analysis and the impact assessment of an LCA. Information on the uncer-
tainty of the model outcomes provides useful information to assess the reliability of LCA-based decisions 
and to guide future research towards reducing uncertainty. This paper reviews several approaches to treat 
different types of uncertainty in LCA. It will discuss the typology of uncertainty that may be encountered in 
LCA, the qualitative and quantitative techniques that are available to address these uncertainties, the inclu-
sion of these techniques in LCA software tools, the (graphical) possibilities to show uncertainty in LCA 
outcomes, ways to simplify the uncertainty analysis, the inclusion of uncertainty analyses in case studies and 
(the difficulties in) the interpretation of uncertainty information. 

Keywords: Uncertainty, Life cycle assessment; LCA 

 
1. INTRODUCTION 

If LCA is supposed to play a role in environ-
mental decision-making, the quality of the deci-
sion-support should be made clear. It is natural 
that there is an interest of decision-makers and 
LCA-experts in the credibility of the results of 
LCA. In fact, it is amazing that this interest has 
not been natural since the development of LCA 
and the rise of its use. Although concerns about 
the quality of LCA-results have been raised at an 
early stage of LCA-development, assessment of 
this quality is still not a standard feature, and a 
systematic and comprehensive treatment is still 
lacking in most guidebooks, databases and soft-
ware for LCA. Witness of this is the several 
guidebooks for LCA where the assessment of un-
certainty is postponed and presented as some sort 
of additional feature. One still sees LCA case 
studies with bar charts showing that product A is 
0.3% better than product B, without any indica-
tion of the significance or robustness of this dif-
ference. A decision-maker then has to figure out 
whether or not the difference of 0.3% is in any 
sense significant. The situation is even more com-
plex due to the fact that writers of LCA-reports 
sometimes use the technical term “significant”  
when they have the intuitive term “ large”  in mind; 
in fact, some writers seem to think that “signifi-
cant”  is the scientific-sounding equivalent of 

“ large” . The idea of statistical analysis is not al-
ways part of the standard vocabulary of practitio-
ners and users of LCA. 
 
There is, however, also good news. There have 
been quite a few initiatives and developments to-
wards including uncertainty in LCA. Statistical 
uncertainty information is to an increasing extent 
percolating into methods, databases and software, 
and are increasingly being applied in case studies. 
Decision-makers increasingly recognize that un-
certainties are important and should be made ex-
plicit. 
 
The importance of including uncertainty in LCA 
has been long recognized. Already in 1992, a 
SETAC-workshop focussed exclusively on this 
topic (Fava et al., 1993). During these years, the 
discussion was largely restricted to acknowledging 
the possible prohibitive effects of uncertainty and 
the setting-up of schemes for data quality indica-
tors for LCI data. Approaches towards analyzing 
the uncertainty in final results were published 
(Heijungs, 1992; 1994), but remained unused for 
two main reasons: lack of knowledge of input un-
certainties, and lack of appropriate software. For 
almost a decade, the two lacks seemed to be 
trapped in a vicious circle: as long as there is no 
software that deals with uncertain data, there is no 
need to collect uncertainty information for the 



data, and as long as there is no uncertainty infor-
mation for the data, there is no need to develop 
software that deals with uncertain data. But the 
last few years, software and data providers are 
freeing themselves from this trap. Software that in 
one form or another supports Monte Carlo analy-
sis is becoming standard, and one of the most 
widely used data sources, the Swiss ecoinvent, has 
started to include information on distribution and 
data quality indicators. 
 
From the theoretical side, we mention the publica-
tion of a number of PhD theses in which uncer-
tainty in LCA played a dominant role (Roš, 1998; 
Pohl, 1999; Huijbregts, 2001; Ciroth, 2001). 
Other important contributions are summarized by 
Heijungs & Suh (2002). Besides these structural 
developments, developments in case studies have 
shown some ingenuity in dealing with uncertainty 
issues. More and more case studies have used sta-
tistical methods to address uncertainties.  
 
