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A Multi-Model Approach to Analysis of Environmental 
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c Department of Geography, School of Geography, Archaeology & Earth Resources, University of Exeter, 
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Abstract: This paper introduces a novel data-driven methodology named Evolutionary Polynomial Regres-
sion (EPR), which permits the multi-purpose modelling of physical phenomena, through the simultaneous 
solution of a number of models. Multipurpose modelling or “multi-modelling” , enables the user to make a 
more robust choice of those models aimed at (a) the knowledge based on data modelling, (b) on-line and off-
line forecasting, and (c) data augmentation (i.e. infilling of missing data in time series). This methodology 
is particularly useful in modelling environmental phenomena, for which it is usually impossible to obtain 
physical data at a laboratory scale. In particular, the non-linearity of phenomena and non Gaussian nature 
of background noise make on-line forecasting complex, and where data are available, they often contain 
discontinuities (i.e. missing data). The use of EPR in modelling and analysis is illustrated by application to 
a case study containing all these limitations. The application of EPR to thermal behaviour of a stream gives 
not only a good physical insight of the phenomenon, but also allows infilling of missing data, resulting in 
good models that forecast the water temperature. 

Keywords: Data reconstruction; Knowledge discovery in data; Environmental modelling; Evolutionary 
computing; Evolutionary Polynomial Regression. 

1. INTRODUCTION 

Modelling of environmental phenomena usually 
relies on sampled data, which are often incom-
plete. Ideally, analysis should provide new in-
sights into the phenomena, give accurate forecast-
ing of the output for a range of inputs and outputs 
and fill in gaps in data records. This can be 
achieved by creating a range of specific models, 
i.e. models chosen for well-defined purposes, al-
though the construction and choice of the models 
is often challenging. Environmental phenomena 
are typically non-linear in their dynamics and 
affected by non Gaussian background noise. In the 
models, these effects must be reproduced as accu-
rately as possible. The temptation is to use com-
plex non-linear modelling strategies, to better de-
scribe the phenomena. Unfortunately, the answers 

from these are very difficult to interpret from a 
physical aspect.  

An additional problem relates to discontinuities, 
i.e. gaps, often present in data records. On the one 
hand, we are interested in “reconstructing”  that 
information contained in missing data, without 
losing the physics of the phenomenon. On the 
other hand, we do not know how to choose the 
best model for this purpose, because we have no 
data to define a traditional performance indicator. 

This paper presents the Evolutionary Polynomial 
Regression (EPR) technique a novel, model-based 
reconstruction technique capable of reconstructing 
data series containing information about the 
physical phenomena [Giustolisi et al., 2004a]. It 
also provides simple well defined effective models 
useful both for on-line forecasting and simulation. 



 

Such models usually are simple polynomial struc-
tures where each monomial can contain user-
defined functions. These structures can improve 
physical interpretation of the studied phenomenon 
too [Giustolisi et al., 2004b]. EPR has the advan-
tage of combining evolutionary algorithms with 
traditional numerical regression [Giustolisi and 
Savic, 2004a]. EPR is an incremental develop-
ment of a hybrid methodology [Davidson et al. 
1999; 2003] which incorporated least squares op-
timization within symbolic regression. 

Thus, EPR is a hybrid system capable of produc-
ing a series of polynomial models, from which one 
can choose those considered best for a particular 
purpose. It is unlikely that the same model would 
be selected for short gap reconstruction, for fore-
casting the phenomenon (with a particular time 
horizon), or for gaining physical insight. This 
approach is possible with EPR because it does not 
have a rigid structure, but allows a multi-structure 
strategy with multiple performances where each 
different structure has its own advantages for a 
specific modelling goal. 

EPR is tested and demonstrated on a UK envi-
ronmental case study analysing thermal behaviour 
of a river. Air temperature (input) and water tem-
perature (output) data were available, but the data 
series had several gaps of different duration. 
Therefore, several models were constructed to 
reconstruct (infill) data [Bennis et al., 1997], ob-
tain a model for on-line forecasting; and discover 
some new knowledge about the dynamics of the 
heat transfer process over a short time scale. In 
summary, the case study contains all the features 
that typify the analysis of an environmental phe-
nomenon. 

2. THE EVOLUTIONARY POLYNOMIAL 
REGRESSION 

2.1 A general portrait 

EPR is a data-driven hybrid method for a multi-
model approach based on evolutionary computing. 
A general EPR expression may be given as 
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where �  is the estimated output of the sys-
tem/process; aj is a constant value; f is a function 
constructed by the process; X is the matrix of in-
put variables; and m is the length (number of 
terms) of the polynomial expression (bias ex-
cluded) [Giustolisi and Savic, 2004a]. 

