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Abstract: Natural systems exhibit random, chaotic, and multiply periodic behaviors that are driven by gravity, 
weather, and man-made disturbances. Modeling them on a large scale is challenging because behaviors vary 
discontinuously both spatially and in time. Modeling requires calibration and validation data that represent a 
diversity of causes and effects. Measured variables are either categorical (static) or dynamic (time series). 
Integrating multiple data types and reducing large numbers of variables to a select set often leads to subjective 
decision-making that has significant ramifications when applying state-of-the-art multi-step modeling 
approaches, e.g., land-use models driving finite element flow models. This paper is Part 1 of a two-part treatment 
that describes an alternative approach that employs a sequence of numerically optimized data mining algorithms. 
They include 1) signal decomposition to separate static, chaotic and periodic time series components that are 
attributable to different forcing functions; 2) time series clustering to segment monitored sites by their dynamic 
behaviors; 3) non-linear, multivariate sensitivity analysis using multi-layer perceptron artificial neural networks 
(ANN) to determine the relative importance of categorical variables at predicting site-to-site behavioral 
variability; 4) spatially interpolating dynamic behaviors with ANNs; and 5) assembling an end-user application 
that integrates data, site attribute classifiers, and prediction models to model an expansive, behaviorally 
heterogeneous natural system. This paper also describes applications of this approach that predict water levels 
and stream temperatures. 
 
Keywords: clustering; classification; neural network; model 

 
 

1. INTRODUCTION 
 
Natural resource managers commonly ask scientists 
to create predictive models of spatially expansive 
natural systems for planning their protection or 
management. This involves collecting old and new 
data for model development. The data should come 
from multiple locations that represent the diversity 
of behaviors across the natural system. Measured 
variables are either categorical (static), e.g., 
geology; infrequent time series, e.g., monthly or 
annually; or real-time, e.g., hourly or daily.  
 
Time series variables (signals) usually have 
multiply periodic behavioral components caused by 
the earth’s orbital motions. Periodicity is by 
definition highly predictable; however, signals also 
display dramatic spatial and temporal variability 
due to chaotic forcing by humans and weather. 

Chaotic behaviors are by definition only somewhat 
predictable, yet it is these that modelers strive to 
reproduce. Techniques such as band-pass and 
window average filtering can decompose a signal to 
separate the periodic components, leaving behind 
chaotic components. 
 
A study by Conrads and Roehl [1999] found that 
multi-layer perceptron artificial neural network 
models (ANN) of the type described by Jensen 
[1994] offered a number of advantages over finite 
difference physics-based models in reproducing the 
dynamic flow and water quality behaviors in an 
estuary. Most importantly, the ANNs gave much 
better prediction accuracy when using the same 
input and output variables and data. Coppola et al 
[2005] made some of the same observations after 
applying ANNs to forecast water levels (WL) at 
two monitoring wells in an aquifer affected by 

 



climatic variables and pumping. ANNs are a curve 
fitting technique that synthesizes continuously 
differentiable, multivariate non-linear functions to 
near-optimally fit measurements that represent 
complex process behavior. Being empirical, their 
perceived shortcomings generally result from 
misapplication, e.g., failure to decorrelate input 
variables. 
 
A benefit of finite difference models is their ability 
to provide spatially semi-continuous predictions 
from mesh nodes. Conrads et al [2003] showed how 
ANN outputs for multiple locations could be 
interpolated as a post-processing step, and Dowla 
and Rogers [1996] used ANNs to represent static 
3D land elevations; however, determining a method 
for configuring ANNs to simultaneously predict 
spatial and temporal variability became a research 
objective. 
 

 
Figure 1. Well locations in ≈140x140km2 of the 
Suwannee River Valley. Peak elevation ≈ 75m. 
 
 
2. AQUIFER WATER LEVEL 
 
A database of daily water levels WLDi(t) (i=well#) 
from over 200 monitoring wells in the Floridan 
Aquifer (Figure 1) provided an opportunity to 
investigate how to configure ANNs to spatially 
interpolate dynamic behaviors. The area’s water 
managers were interested in determining how to 
defensibly reduce the size of their monitoring 
network; however, the data was also used to 
research if an ANN model could generate spatially 
continuous WL predictions from static variables 
and WL signals. 
 