The increasing recognition of the role of uncer-
tainty in LCA has also some darker sides. On the 
one hand, it may easily lead to pessimism or even 
cynicism. Results of LCA would be meaningless, 
as the uncertainties associated with these results 
would overshadow the results themselves. And 
carrying out LCA would become much more com-
plicated, due to the additional data collection ef-
forts and the more intricate calculations. Finally, 
interpretation of LCA-results would be more cum-
bersome, and involve a much more technical jar-
gon: confidence intervals, significance levels, etc. 
 
A practical problem with dealing with uncertainty 
is that the information is scattered and that termi-
nology is confusingly non-standardized. This al-
ready applies to the definition of uncertainty. 
What is uncertainty, what is variability, what is 
sensitivity? And there are also rumors. Is Monte 
Carlo analysis the only possible method? Is it 
needed to take correlated variates into account? 
 
This paper aims to provide an overview of the 
various aspects of uncertainty in relation to LCA, 
and of the practical approaches that have been 
proposed or employed. It partly builds on and 
supplements the survey of Björklund (2002). It 
starts with a theoretical part on the types of uncer-
tainty and the techniques that are available to ad-
dresses these uncertainties. It then proceeds to 
give a survey of concrete proposals and implemen-
tation in guidebooks, databases, software and case 
studies. Finally, some proposals are made to arrive 
at a more uniform terminology of uncertainty is-
sues in LCA. 
 
2. TYPOLOGIES OF UNCERTAINTY 

When speaking on uncertainties, one of the first 
things that could be defined is the very notion of 
uncertainty itself. Although a fully satisfying defi-
nition may be difficult to agree upon, we will here 
rely on a mere reference to the problem of using 
information that is unavailable, wrong, unreliable, 
or that show a certain degree of variability. The 
wording above suggests a division into three 
types: 

�  data for which no value is available; 
�  data for which an inappropriate value is avail-

able; 
�  data for which more than one value is avail-

able. 
On top of that, one should acknowledge that LCA 
– and indeed any model – contains data, relation-
ships and choices, so that the same division into 
three may be applied for relationships and choices 
as well, e.g., relationships for which no equation 
is available, or choices for which more than one 
option is available. 
 
Before proceeding to study uncertainty in more 
detail, a contrast with variability should be made 
(US-EPA, 1989). Uncertainty relates to a lack of 
knowledge: no data is available, or the data that is 
available is wrong or ambiguous. Variability, in 
contrast, is a quality of data that is essentiality of a 
heterogeneous nature. The number of passengers 
in a specific train may be subject to uncertainty, 
while the number of passengers in a typical train 
may be subject to variability, because it differs 
from case to case. Likewise, the molecular weight 
of phenol may be uncertain, while the half-life 
time may be uncertain, because it depends on – 
variable – ambient conditions. Despite the differ-
ent meaning and source of uncertainty and vari-
ability, the approaches for dealing with the two 
show a large overlap. 
 
There are many ways of classifying uncertainty. 
Without going into the details of defining these 
categories, Table 1 lists a few typologies. Review-
ing all these typologies, one might ask oneself 
whether a typology of uncertainties is useful at all. 
It appears that, no matter how you classify uncer-
tainties, all uncertainties should be dealt with in 
the appropriate way. We believe, with Funtowicz 
& Ravetz (1990), that a typology is useful pro-
vided a distinction is made between sources and 
sorts of uncertainty. Moreover, we believe that it 
is the sorts of uncertainty that should be empha-
sised, because it ought to steer the approach taken 
to deal with uncertainty. 
 
Another, perhaps underemphasized, aspect of un-
certainty is that there are levels of uncertainty, 
relating to the role of the person that experiences 
the uncertainty. Thus, a scientist may feel uncer-



tain on the value of a certain parameter, while a 
decision-maker may feel uncertain on the decision 
to be taken. This distinction may be of critical 
importance in the choice of methods to deal with 
uncertainty. For instance, an ISO-standard may 

settle the uncertainty problem for the decision-
maker, but not for the scientist, who will like to do 
more research or to specify statistical distribu-
tions. 