The general functional structure represented by 
f(X,aj) is constructed from elementary functions 
by EPR which uses a Genetic Algorithm (GA) 
strategy [Goldberg, 1989]. The GA is employed to 
select the useful input vectors from X to be com-
bined. The building blocks (elements) of the 
f(X,aj) structure are defined by the user based on 
physical process understanding. While the selec-
tion of feasible structures to be combined is done 
through an evolutionary process, the parameters aj 
are estimated by the Least Square (LS) method. 

The process starts with a GA searching through 
the space of user defined exponents, which must 
include the value of zero, thus allowing a simple 
expression to be generated by discarding unneces-
sary components of X. The next step consists of 
determining the aj values by simple LS.  

The LS is performed in an original way, by 
searching for only positive values. This is because 
negative terms usually have a poor physical mean-
ing, as they simply balance positive terms return-
ing a better description of noise. Neglecting nega-
tive terms constrains the search space thus gain-
ing computational efficiency without losing accu-
racy. Moreover, we can hypothesize that some-
times the pressure to find parsimonious expres-
sions could improve the search of physically based 
equations. In this way, EPR returns models that 
are probably less appropriate to on-line forecast-
ing, but have the advantage of giving physical 
insight, consistent with the multi-model concept. 

2.2 Some properties of EPR 

EPR is a technique for data-driven modelling, 
successfully tested on environmental problems 
[Giustolisi et al., 2004a; Giustolisi and Savic, 
2004b]. The combination of the GA for finding 
feasible structures and the LS for training a few 
positive constants of those structures implies some 
advantages. In particular, the GA allows a global 
exploration of the error surface thanks to specifi-
cally defined objective (cost) functions. Through 
such functions we can set criteria for the search: 
(a) avoiding the overfitting of models to training 
data; (b) pushing the methods towards simple 
structures; and (c) avoiding superfluous terms 
representative of the noise in data. EPR shows 
robustness and in every situation can get a model 
truly representative of data.  

The use of LS for evaluation of positive constant 
values aj is not compromised in working with se-
ries containing insufficient data. Indeed, LS per-
formed on short-length expressions shows that 



 

long time series are not necessary for proper 
evaluation of those constants.  

In this scenario, the interesting feature of EPR is 
in the possibility of getting more than one model. 
Each of these models can be used for a specific 
purpose. For instance, we can get a model for a 
short time forecasting, another one for long time 
forecasting, another one for simulation, etc. Each 
different model can be trained according to spe-
cific cost functions.  

A further feature of EPR is the high level of inter-
activity between the user and the methodology. 
The former can use physical insight to make hy-
potheses on the elements in the function f(X,aj) 
and on its structure, see Eq. (1). Choosing the 
proper objective (cost) function and assuming pre-
chosen elements in Eq. (1) (external information), 
and working with dimensional information en-
ables refinement of final models [Giustolisi et al., 
2004]. 

Finally, the best models are chosen on the basis of 
their performances on a test set of unseen data. 
For this purpose, the data set is split in two sub-
sets: (1) the subset used for building models, 
named training set, and (2) the subset used for 
testing the model, named test set. It is important 
to emphasise that the test set is never used in the 
phase of model construction, thereby allowing us 
to evaluate the generalisation capacities of each 
model. Thus, an unbiased performance indicator 
is obtained on real capability of the models. Nev-
ertheless, a bootstrap technique can also be ap-
plied to increase the robustness of model evalua-
tions. 

3. THE CASE STUDY   

3.1 The River Barle 

The River Barle is the main tributary of the upper 
River Exe. It is located in a rural zone of South-
west England [Webb et al., 2003]. Our data col-
lection consists of two years of hourly air (input) 
and water temperature samples (output). Each 
sample is referred to a window of 6 hours of a 
solar day covering the periods: 1-6; 7-12; 13-18; 
19-24. We reasonably assume that the chosen 
windows are representative of the thermal dynam-
ics at a day scale. Both air and water temperatures 
show two main periodic components: the annual 
and the daily cycles [Webb et al. 2003]. 

Further details about data and sampling location 
can be found on Webb at al. [2003].    

3.2 Background to data 

Before starting the modelling phase, we divided 
data into two subsets (training and test) each made 
up of 1460 samples, covering a solar year and 
affected by missing samples [Table 1]. 

