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Abstract: Current subsurface site characterization, plume delineation, remediation designs and monitoring 
network designs that rely on a limited, albeit large, number of sparsely collected data, tend to be expensive, 
cumbersome and frequently inadequate for solving multi-objective, long-term environmental management 
problems.  We present a subsurface characterization methodology that integrates multiple types of data using 
a modified counterpropagation artificial neural network (ANN) to provide parameter estimates and delineate 
groundwater contamination at a leaking landfill. Apparent conductivity survey data and hydrochemistry data 
(i.e. heavy metals, BOD5,20, chloride concentration, etc.) are used to estimate the extent of subsurface 
contamination at the Schuyler Falls Landfill, located in Clinton County NY.  The results of this research 
illustrate the feasibility of combining principal component analysis (used to reduce data dimensionality) with 
the counterpropagation ANN and traditional geostatistical methods (kriging) to estimate subsurface 
contamination. The ANN methodology for obtaining parameter estimates is data-driven and can easily 
incorporate a large number of data types obtained from diverse measurement techniques. This technique is 
also flexible as it does not require the computation of large covariance matrices and, once the ANN is 
trained, can produce realizations for subsurface characterization and monitoring in real time. 

Keywords: Artificial neural networks; Counterpropagation; Parameter estimation; Kriging 

 

1.   INTRODUCTION 

Unlined, leaking landfills are a major source of 
groundwater pollution in the United States 
[USEPA, 2002]. Environmental concerns 
associated with subsurface contamination from 
landfill leachate include volatile organic carbons 
(e.g. benzene and trichloroethylene or TCE), 
heavy metals (e.g. mercury and lead) and 
diminished water quality (e.g. lowered pH and 
increased BOD5,20). The extent of groundwater 
contamination from a leaking landfill in Schuyler 
Falls, N.Y. is estimated using a modified 
counterpropagation artificial neural network 
(ANN) that combines hydrochemistry data and 
apparent conductivity survey data.   

In many earth science parameter estimation 
applications, the parameter of interest (primary 
data) is less abundant and more expensive to 
collect than the secondary data.  The objective of 
this study is to delineate the leachate plume by 
estimating the more abundant apparent 

conductivity survey data while using the 
hydrochemistry as secondary data.  To make the 
hydrochemistry data more manageable, the 
dimensionality of the original hydrochemistry 
variables is reduced using principal component 
analysis.  

This study presents the application of a 
counterpropagation ANN parameter estimation 
technique to delineate subsurface contamination of 
a leachate plume.  The counterpropagation ANN is 
data-driven, can incorporate many data types 
obtained from diverse measurement techniques 
and compares well with traditional geostatistical 
estimating methods (e.g. kriging methods).  The 
feasibility for implementing this ANN estimation 
technique to assist the water quality assessment at 
a full scale landfill is demonstrated in this work. 
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2.  BACKGROUND 2. 2  Schuyler Falls Landfill  

The Schuyler Falls Landfill is an unlined 
municipal waste landfill located in the town of 
Schuyler Falls, Clinton County, NY; see  
(a).  The landfill is approximately 30 acres in size 
and is located roughly 0.5 miles south of the 
Saranac River and 7.5 miles west of Lake 
Champlain [Barton and Loguidice, 1996].  The site 
began accepting municipal waste in 1977 and 
continued operation until closure and capping in 
1996.  After this time, additional lined landfills at 
the site were undergoing permitting and 
construction to the south and west of the unlined 
site.   

2. 1  Artificial Neural Networks 

Figure 1

Figure 1. Location of (a) Schuyler Falls Landfill 
in upstate New York and (b) spatial representation 
of unlined landfill, available hydrochemistry well 

data and apparent conductivity data. 

Artificial neural networks (ANNs) are 
nonparametric statistical tools that can be viewed 
as universal approximators.  ANNs specialize in 
identifying non-linear relationships given 
extremely large datasets and have a relatively 
simple mathematical architecture that makes them 
computationally efficient.  This computational 
efficiency offers significant advantages for 
predictions using real time sensors or large data 
sets that would be unwieldy with other estimation 
methods. 