 
Table 1: Classification of uncertainties according to several authors. 
 
Bevington & Robinson (1992) Morgan & Henrion (1990) 

Hofstetter (1998) 
Huijbregts (2001) 

systematic errors 
random errors 

statistical variation 
subjective judgment 
linguistic imprecision 
variability 
inherent randomness 
disagreement 
approximation 

parameter uncertainty 
model uncertainty 
uncertainty due to choices 
spatial variability 
temporal variability 
variability between sources and 

objects 
Funtowicz & Ravetz (1990) Bedford & Cooke (2001) US-EPA (1989) 
data uncertainty 
model uncertainty 
completeness uncertainty 

aleatory uncertainty 
epistemic uncertainty 
parameter uncertainty 
data uncertainty 
model uncertainty 
ambiguity 
volitional uncertainty 

scenario uncertainty 
parameter uncertainty 
model uncertainty 

 
 
3. TECHNIQUES AND TOOLS TO 

ADDRESS UNCERTAINTY 

Approaches to deal with uncertainty exist in many 
kinds. Consider a concrete example: an LCA-
practitioner runs across an uncertain data item, 
say the characterization factor for human toxicity 
of zinc. How could one proceed? Main lines are: 

�  the scientific approach (doing more research, 
like setting out laboratory tests to find out 
LC50s and other relevant parameters in the 
characterization model); 

�  the constructivist approach (involving stake-
holders, discussing and finally deciding on or 
voting for a consensus characterization fac-
tor); 

�  the legal approach (relying on what authorita-
tive bodies, like ISO or US-EPA, have de-
creed as the truth); 

�  the statistical approach (using methods from 
statistics, like Monte Carlo analysis or fuzzy 
set theory, to determine confidence intervals 
and other indicators of robustness). 

It should be noted that the first three of these ap-
proaches aim to reduce uncertainty, while the last 
approach aims to explicitly incorporate it. Reduc-
ing uncertainty – although in itself a noble aim – 
will not further be discussed here; we merely refer 
to Von Bahr & Steen (2004) as a recent example 
in LCA. We will restrict the discussion to ap-
proaches to incorporate uncertainty. In doing so, 
we will be close to practicing post-normal science 

(Funtowicz & Ravetz, 1993), a form of applied 
science which claims to deal with policy issues in 
cases of large uncertainties and high decision 
stakes. Nonetheless, the statistical approach is in 
other respects more alien to post-normal scien-
tists. In general, post-normal science prefers con-
structivist approaches to statistical approaches, 
thereby eventually doing away with the uncer-
tainty. One should note that even statisticians 
eventually do away with the uncertainty, namely 
in their process of null-hypothesis significance 
testing, where all uncertainty information finally 
condenses into a yes-no decision. 
 
In dealing with uncertainty, one is faced with 
problems at three places: 

�  the input side: where are the uncertainties, 
and how large are they? 

�  the processing side: how do we translate input 
uncertainties into output uncertainties? 

�  the output side: how can we visualize and 
communicate uncertain results? 

Of course, answers within the three areas are 
highly dependent. For instance, if we choose to 
use Monte Carlo analysis for the processing side, 
our possibilities for the input and output sides are 
immediately restricted to a few options. One 
might be tempted to confine the picture of input, 
processing and output to those sources of uncer-
tainty that pertain to parameter uncertainty or data 
uncertainty, the truly input-oriented elements of a 
model. However, some of the other sources of un-



certainty can be captured in these terms as well. 
The choice between competing models, or the 
choice among the elements to be modeled can also 
be regarded as comprising an input uncertainty, 
for instance. 
 
