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Abstract: In the context of global warming, the problem of stabilization of the concentration of carbon in the
atmosphere is widely discussed. Serious difficulties in thedesign of reliable stabilization strategies arise due
to the uncertainty of the underlying physical model. In thispaper, we suggest a pattern to construct model-
robust feedback carbon emission strategies that stabilizethe atmospheric carbon concentration at a prescribe
target value irrespective of a particular admissible carbon cycle model governing the “real” dynamics. Specific
qualitative features of the carbon cycle dynamics, including automatic stabilization under vanishing inputs are
employed.

Keywords: Global warming, stabilization of carbon in the atmosphere,stabilization of uncertain systems.

1 INTRODUCTION

The tolerable window approach aimed at preventing
the occurrance of harmful impacts of global warm-
ing (see [WBGU, 1995], [Bruckner, et. al, 1999])
views a carbon emission scenario as acceptable if it
keeps the average annual temperature within a cer-
tain “window”. Implicitly, this imposes constraints
on the amount of carbon in the atmosphere, which
is – as often assumed – positively related to the an-
nual surface/air temperature. However, the exact
identification of those constraints (to be met con-

∗This work was supported in part by the RFBR (project # 03-
01-00737) and by the Program on Basic Research of the Russian
Acad. Sci. in Changes of Natural Terrestrial Objects in Russia
in Zones of Intense Technogenic Influence (project # 3 10002-
251/Π-13/196-018/300503-340).

stantly during a long period of time) can be a diffi-
cult task, since there is yet no clear understanding
of the mechanism establishing quantitative relations
between the growth in the carbon concentration and
the raise of the annual temperature. The identifica-
tion of some “central” or “target” point within those
(fuzzy) constraints can be a much easier task. In this
manner, one arrives at the problem of stabilization
of the carbon concentration around a chosen target
value within an infinite time horizon.

In [Svirezhev, et. al., 1999] a stabilization sce-
nario is sought using a simplified ODE model of
the global carbon cycle. The model’s state variables
include the amounts of carbon in the atmosphere,
x(t), and in the ocean,y(t); heret is the time vari-
able. The state variables are scaled so that their



zero values correspond, respectively, to the absolute
value of carbon in the atmosphere and the absolute
value of carbon in the ocean in the pre-industrial pe-
riod. Annual antropogenic emissions of CO2, ϕ(t),
act as controls. The carbon cycle model has the
form

ẋ(t) = ϕ(t) − α1x(t) + α2y(t),
ẏ(t) = α1x(t) − α2y(t)

(1)

whereα1 andα2, are positive parameters. The ini-
tial state of the model represents the amounts of car-
bon in the atmosphere and in the ocean at time 0 cor-
responding to the year 2000. A sought stabilization
emission scenarioϕ(t) ensures

lim
t→∞

x(t) = x̂ (2)

wherex̂ is a prescribed target value for the amount
of carbon in the atmsophere.

Our study relates to “post-planning” decisionmak-
ing. Assuming that a stabilization scenarioϕ(t)
is identified, we address the question of a practi-
cal realization of (2). We emphasise the fact that
the model (1) that serves as a basis for forming the
stabilization scenarioϕ(t) is inaccurate and most
likely does not describe the real dynamics. It is
clear that (2) is violated if we implementϕ(t) for
even a sligtly perturbed model. In practice, the un-
certainties in the model (reflecting highly complex
processes in the environment) should be viewed
as large enough. An adequate assumtion is that
the “real” model is not known to us; instead, we
are given a (relatively broad) class of “admissi-
ble” models, which includes the “real” one. This
assumption implies that a desired emission policy
should guarantee (2) for every admissible model
chosen beforehand. The admissible models describ-
ing a variaty of admissible dynamics forx(t) and
y(t) can certainly include nonlinear models much
more complex than (1). In this study, we assume
that the admissible models have the form

ẋ(t) = ϕ(t) + u(t) + g(x(t), y(t)),
ẏ(t) = −g(x(t), y(t))

(3)

whereg(x, y) is an (uncertain) function decreasing
in x and increasing iny. The parameteru(t) acts
as a “scenario correction” input intended to com-
pensate the uncertainty of the model. Using cur-
rently available data on the trajectory of the “real”

model, the planner formsu(t) and modifies the orig-
inal emission scenarioϕ(t) with the intension to en-
sure (2). The initial state

x(0) = x0, y(0) = y0 (4)

can also be given inaccurately. It is clear that in or-
der to guarantee that every admissible model of the
form (3) (4) is stabilized (in the sence that (2) is en-
sured), one should impose further constraints on the
functionsg and initial states (4). Such constraints
will be specified later.