  
ANNs were developed as large parallel-distributed 
information processing systems that attempt to 
model the learning procedure of the human brain 
[Rumelhart and McClelland, 1988].  Their 
architecture consists of layers of nodes with 
weighted arcs connecting the nodes within the 
different layers.  The information passing 
structure, the number of layers, the number of 
nodes and the algorithms selected for adjusting the 
internal weights create alternative types of ANNs.   
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The counterpropagation ANN is a supervised 
learning algorithm that self-adapts to create 
statistical mappings of predictor and associated 
response vectors.  It sequentially combines the 
Kohonen self-organizing learning algorithm and 
the Grossberg outstar structure [Hecht-Nielsen, 
1987].  The execution of the counterpropagation 
algorithm is defined by two phases: an adaptation 
phase (training or calibration) and an operational 
phase (interpolation or mapping).  Once trained, 
the network functions as a look-up table mapping 
a set of input predictor vectors x = (x1, x2…) to an 
associated response y = (y1, y2…) defined by some 
non-linear function y = φ(x).   
 
Rizzo and Dougherty [1994] introduce the concept 
of applying a counterpropagation ANN to map 
discrete spatially distributed fields of log hydraulic 
conductivity.  In another work, a comparison of 
traditional geostatistical estimation techniques 
(e.g. ordinary kriging and cokriging) with the 
counterpropagation ANN demonstrated that 
counterpropagation was a useful site 
characterization tool [Rizzo et al. 1996].  Although 
the application of counterpropagation ANNs to 
parameter estimation is not mainstream, other 
applications in earth related disciplines include its 
utilization to classify soil samples [Fidencio et al. 
2001; Sullivan, 1999; Sullivan et al. 1998] and to 
model nonlinear pH-processes [Nie et al. 1996]. 

 

 
In a 1993 hydrologic investigation, groundwater 
contaminated by landfill leachate was found to be 
migrating from the southern and eastern regions of 
the unlined landfill (groundwater flow is in the 
north-east direction).  The leachate plume consists 
of halogenated volatile organic compounds, 
including trichlorofluoromethane (Freon 11), 
trichloroethane (TCA), trichloroethylene (TCE),  
tetrachloroethene (PCE) and petroleum by- 



 

products including benzene, toluene, alkanes, 
cylcloalkanes, and alkenes [Dunn Science Corp. 
1986]. During 1993, the total VOCs detected on 
the southern boundary of the landfill exceeded 
100,000 relative response units using a Petrex Soil 
Gas Survey; and an extensive closure investigation 
was ordered for the site [Barton and Loguidice, 
1993].  Remediation activities, including two 
pumping wells and the installation of vertical 
barrier walls, began in 1997 in attempt to contain 
the leachate plume. 

In 1996, apparent conductivity data was collected 
using an EM-34 electromagnetic survey along 
various transects around the landfill footprint to 
delineate the horizontal and vertical extent of the 
leachate plume [Mouser et al., 2005], see Figure 1 
(b).  Apparent conductivity (uS/cm) is often used 
to delineate contaminant plumes by measuring the 
strength of magnetic conductivity expressed as 
excess ions present in the contaminated 
groundwater and leachate.  A total of four 
apparent conductivity datasets are used for plume 
delineation and the most conservative final 
estimation field is presented.  In addition, from 
1996 through 1997, hydrochemistry data was 
collected roughly quarterly at 17 wells throughout 
the landfill.  More than 20 hydrochemistry 
variables were collected including pH, turbidity, 
BOD5,20, chloride, and lead concentration. This 
study will use the hydrochemistry data to aid in the 
estimation of apparent conductivity near the 
landfill. 

 

3.   METHOD OF ANALYSES  

Principal component analysis (PCA) is often used 
to reduce the dimensionality of datasets with 
intercorrelated variables.  PCA was applied to the 
original Schuyler Falls hydrochemistry variables 
(more than 20) to generate a new (reduced) set of 
variables, called principal components, that 
explain a significant amount of variance found in 
the original data. The JMP statistical software 
(SAS Institute, Inc, V5.0.1) was used to generate 
the principal components from the analysis of the 
covariances given the original hydrochemistry 
data.  The first principal component (PC1) 
describes 80% of the total variance and is thereby 
used to represent the more than 20 hydrochemistry 
data for each of the 17 wells.  PC1 is therefore 
incorporated by the ANN as a predictor variable to 
estimate apparent conductivity. 