Figure 2 shows WLDi(t) for a sub-set of the wells. 
While an annual periodic component is apparent, 
there is also the dramatic year-to-year variability 
typical of chaotic forcing. Figure 2 also shows that 
well behaviors are spatially discontinuous due to 
differences in process physics. 
 

 
Figure 2: ≈30x50km2 detail showing well locations 
and hydrographs. Dotted line marks the river. 
 

 
Figure 3. Normalized WL for Classes 2 and 4. X-
axis is in days from April 1982 to October 1998. 
 
A stacked database was created for training ANNs 
to spatially interpolate. Each well was represented 
by a block of rows denoting time stamps and 
columns denoting candidate input and output 
variables. Training vectors are subsets of rows. The 
input and output variables and their column order 
were identical for all blocks. The blocks were 

 



stacked one on top of the other. Candidate input 
variables, each stacked repetitiously in its own 
column, were either categorical (static), changing 
well-to-well but not in time, or time series. The 
only available static variables were UTM x and y, 
and surface elevation z (xyz). The static 
components of WLDi(t) at the wells were calculated, 
WLSi ≡ the historical mean of WLDi(t).  
 
Additional columns were created to hold the output 
variables to be predicted – stacked versions of WLSi 
and WLDi(t) that changed block-to-block according 
to each block’s associated well xyz. Similarly to 
Dowla and Rogers [1996], a static sub-model was 
trained to predict how WLS varied spatially with 
input xyz. Its output was cascaded to be an input to 
a chaotic sub-model that predicted how WLDi(t) 
varied spatially and temporally. Other inputs to the 
chaotic sub-model included xyz, and various 
WLDi(t) from different wells. The two sub-models 
comprised a super-model. 
 

 
Figure 4. Measured and predicted normalized 
water levels for a Class 1 well and a Class 3 well. 
 
Sub-model development is an experimental process 
in which different input variable combinations and 
ANN architectural and training parameterizations 
are evaluated using statistical measures of 
prediction accuracy. Regardless of the inputs used, 
it was found that a single static+chaotic sub-model 
pair was unable to adequately predict WLs 
throughout the study area. Given the behavioral 
discontinuities shown in Figure 2, and that ANNs 

are generally ill suited to synthesizing 
discontinuous functions; a divide-and-conquer 
approach was needed to the segment disparate 
behaviors.  
 
A time series clustering algorithm was developed 
to subdivide wells into classes having similar 
behaviors. The hydrographs of all the wells were 
cross-correlated to produce a matrix of Pearson 
coefficients. Each row and column represented a 
different well and its behavioral similarity to each 
of the other wells. The rows were then clustered 
using the k-means algorithm. The number of 
classes was determined by the sensitivity of the 
mean square error to k. Figure 3 shows hydrographs 
of two of 12 classes. It is apparent that the members 
of a class are similar, and dissimilar to those in the 
other class. Not surprisingly, there were gradations 
of similarity class-to-class. A side benefit of time 
series clustering is that it identifies redundant data, 
largely answering the question of, “Which 
monitoring wells can be discontinue?” Further, 
measurements that are reproducible from others 
using a model are potentially unneeded. Sub-model 
pairs were developed for each class. Figure 4 shows 
results for two wells. 
 

 
Figure 5. Grid with color-coded class assignments. 
Cells are 1-km2. 
 
The next step was to classify regions of the study 
area so that the most appropriate model class would 
be applied to a “new” site. As shown in Figure 5, 
the study area was divided into 1-km2 cells. All of 
the cells were assigned to a class by piecewise 
krigging well x, y, and class codes. Figure 6 shows 
a snapshot of the WL surface predicted by the 
super-model. Averaging smoothed prediction 
differences at class boundary cells. Long-term 
simulations revealed highly asynchronous spatial 
and temporal variability in the water levels driven 
by precipitation, pumping, and surface water levels. 