2 DECISIONMAKING PATTERN

First, we note that for a carbon cycle model of the
form (3), (4) it holds that

x(t) + y(t) = x0 + y0 + cw(t) + Φ(t) (5)

where

w(t) =

∫

t

0

u(τ)dτ, Φ(t) =

∫

t

0

ϕ(τ)dτ.

We will treat functionsw(t) representing the accu-
mulated scenario correction increments as controls,
and write ẇ(t) instead ofu(t). We suppose that
in the planned emission scenario the accumulated
emission,Φ(t), has a finite positive limit at infinity
and the emission input,ϕ(t), vanishes at infinity:

lim
t→∞

Φ(t) = Φ̄, lim
t→∞

ϕ(t) = 0. (6)

Accordingly, we assume that every admissible con-
trol, w(t), has a finite limit at infinity and its deriva-
tive, ẇ(t), vanishes at infinity:

lim
t→∞

w(t) = w̄, lim
t→∞

ẇ(t) = 0. (7)

Expressingy(t) from (5) and substituting into the
first equation in (3), we can represent the model (3),
(4) in the form

ẋ(t) = f(t, x(t), w(t), ẇ(t)), x(0) = x0

wheref(t, x, w, ẇ) = ϕ(t)+ cẇ + g(x,−x+x0 +
y0 + cw + Φ(t)). We note that the limit relations



(6) and (7) imply that every admissible controlw(t)
determines the “limit” model

ẋ(t) = f̄(x(t), w̄) (8)

wheref̄(x, w̄) = g(x,−x + x0 + y0 + cw̄ + Φ̄).

We assume that there is a “real” model of the form
(3), (4), and the planner needs to design an admis-
sible controlw(t) that ensures (2) for the trajectory
x(t) of the “real” model. The “real” model is not
known to the planner; instead the planner is given
a class of “admissible” models of the form (3), (4)
which contains the “real” one. When forming an
admissible controlw(t) the planner observes the ac-
tual values of the carbon concentration,x(t). The
control process is started from the (known) initial
statex0 at time0.

Our solution pattern suggests to update current ad-
missible controls by periodic switching to new ex-
tensions. In what follows, an extension of an ad-
missible controlw(t) beyondτ is understood as an
admissible controlv(t) that coincides withw(t) on
the interval[0, τ ]. We start with the observation that
if the original dynamics is linear (i.e., given by (1)),
the trajectoryx(t) converges, as time goes to infin-
ity, to the rest point̄x of the limit model (8), which
is uniquely defined by the equation̄f(x̄, w̄) = 0.
Assuming that this stabilization propety holds for
every admissible model, we treat the planner’s task
as forming an admissible controlw(t) such that
the corresponding rest point̄x of the “real” limit
model (8) coincides with the prescribed target value:
x̄ = x̂. If at some point in time the planner finds
that the latter equality is incompatible with the cur-
rent admissible control, he/she makes a decision to
switch to another extension. Following this control
pattern, the planner periodically updates extensions
of the current admissible controls.

A planner’s control strategy is implemented as fol-
lows. At the initial time0 the planner chooses an
initial admissible controlw0(t) and estimates a set
W̄0 of the limit valuesw̄ of “inconsistent” admis-
sible controlsw(t) that are unable to solve the sta-
bilization problem. The motion of the “real” model
starts underw0(t) and goes along a trajectoryx0(t).
At each timet ≥ 0 the planner observesx0(t) and
decides ifw0 must be switched to another exten-
sion,w1. If the planner decides to switch at a time
t∗0, he/she fixes a delayδ(t∗0) ≥ 0 for the switch
and switches tow1(t) at time t1 = δ(t∗0). The
planner decides to switch as soon as he/she under-
stands that the admissible controlw0(t) is inconsis-