3.1 Processing uncertainties 

As the method for processing are the pivot in this 
scheme, we start to discuss this aspect. Within the 
statistical approach, there are many possibilities. 
Some of these are: 

�  parameter variation/scenario analysis; 
�  sampling methods; 
�  analytical methods; 
�  non-traditional methods, such as the use of 

fuzzy set theory. 
Each of these methods for processing uncertainties 
requires different forms of input uncertainties, and 
delivers different forms of output uncertainties. 
Below, we will discuss these methods and some 
applications in LCA. 
 
With parameter variation/scenario analysis, a few 
different data sets and/or models and/or choices 
are investigated as to their consequences for the 
model results. For instance, the results are calcu-
lated for a data set with high emission values and 
a data set with low emission values. Good illustra-
tion of the use of this method within LCA are 
provided by Copius Peereboom et al. (1999) and 
Huijbregts (1998).  
 
A sampling method is a method that employs the 
power of a computer for repeating calculations 
many times. If the input data for each parameter is 
drawn from some distribution, the results will 
differ from run to run and gradually give rise to a 
sample of results, of which the statistical proper-
ties may be investigated. Monte Carlo analysis, 
where a distribution of outcomes is calculated by 
running the model a number of times with ran-
domly selected parameter representations, is the 
most well-known form, but there are more sophis-
ticated ways, like Latin hypercube sampling 
(Morgan & Henrion, 1990). Monte Carlo analyses 
have been applied in LCA by a couple of authors, 
see, e.g., Meier (1997), Huijbregts (1998), Mau-
rice et al. (2000) and Sonneman et al. (2003). 
 
Sampling methods can also be used to address 
scenarios. In that case, the sample consists of 
combinations of different decision scenarios and 
model formulations, with a subjective probability 
reflecting the preference of the decision-maker or 
the faith of the modeler in a particular model for-
mulation for an alternative (Efron & Tibshirani, 
1991). According to Huijbregts et al. (2003), the 
resulting output distribution reflects the uncer-
tainty of the decision-maker regarding the norma-

tive choices involved (scenario uncertainty) or the 
uncertainty of the modeler regarding the alterna-
tive model formulations (model uncertainty). 
 
Analytical methods are based upon explicit 
mathematical expressions for the distributions of 
the model results. Their use is based on a first-
order approximation of the Taylor expansion of 
the underlying model (Heijungs & Suh, 2002; 
Heijungs, 2002). Distribution-free variances of 
input parameters can then be used to calculate 
variances of output variables. Their use in LCA 
has been limited so far, probably because the 
mathematics was too complicated to be imple-
mented in software. Results have, however, been 
reported by Heijungs et al. (in press). 
 
Under non-traditional methods, we will capture 
all methods of dealing with uncertainty that are 
not part of the traditional statistics curriculum. It 
comprises a variety of methods, for instance: 

�  fuzzy set methods; 
�  Bayesian methods; 
�  non-parametric statistics; 
�  robust statistics; 
�  neural networks and other methods from arti-

ficial intelligence. 
Methods for uncertainty analysis based on fuzzy 
sets have been introduced into LCA by several 
authors, see, e.g., Weckenmann & Schwan 
(2001), Chevalier & Le Téno (1996), Rong et al. 
(1998), Roš (1998). Bayesian statistics has hardly 
been mentioned in the context of LCA, although 
Shipworth (2002) provides an exception. The 
other mentioned methods are even less used 
within LCA, although the sign test and the 
Kruskall-Wallis test are briefly touched by Hei-
jungs & Kleijn (2001). It should be noted that 
some of these methods are sometimes mentioned 
within LCA (see, e.g., Sangle et al., 1999), but 
that the emphasis is in those cases not so much on 
the processing side of uncertain information, but 
on the approaches that have been developed 
within decision theory for dealing with unclear 
preferences. 
 