 



Figure 7 shows how the run-time application was 
assembled. A new site vector is passed to a 
classifier, which looks up the cell’s class based on 
x and y. The classifier instructs a control program 
which class’ sub-models to run. The program runs a 
simulation by stepping time, routing the new site 
static data and real-time data from a time series 
database to the sub-models, and logging 
predictions. The static sub-model’s predictions are 
cascaded to the chaotic sub-model. Input WLDi(t) 
could be modulated by the user to evaluate 
alternative outcomes.  
 

 
Figure 6. Snapshot of super-model output. Peak 
elevation is approximately 60m above sea level. 
 

 
Figure 7.  Run-time application architecture. 

 
In summary: 
1. Signal Decomposition – decomposes time series 

into static and dynamic components to reduce the 
complexity of a behavior to be modeled. This 
improves the accuracy of sub and super-models. 

2. Time Series Clustering – produces numerically 
optimal segmentation of time series into 
behavioral classes. 

3. Stacked Database – configures static and time 
series variables for training ANNs to spatially 
interpolate. 

4. ANN Modeling – provides near optimal 
multivariate non-linear curve fitting of static and 
dynamic variables. 

5. New Site Classification – here, krigging was used 
to produce near-numerically optimal assignments 
of sites to behavioral classes. Other options 
include (linear) nearest neighbor and non-linear 
ANN classifiers. 

6. Super-Model – complex modeling problems are 
solved with relatively simple, near-numerically 
optimal sub-models of optimally segmented 
behaviors and classified sites. 
 

 
3. OREGON STREAM TEMPERATURES 
 
Risley et al [2003] describe how the approach was 
adapted to model “natural” temperatures in small 
streams in the western third of Oregon to support 
federal and state conservation initiatives. The 
available data were:  
• Stream Temperature (ST) - hourly time series 

from 148 “natural” sites recorded from June to 
September 1999 (Figure 8). The sites were 
located on streams that drained basins ranging 
from 0.3 to over 300 km2. Site elevations ranged 
from 7 to 1,445 m above mean sea level. Six of 
the 148 sites were randomly withheld from model 
development for validating results. 

• Climate – 65 hourly time series of air 
temperature, dew-point, solar radiation, 
barometric pressure, snowpack, and precipitation 
from 25 locations. 

• Stream Habitat and Basin Attributes – 34 static 
variables that included stream bearing, gradient, 
canopy cover, wetted widths, depth, and bed 
substrate; and basin topographic and vegetation 
characteristics such as size and forest cover. 

 
Differences between this and the Floridan Aquifer 
model included: 
• A need to predict hourly rather than daily ST. 

This indicated a need for three sub-models for 
each behavioral class to predict static, chaotic, 
and hourly STs. An attempt to model daily 
maximums directly was less successful than 
modeling the hourly ST and picking them out, 
suggesting that it might be better to create the 
best possible process model and use it to compute 
statistics of interest.  

• A large list of candidate static and dynamic 
inputs whose interrelationships and predictive 
performance were unknown. Many of the 
variables were highly correlated. 

 



• New site classification could not be based solely 
on spatial coordinates because of the influences 
of habitat and basin attributes. Thus, the space to 
be interpolated was an “abstract” space defined 
by the static variable model inputs. 

 
Figure 8. 
Western Oregon 
study area. Class 
1, 2, and 3 sites 
are circles in 
white, gray, and 
black 
respectively. 
Triangles mark 
climatic and 
snowpack 
monitoring sites. 
 
Signal 
decomposition of 
the hourly water 
temperature time 
series STHi(t) 
involved the 
following. The 
static 
components at 
the sites STSi ≡ the historical mean of STHi(t). The 
chaotic components STCi(t) ≡ the 24-hour moving 
window averages of STHi(t). STCi(t) was then 
normalized as STCNi(t) = STCi(t) – STSi. STHi(t) was 
normalized as STHNi(t) = STHi(t) – STCNi(t) - STSi. 
 
STCi(t) were clustered into three classes using time 
series clustering. Class 1 sites were generally 
located in warmer climate regions at lower 
elevations and in the southern portion of the study 
area. This includes the Klamath Mountains 
ecoregion and the Willamette River valley 
lowlands. Class 2 sites were more predominant at 
higher elevations, particularly in the Cascade 
Mountains. Class 3 sites were widely distributed at 
middle elevations. 
 