tent with the target equalitȳx0 = x̂; in this situ-
tion we shall say that the planner receives the in-
consistency signal. Upon the receipt of the incon-
sistency signal at timet∗0 the planner adds̄w0 to
the initial setW̄0 of inconsistent limit values and
forms a new set of inconsistent limit values,̄W1,
which can however (due to some further considra-
tions) contain also new elements differing from̄w0.
If the decision on a switch is made and a timet1
for the switch is fixed, the planner chooses a new
extension,w1(t), for w0(t) beyondt1 using inor-
mation on the hystory of the process, including the
inconsistency set̄W1. This completes the first step
in the control process. Note thatw0(t) is never
changed if the planner never receives the inconsis-
tency signal. The performance ofm steps of the
control process results in the formation of admissi-
ble controlsw0(t), w1(t), . . . , wm(t) switched on
sequentially at times0, t1, . . . , tm and a set estimate
W̄m for inconsistent limit values of admissible con-
trols. On each time interval in the past,[ti, ti+1),
the “real” model goes along a trajectoryxi(t) corre-
sponding towi(t). Starting fromtm the planner ob-
serves the current valuexm(t) and decides ifwm(t)
must be switched to another extension,wm+1(t). If
the planner decides to switch at a timet∗

m
, he/she

fixes a delayδ(t∗
m

) for the switch and switches to
wm+1(t) at timetm+1 = t∗

m
+ δ(t∗

m
). The fact that

the planner decides to switch implies that he/she
receives an inconsistency signal, i.e., understands
that wm(t) is no longer consistent with the target
equality x̄m = x̂. Upon the receipt of the incon-
sistency signal the planner adds̄wm (and possibly
some other values) to the set of inconsistent limit
values and extends̄Wm to W̄m+1. The planner
chooses a new extension,wm+1(t), for wm(t) be-
yond tm+1 using inormation on the hystory of the
process, including the set̄Wm+1. This completes
stepm + 1 of the control process (which is never
termnated if the planner never receives the new in-
consistency signal).

The described control srategy produces a sequence
(tm, wm(t)) of switching times and admissible con-
trols, which is generally infinite (it is finite if the
planner does not receive the inconsistency signal at
some step; this situaion is cleraly not typical); we
will call (tm, wm(t)) the control flow. In parallel
with the control flow, the sequence(tm, xm(t)) is
produced; herexm(t) is the trajectory of the “real”
model, which is driven by the admissible control
wm(t) between the sitching timestm andtm+1; we
will call (tm, xm(t)) thetrajectory flow. The trajec-
toriesxm(t) defined on the intervals[tm,∞) switch
sequentially and form the entiretrajectory x(t):
x(t) = xm(t) for t ∈ [tm, tm+1) (for t ∈ [tm,∞)



if m is the last index in the finite trajectory flow).
Let us stress that the control flow, trajectory flow
and entire trajectory depend on the unknown “real”
model.

3 ROBUST STABILIZATION STRATEGY

Now we implement the suggested decisionmaking
pattern under some additional assumptions. Let us
note that the described control procedure recom-
mens to add correction quantitieṡwm(t), to the
planned emissionϕ(t) during the time intervals
[tm, tm+1). Clearly, it is advisable to makėwm(t)
considerably smaller thanϕ(t), which, in turn, van-
ishes at infinity. Therefore, we impose the con-
straint |ẇm(t)| ≤ γ(tm) where γ(s) is a pre-
scribed upper bound for the size of every new cor-
rection quanity switched on at times = tm, and set
lims→∞ γ(s) = 0. Clearly, the constraint is met if

ẇm(t) =

{

+γ(ti) or − γi(t) if tm ≤ t ≤ τm,
0 if t ≥ τm

with someτm ≥ tm. We fix this structure, which
assumes that the correction inputẇm(t) is extremal
in absolute value up to the stopping timeτm and
it vanishes afterwards. We also require that the new
extensionwm+1(t) is switched on not earlier than at
τm: tm+1 = t∗

m
+ δ(t∗

m
) ≥ τm; in other words, ev-

ery time the planner runs the current emission cor-
rection programwm(t) it up to the planned stop-
ping timeτm. Moreover, we assume that the delay
function grows infinitly: lims→∞ δ(s) = ∞. We
also require that the limit values for the extensions
wm(t) are uniformly bounded:

w− ≤ w̄m ≤ w+ (9)

with some fixedw− andw+. Finally, we impose
the following constraints on the class of admissi-
ble models: for every admissible model (3), (4) the
function g(x, y) is continuously differentiable and
satisfiesg(0, 0) = 0 and