3.2 Input uncertainties 

Parameter variation requires that a number of 
different values is available for one or more pa-
rameters. Treating all parameters individually 
may lead to an exceedingly large number of sce-
narios. Therefore, it is usual to vary one parameter 
and keep all other parameters fixed at some “most 
probable value” , and to repeat this procedure for 
all parameters in separate analysis. This type of 
analysis can be found in Copius Peereboom et al. 
(1999). An alternative is to define a limited num-
ber of scenarios with specific but consistent reali-
zations of each parameter. Hofstetter (1998) and 



Goedkoop & Spriensma (2000) employ these types 
of “perspectives”  in their analyses. A more sys-
tematic treatment of the use of scenarios of the 
future in LCA is given by Pesonen et al. (2000) 
and Fukushima & Hirao (2002), and applied by 
Contadini et al. (2002). 
 
Sampling methods are based on the random varia-
tion of uncertain parameters. They require the 
specification of a statistical distribution of every 
stochastic parameter. For instance, an emission 
may be specified as following a normal distribu-
tion with a mean of 12 kg and a standard devia-
tion of 1 kg. Frequently encountered distributions 
are: 

�  the normal distribution; 
�  the lognormal distribution; 
�  the uniform distribution; 
�  the triangular distribution. 
These distributions may or may not be correlated 
across parameters. In principle, correlations be-
tween parameters may be expressed by a correla-
tion matrix or a covariance matrix (Heijungs & 
Suh, 2002). Huijbregts et al. (2003) showed how 
correlations between input parameters can be in-
cluded in Monte Carlo analyses. Apart from corre-
lations between input parameters, correlations 
between model outputs should be accounted for in 
comparative LCAs (Huijbregts et al., 2001; 2003). 
This can be done in the form of a comparison in-
dex (Huijbregts, 1998) for the case of two alterna-
tives, or in a more general discernibility analysis 
(Heijungs & Kleijn, 2001; Heijungs & Suh, 2002).  
 
Analytical methods are based on the estimation of 
the moments of the distributions (Morgan & Hen-
rion, 1990). In particular the second moment, the 
variance, is used in a first order Taylor approxi-
mation. Thus, not the distribution, but only the 
variance (or standard deviation) of the parameter 
is needed here. Thus, less information is needed 
for analytical methods than for sampling methods. 
Like for Monte Carlo analysis, correlations be-
tween variates can in principle be included, al-
though this is seldom seen in practice. Inclusion 
of correlations in the analytical case implies a 
broadening of the scope to second-order Taylor 
approximations (Heijungs & Suh, 2002).  
 
Because methods for processing uncertainties on 
the basis of non-traditional methods have hardly 
been applied in LCA, it is not clear which types of 
input information would be needed.  
 
3.3 Output uncertainties 

At the output side there are fewer differences. In 
combination of parameter variation, one often sees 
the consecutive presentation of tables and/or 
graphs for the different sets of parameters or sce-

narios; see e.g. Copius Peereboom et al. (1999), 
Huijbregts (1998). 
 
Results of sampling methods can be presented in 
different forms. Sampled probability density plots, 
so-called histograms, are a typical example; see, 
e.g., Huijbregts (1998) and Sonneman et al. 
(2003). An alternative is the graphical representa-
tion of an average value with two boundary val-
ues. These boundary values may indicate the 
smallest and largest value obtained, or a more 
robust measure such as the 5 and 95 percentile 
values (Huijbregts et al., 2003). 
 
Analytical methods do not provide a distribution 
of outcomes. Instead, they provide moments of the 
distributions, such as the standard deviation. 
These can be used to calculate and visualise 95% 
confidence intervals. As analytical methods have 
hardly been applied in LCA, we cannot give an 
example of its use. 
 
This holds even more true for the non-traditional 
methods, like fuzzy sets methods and Bayesian 
methods.  
 