The climatic hourly time series, generically CHi(t), 
were decomposed into chaotic components CCi(t) ≡ 
24-hour moving window averages of CHi(t), and 
normalized hourly CHNi(t) = CHi(t) – CCi(t). Each 
type of climatic variable was measured at multiple 
stations. These tended to be highly correlated 
station-to-station, so they were decorrelated by 
setting one station to be a “standard” and 

calculating differences from the standard at the 
other stations. 
 

 
 

 
 
Figure 9. Measured and predicted STs at two 
validation sites. 
 
A single static sub-model that used only static 
variable inputs to interpolate STS for all three 
classes was used. For each class, chaotic sub-
models were trained to interpolate STCNj(t) from 
static and chaotic climatic inputs. Similarly, hourly 
sub-models were trained to interpolate STHNj(t) 
from static and hourly climatic inputs. Input 
variables were selected according to their predictive 
performance. STHi(t) and STCi(t) predictions were 
summations of the static and normalized chaotic 
and hourly predictions. The critical input variables 
included air temperature, riparian shade, site 
elevation, and basin percent forested area. 
 
Figure 9 shows measured and predicted STHi(t) at 
the “best” and “worst” of the six validation sites. 
Both predictions track the climatically-forced 
dynamic behaviors; however, the Fisher Creek 
predictions are offset from the measurements by an 
average of 2.4 C. The offset is due largely to the 
error in the predicted static ST, suggesting that 
overall model error is a consequence of the process 
by which habitat and basin attributes are 
determined. A second explanation is the procedure 

 



used to select validation sites, e.g., random 
selection as was used here. A validation site whose 
attributes are unique and unlearned will be poorly 
represented by an empirical model.  
 
A non-linear classifier comprised of three ANNs, 
one for each class, was created to select the 
appropriate static+chaotic+hourly sub-model triplet 
for a new site. Each class’ ANN was trained to 
predict a binary 0 or 1 depending if a new site’s 
habitat and basin attributes matched those of its 
member sites. Programmed logic was used to 
resolve ambiguous cases. 
 
 
4. CONCLUSIONS 
 
This first of a two-part treatment provides an 
overview of a divide-and-conquer approach to 
empirically model spatially heterogeneous, 
dynamic behaviors. These behavior are described 
by many types of categorical and time series data 
that should be used to the fullest possible extent. 
And, it is very important to avoid making 
subjective decisions about which data is important. 
 
The Floridan Aquifer exhibited not only highly 
disparate behaviors well-to-well, but also 
gradations of these behaviors. Time series 
clustering provided a numerically optimal solution 
to segmenting the wells into classes. Krigging class 
assignments was a numerically optimal means to 
classify sites between the wells. ANNs use an 
inherently non-linear, multivariate architecture and 
error minimizing training algorithms to fit data 
representing complex behaviors. Their performance 
is improved by decomposing time series into static 
and dynamic components and modeling them 
separately. Modeling behavioral classes separately 
avoids prediction errors caused by fitting 
discontinuous behaviors with continuous functions. 
ANNs can be trained to spatially interpolate with a 
stacked training database that combines static and 
time series variables. The best predictor variables 
can be found by systematically adding and 
removing candidates and tracking statistical 
measures of prediction accuracy. ANN sub-models 
are easily assembled into super-models that can be 
integrated with a database and control program to 
form run-time application. 
 
Modeling Oregon STs extended the approach. 
Dozens of non-spatial site attributes and climatic 
time series from multiple stations were used. The 
need to decorrelate climatic input variables of the 

same type was met by setting one station to be a 
“standard” and calculating differences from the 
standard at the other stations. A non-linear new site 
classifier was developed using ANNs.  
 
Outstanding issues include how to non-linearly 
decorrelate variables of different types; selecting 
validation sites with an understanding of their 
relative uniqueness; and architecting, training, and 
interpreting multi-layer perceptron ANNs. Part 2 
will address these issues while describing the 
development of another application with a major 
and unfortunately common twist. A model of STs 
for the entire state of Wisconsin was developed for 
managing fisheries. It was similar to the Oregon ST 
model, except the available ST time series from 254 
sites were temporally scattered over a dozen 
summers. Few sites overlapped year-to-year 
making time series clustering problematic. 
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