3.1   Geostatistical Analysis  

The field of geostatistics provides a methodology 
for describing and modeling the structure of a 
parameter of interest, in either space or time, based 

on some limited number of measurements. The 
spatial structure of a parameter of interest is 
described by generating an experimental semi-
variogram given some limited number of 
measurements.  A semi-variogram model is then 
best fit to the experimental semi-variogram (γ).  
This model describes how a parameter of interest 
exhibits dissimilarity as a function of separation 
distance and is computed as: 

( ) ( ) ( )[ ] (1),
2
1 2hααh +−= uuγ

where u is the parameter of interest, α represents 
the spatial coordinates and h is a separation 
distance.   Once generated, the best fit semi-
variogram is defined by a type of curve (i.e. 
exponential, spherical, Gaussian), a maximum 
distance of correlation (range), a parameter that 
accounts for measurement errors or variability 
among short scale measurements (nugget) and the 
semi-variance plateau (sill) [Isaaks and Srivastava, 
1989], see . Figure 2

Figure 2. Apparent conductivity semi-variogram. 
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Ordinary kriging is an estimation method that is 
referred to as the "best linear unbiased estimator", 
or BLUE. This acronym is associated with 
ordinary kriging because the method generates 
parameter estimates using weighted linear 
combinations of available data while minimizing 
the variance of errors and fixing the mean residual 
to zero [Isaaks and Srivastava, 1989].  The 
estimates produced by the ordinary kriging 
technique are dependent on the spatial structure 
described by the model semi-variogram.  The type 
of model curve, range of correlation, nugget and 
sill are all parameters that when used in 
conjunction with measurement data produce 
estimates of the parameter of interest by solving 
the kriging equations and inverting the covariance 
matrices, see [Deutsch and Journel, 1998].   

 



 

 

3.2   Counterpropagation ANN 

The counterpropagation ANN has many features 
that make it an excellent tool for parameter 
estimation. The ANN is data-driven and has the 
ability to directly map inherent non-linear 
relationships between the predictor and associated 
response vectors. The "data-driven" feature is 
advantageous in that the underlying process being 
mapped does not need to be fully understood. The 
complex relationship is extracted directly from the 
data. The disadvantage is that large amounts of 
data are required to ensure the mapping is 
statistically significant.  For applications in which 
a parameter is collected nearly continuously in the 
vertical or horizontal direction (i.e. apparent 
conductivity) the counterpropagation ANN is an 
ideal estimation method. 

The counterpropagation ANN is made up of three 
layers, an input layer, a hidden (or Kohonen) layer, 
and an output (or Grossberg) layer [Hecht-Nielsen, 
1987]. Each layer contains a set of nodes that are 
fully connected to every node in the adjacent 
layer(s), by a set of weights. These weights, 
initially set to random values between 0 and 1, 
form a parallel information passing topology that 
allow for rapid data processing and prediction. 

As preluded to earlier, the counterpropagation 
ANN is executed in a training phase (calibration) 
and an interpolation phase (estimation).  During 
calibration, each training vector (made up of 
predictor variables, i.e. Easting and Northing) is 
presented sequentially to the input nodes of the 
network, see  (a), and the corresponding 
measured output (y=apparent conductivity) is 
assigned as the target (desired output).  The 
internal weights are then adjusted appropriately to 
make the ANN output for each training pattern 
match the known target.   

Figure 3

Figure 3

Figure 3

The passage of all training vectors through the 
ANN concludes one iteration of calibration.  The 
process is performed iteratively until the outputs 
from the ANN match the known targets to a pre-
specified convergence criterion (in this study 10-6).  
Once the ANN has successfully “learned” the 
inherent relationships from the collected 
measurements (a.k.a. calibrated), the internal 
weights become fixed and the ANN is used for 
estimation. 

For the interpolation phase, data patterns with 
unknown target outputs are presented to the ANN 

sequentially and predictions are made for every 
point at which prediction is desired; see  
(b).  In this study, modifications have been made 
to the original counterpropagation interpolation 
phase, which allow the ANN to average (based on 
the inverse distance) the outputs for multiple 
hidden nodes, producing a smoother estimate of 
groundwater contamination. 

For the incorporation of secondary data, two 
counterpropagation ANNs are implemented in 
series.  The first ANN is used to estimate apparent 
conductivity at the 17 locations where PC1 is 
known (wells).  This ANN uses inputs of Easting, 
Northing and PC1 to map associated apparent 
conductivity.  The estimates of apparent 
conductivity mapped to all 17 well locations are 
then added to the apparent conductivity dataset 
and used to train the second ANN.  The second 
ANN uses only inputs of Easting and Northing, 
see  (a) and (b), to map apparent 
conductivity everywhere within the desired 
estimation domain. 