4. PROSPECTS FOR INCLUSION OF 

UNCERTAINTY IN LCA 

Reviewing the developments that have taken place 
the last few years, it seems likely that discussion 
and inclusion of uncertainty issues in LCA will no 
longer be restricted to academic exploratory work, 
like PhD-theses, and will no longer be regarded as 
a curiosity in real practical work. Rather, we ex-
pect that inclusion of uncertainties will become a 
standard feature of case studies. The three re-
quirements for becoming a standard procedure, 
availability of data of input uncertainties, avail-
ability of methods and software for processing 
uncertainties, and availability of methods for in-
terpreting and visualizing output uncertainties, 
start to be satisfied. 
 
There is perhaps one more aspect that can be seen 
as a requirement: standardization (cf. Björklund, 
2002). The ISO-standards for LCA have canon-
ized parts of the terminology used. On top of that, 
the format by SPOLD has provided a standard for 
data exchange. But especially for uncertainty, 
clear standards are lacking. 
 
As to terminology, there is first of all the confu-
sion between uncertainty and variability, and 
within uncertainty all the sorts and sources of un-
certainty. It may be difficult (and unnecessary) to 
single out one single terminology. Then, there is a 
large number of types of approaches that are used 
interchangeably, or at least in a non-standardized 
way. We mention just a few: 



�  uncertainty analysis; 
�  sensitivity analysis; 
�  perturbation analysis; 
�  scenario analysis; 
�  error analysis; 
�  discernibility analysis. 
It is a disturbing (or perhaps: consoling) fact that 
even outside LCA, within the uncertainty commu-
nity itself, meanings and nomenclature give rise to 
disagreement. For instance, sensitivity analysis 
means to US-EPA (1989) the systematic changing 
of one parameter while keeping the other parame-
ters constant, whereas to Saltelli et al. (2000) it 
means the apportioning of an output uncertainty 
to the various contributing input uncertainties, 
which is in turn referred to as key issue analysis 
by Heijungs (1996) and as uncertainty importance 
analysis by Björklund (2002). 
 
But at least the way uncertain data is described 
can be standardized. In fact, this should be part of 
the normal data exchange process. In a small 
study, Heijungs & Frischknecht (in prep.) dis-
cussed the differences in representing a basic en-
tity like the uniform distribution in just one data-
base (ecoinvent), one LCA-program (CMLCA) 
and mathematical statistics. Clearly, one may 
choose in representing a uniform distribution be-
tween giving: 

�  the mean value and the width; 
�  the mean value and the half-width; 
�  the lowest and highest value; 
The required transformations in going from one 
representation to another one is quite simple. For 
more complicated distributions, like the lognormal 
distribution, the expressions are much more in-
volved. As long as these different options are not 
clearly defined and distinguished, one is likely to 
confuse a standard deviation with a variance, a 
width with a half-width, or worse. 
 
Obviously, those aspects of uncertainty that per-
tain to parameter uncertainty or data uncertainty 
have received most attention so far, at least in 
practical cases. The model uncertainty is much 
less addressed. And the more profound forms of 
uncertainty, for instance epistemic uncertainty 
may fundamentally be difficult to deal with. In 
this, we agree with parts of the analysis of Fun-
towicz & Ravetz (1993), who promote the devel-
opment of non-traditional modes of research (i.e. 
post-normal science) to deal with intrinsically 
uncertain policy questions. Their NUSAP-scheme 
(Funtowicz & Ravetz, 1990) has been brought into 
LCA by Weidema & Wesnæs (1996). We think 
that the separation with which this paper started, 
into data for which more than one value is avail-
able, data for which an inappropriate value is 
available, and data for which no value is available, 

can be connected to the SAP-part of the NUSAP-
scheme: 

�  spread, for data for which more than one 
value is available; 

�  assessment, for data for which an inappropri-
ate value is available; 

�  pedigree, for data for which no value is avail-
able. 

It is especially the S-part which can be processed 
with sampling or analytical techniques, and the A-
part by parameter variation/scenario analysis tech-
niques. The P-part is supposed to reflect our 
“ ignorance of ignorance” , for which the use of 
precision-suggesting numbers is by definition in-
appropriate. 
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