−a2 ≤
∂g(x, y)

∂x
≤ −a1, b1 ≤

∂g(x, y)

∂y
≤ b2 (10)

with some fixed positivea1, a2, b1 andb2, and the
initial state satisfies

x− ≤ x0 ≤ x+, y− ≤ y0 ≤ y+ (11)

with some fixedx−, x+, y− andy+. Note that apart
of all linear dynamics (1) witha1 ≤ α1 ≤ a2 and
b1 ≤ α2 ≤ b2, the class of admissible models ad-
mits a variaty of nonlinear dynamics (3). In what
follows, it is assumed that all the above constraints
are satisfied. For the initial set of inconsistent limit
values of admissible controls,̄W0, we take the com-
plement to the interval[w−, w+]. The next two
statement are key for the design of a stabilization
strategy.

Proposition 1 Let (tm, wm(t)) and(tm, xm(t)) be
the conrol flow and trajectory flow corresponding
to an arbitrary admissible model(3), (4). Then for
eachm the trajectoryxm(t) converges to the unique
rest point x̄m of the limit model(8) and x̄m is a
monotonicaly increasing function of the limit value
w̄m for the admissible controlwm(t).

Proposition 2 There exists a positive continuous
function of time,ν(s), such thatlims→∞ ν(s) = 0,
and the trajectory flow(tm, xm(t)) corresponding
to an arbitrary admissible model satisfies|xm(t) −
x̄m| < ν(t − tm) for all m and all t ≥ tm.

Now let us come back to decisionmaking in step
m + 1. If the current admissible control,wm(t),
is (by chance) such that the “real” model driven
by wm(t) goes to the target value, i.e.,x̄m = x̂,
then by Proposition 2|xm(t) − x̂| < ν(t − tm)
for all t ≥ tm and the “real” model is stabilized.
Otherwise, by Proposition 1 the planner observes
|xm(t) − x̂| = ν(t − tm) at some timet ≥ tm.
Hence, by Proposition 2, the limit point̄xm differs
from the target point̂x; therefore, the limit value
of the current admissible control,̄wm, is inconsis-
tent with the target equalitȳxm = x̂. This immedi-
ately produces an inconsistency signal, and at time
t = t∗

m
the planner decides to switch to a new exten-

sionwm+1(t). In order to findwm+1(t), let us come
back to the equality|xm(t∗

m
) − x̂| = ν(t∗

m
− tm)

specified as one of two cases:

case 1: xm(t∗
m

) = x̂ − ν(t∗
m
− tm),

case 2: xm(t∗
m

) = x̂ + ν(t∗
m
− tm).

Suppose case 1 takes place. Then by Proposition 2
x̄m < x̂. By Proposition 1̄xm increases if we in-
creasew̄m. Therefore, any admissible controlw(t)
whose limit valuew̄ does not exceed̄wm brings the
“real” model to anx̄ < x̂. Hence, the entire inter-
val [w−, w̄m] is inconsistent and can be added to the



current set estimatēWm of inconsistent limit values.
Therefore, we set

W̄m+1 = W̄m ∪ [w−, w̄m] in case 1.

Similarly, we set

W̄m+1 = W̄m ∪ [w̄m, w+] in case 2.

The suggested method to form the “inconsistency
set” W̄m+1 implies that its complement, the “con-
sistency window”, is an interval:

[w−, w+] \ W̄m+1 = [v−

m+1, v
+
m+1]

(note that the “consistency window” may not con-
tain its boundary points). In stepm + 1 let us place
the new limit valuew̄m+1 in the middle of the “con-
sistency window”:

w̄m+1 = (v−

m+1 + v+
m+1)/2.

Then the “consistency window”[v−

m+2, v
+
m+2]

formed in stepm + 2 is two times shorter than
[v−

m+1, v
+
m+1] (unless stepm + 2 terminates the

control process) As a result, the “consistency win-
dow” [v−

m
, v+

m
] shrinks gradually to the unique point

w̄ = ŵ, for which the rest point of the “real” limit
model (8) coincides with the target valuex̂. In par-
allel, the limit valuesw̄m converge toŵ. Thus, the
described control strategy gradually identifies the
unique target point̂w in the space of the limit val-
ues of admissible controls. We will call it thetarget
identification strategy. The argument used above is
to a considrable extent informal. A detailed anal-
ysis based on a theoretical background elaborated
in [Kryazhimskiy and Maksimov, 2003] leads to the
following final statement.