 
4.   RESULTS AND DISCUSSION  

A geostatistical analysis of the four apparent 
conductivity datasets found the spatial structure of 
apparent conductivity measurements to exhibit a 
semi-variogram spherical model with a range of 
750-850 ft and sills ranging from 575,000 to 
1,250,000 and nuggets of 50,000, see Figure 2.  
These geostatistical parameters of spatial structure 
are used to estimate apparent conductivity using 
ordinary kriging, see Figure 4 (a). The ordinary 
kriging technique produces a smoothed parameter 
estimation field of apparent conductivity. 

Figure 4 (b) shows the estimated apparent 
conductivity field using the sequential 
counterpropagation ANNs to combine 
hydrochemistry data (in the form of PC1) and 
apparent conductivity survey data. Both parameter 
fields respect the field data at the observation 
points to a root mean square error value of 10-6. 
Large amounts of data near the landfill result in 
detailed estimates that mimic the kriging estimates.  
The blocky affect witnessed in the 
counterpropagation ANN estimation field is due to 
the inverse distance averaging of multiple (in this 
case 3) hidden node outputs.  Such blocky or 
banded estimates are prevalent in regions where 
data is less abundant. 
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Figure 3. Architecture of counterpropagation ANN during the (a) training phase and (b) interpolation phase. 

 
To determine whether or not the parameter fields 
are statistically different, both fields have been 
examined for measures of central tendency 
(means/medians) and dispersion (variance).  The 
descriptive statistics for the kriged and ANN fields 
are summarized with means of 422.0 and 437.6 
uS/cm, medians of 193.0 and 210.2 uS/cm and 
standard deviations of 614.7 and 637.3 uS2/cm2 
respectively.  Statistical parametric tests (a Two 
Sample t-test and analysis of variance) and non-
parametric tests (Median test and O’Brien test) 
have been used to determine that the two 
parameter fields are not statistically different with 
respect to measures of central tendency 
(means/medians) and dispersion (variance).  For 
these statistics a type I error rate of α=0.05 has 
been used to establish the level of significance.  
Without knowledge of the true apparent 
conductivity field, these statistics are the best 
method to quantitatively compare the two 
estimation techniques.  Additional studies and 
comparisons of parameter estimation techniques 
have been performed on small slabs of Berea 
sandstone for which “reality” (air permeability) 
was considered known.  However, due to page 
constraints, the results of these studies are not 
presented.  

The magnitude of effort involved in the 
implementation of the two methods is an important 
consideration in this study.  The computational 
demands and tasks associated with the kriging 
(and cokriging) methods (i.e. transforming data to 
accommodate different scales of measurements, 
generating numerous auto- and cross-semi-
variograms, fitting appropriate variogram models 
and satisfying the criterion of coregionalization) 
are not required with the ANN. The data-driven 
nature of the ANN enables a non-linear mapping 
of the statistical relationships between the multiple 
variables without the need to model the 
parameter’s spatial structure a priori.  Research is 
currently underway to incorporate anisotropy and 

the uncertainty of parameter estimates into the 
network to better account for layering generally 
observed in the geologic setting.  Increasing the 
number ANN inputs and/or running ANNs in 
series enables the incorporation of more predictor 
variables.  Whereas, adding predictor variables to 
the kriging estimation technique, requires greater 
efforts to model auto- and cross semi-variograms.  

This research demonstrates the potential for 
implementing this ANN estimation technique (as 
an alternative to kriging) to delineate the leachate 
contaminated groundwater and assess water 
quality associated with subsurface contamination 
at a full scale site.  These results suggest the 
counterpropagation ANN is a promising parameter 
estimation method when incorporating multiple 
data types to enhance prediction accuracy and 
reduce uncertainty.   

Future research will incorporate the 
hydrochemistry data using the method of ordinary 
cokriging to delineate the leachate plume.  
Ordinary cokriging is an estimation technique 
(similar to ordinary kriging) that exploits the auto- 
and cross-semivariance relationships between 
secondary and primary variables to produce better 
estimates (compared to ordinary kriging).  
However, the computational demands associated 
with cokriging (previously listed) were not 
achieved for this publication and, as a result the 
field of apparent conductivity was generated using 
the method of ordinary kriging.   
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Figure 4. Estimation field of apparent conductivity (uS/cm) produced by (a) ordinary kriging and (b) 

sequential counterpropagation ANNs. 
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