Proposition 3 Let the interval[w−, w+] contain-
ing the limit valuesw̄m for wm(t) (see(9)) be wide
enough, namely, for every admissible model(3), (4)
it hold thatg(x̂,−x̂+x0+y0+Φ̄)+b1w

− ≤ 0 and
g(x̂,−x̂ + x0 + y0 + Φ̄) + b1w

+ ≥ 0. Then for ev-
ery admissible model, its trajectoryx(t) generated
by the target identification strategy converges to the
prescribed target value:limt→∞ x(t) = x̂.

4 ILLUSTRATION

In this section we give a numerical illustration of the
work of the target ientification strategy. For a basis,

we take the linear model (1), (4) and the reference
values for the model’s parametersα1 and α2 and
initial quantitiesx0 andy0, given in [Svirezhev, et.
al., 1999]:

α1 = 1.5 · 10−2 (yr−1),
α2 = 0.25 · 10−2 (yr−1),
x0 = 145 (Gt),
y0 = 76 (Gt).

(12)

The set of admissible models we define by

a1 = 10−2, x− = 0,
a2 = 2 · 10−1, x+ = 200,
b1 = 10−4, y− = 0,
b2 = 4 · 10−2, y+ = 5000

(see (10) and (11)); the set includes all linear mod-
els (1), (4) withα1 andα2 ranging in[a1, a2] and
[b1, b2], respectively, and initial statesx0, y0 rang-
ing in [x−, x+] and [y−, y+], resecively; in par-
ticular, it includes the reference linear model with
the parameter values (12) and leaves much space
for parametric uncertianties. In [Svirezhev, et. al.,
1999] 900 Gt is viewed as an approxmate estimate
for the accumulated emission over a reasonable time
horizon. In our simulations we take 500 Gt for the
total accumulated emission,̄Φ, and assume the ex-
ponential emission scenario:ϕ(t) = Φ̄e−t. For the
prescribed limit value of the amount of carbon in the
atmosphere we takêx = 710 Gt. The upper bound
for the correction inputs and the delay function are
defined asγ(s) = 1/(t + 1) and δ(s) = s; the
estimate functionν(s) (see Proposition 2) is given
explicitly; for brievity we omit the formula. The
initial admissible control,w0(t), is zero; thus we let
the planned emission scenario remain unchanged up
to the first switching time,t1. Figure 1 shows the
trajectories of three admissible linear models under
the planned emission scenarioϕ(t). The parameters
of model 1 are close to the reference ones (12) and
the parameters of models 2 and 3 are extremal for
the chosen set of admissible models (see Table 1).

model 1 model 2 model 3
α1 1.5 · 10−2 10−2 2 · 10−1

α2 0.25 · 10−2 10−4 4 · 10−2

x0 100 100 100
y0 70 5000 0

Table 1.

In Figure 1 the curves markedx1, x2 andx3, show
the trajectories of models 1, 2 and 3, respectively.



The straight lines show the limit values for the tra-
jectories. We see that if the planned emission sce-
nario is never updated, the range of the expected
limit values is wide enough.
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Figure 1: The trajectories of models 1 (x1), 2 (x2)
and 3 (x3) under the planned emission scenario, and
their limit values (the straight lines), Gt·10−2.

Figure 2 shows the trajectories of models 1 (marked
x1), 2 (markedx2), and 3 (markedx3), which
are generated by the target identification strategy.
All the trajectories converge to the prescribed limit
value x̂ = 7.1 (Gt ·10−2), illustrating the fact that
the strategy is model-robust.
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Figure 2: The trajectories of models 1 (x1), 2 (x2)
and 3 (x3), generated by the target identification
strategy, and the prescribed limit value (the straight
line), Gt ·10−2. In black and grey periods, in which
the planned scenario is corrected with different ad-
missible controls, are shown.

Figure 3 shows first switching timestm and the
graphs of the inputṡwm(t) correcting the planned

emission scenarioϕ(t) in accordance with the tar-
get identification strategy; the illustration is given
for model 1. We see that the switching timet1, at
which the planned emission scenario is updated for
the first time, is 137 years.
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Figure 3: Figure 3. The switching times and the
scenario correction inputs, for model 1, Gt·10−2.
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