Gaps in data are randomly distributed. While the 
longest gap is located in the test set, the 124-
sample gap corresponds to 31 missing days. It 
should also be noted that no pre-processing was 
executed on gaps prior to passing the data to EPR. 

A comprehensive examination of the data con-
firmed that the quality of samples is sufficiently 
good. There are neither occasional nor systematic 
errors which could affect modelling. 

 

Table 1. Features of gaps contained in data. 

Length of gaps 
in 6-hour sam-

ples 

Length of gaps in 
hourly samples 

Number of 
gaps 

1 6 14 
2 12 2 
3 18 1 
28 168 2 
29 174 1 
63 378 1 
65 390 1 
124 744 1 

 

4. THE MODELLING PHASE 

4.1 The strategy 

The modelling phase was done as follows: 

• The structure of Eq. (1) is assumed polyno-
mial. 

• Each monomial term of Eq. (1) consists of 
elements from X raised to pre-specified power 
values. 

• No hypotheses are made about a0, besides its 
positive sign. 

• The assumed range of possible exponents of 
terms from X is (0; 0.5; 1; 2). 

• The maximum length of polynomial structures 
was assumed to be 5 terms plus bias. 

• 7 objective (cost) functions have been used. 

• The LS search is performed for positive coeffi-
cients only (negative ones are a-priori dis-
carded). 



 

• Data were scaled between 0 and 1; the outputs 
were rescaled before being listed. 

Each objective (cost) function is based on the use 
of the Sum of Squared Error (SSE); the differ-
ences among them relate to the way the SSE is 
computed [Giustolisi and Savic, 2004a]. In sum-
mary the following cost functions were used: 

• Soft Cross Validation, SCV from SSE evalu-
ated on the whole training set. 

• Rigid Cross Validation, RCV from SSE evalu-
ated on 50% of samples of the training set.  

• Control of Variance, CVP of each Parameter 
aj. 

• Penalization of Complex Structure, PCS. 

• Penalization of Variance, PV. 

• Traditional SSE evaluation, SSE. 

• Control on Variance CVT of each monomial 
term, contained in the polynomial expression.  

Details about cost functions can be found in Gius-
tolisi and Savic [2004a].  The method of model-
ling ensured that the complex models with large 
monomial terms focussed on describing the physi-
cal process, rather than the background noise.  

The presence of seven objective (cost) functions 
enabled a more robust multi-modelling approach, 
in which models can be selected according to dif-
ferent, appropriate objective (cost) functions to 
represent the most robust choices. Thus, each 
model has its specific utility according to the pur-
poses previously described in the multi-model 
scenario. In our case study, when the search was 
constrained to polynomial expressions only made 
by 1 term plus bias, the same equation was always 
obtained for every cost function. By constraining 
the search to an expression of 2 terms plus bias, 
similar models were found and in some cases (e.g. 
PCS, PV, CVT) they were the same. Furthermore, 
for the same cost function, we can observe that 
EPR does not select more terms than it actually 
needs. For example, if the maximum polynomial 
length was set to 5, EPR could return an expres-
sion of 2 terms, because it does not consider 
longer expressions better than 2. Therefore, as-
suming a cost function, it is not unusual that after 
a well defined polynomial length, EPR goes on 
selecting the same model as optimum. On these 
bases, we can make a robust choice of the model. 
A model selected by different cost functions, or 
preferred to a longer expression by the same cost 
function, is likely to be a good model. Among 

those models assumed as robust choices, the best 
is selected to suit the purpose. To infill gaps in 
data, models would be selected according to the 
gap length. If physical insight was required, selec-
tion would be based on those models that were 
easily interpretable, i.e. with a clear physical 
meaning.  

The choice of the best models for our purpose is 
made on the basis of their performances on the 
test set. We use the Coefficient of Determination, 
CoD, as the main performance indicator, 
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where N represents the number of samples, Wexp 
represents the measured water temperature, �  
represents the value of water temperature returned 
by the model.  

Furthermore, a bootstrap procedure [Efron, 1979] 
was used on the test set data, rather than taking a 
simple value of CoD. Thus, the bootstrap CoD is 
an average value of the CoDs evaluated by re-
sampling data 1000 times from the test set. To 
ensure improved evaluation of the models, the 
standard deviation of the CoD values, reported as 
percentage of the average value are used. The 
bootstrap is particularly helpful for infilling miss-
ing data, since there are no data for comparison 
with model results. 

4.2 EPR results 

EPR returned 13 different models: we selected 3 
models among them as optimal. The three selected 
models are, 

0.5
-1 -1

0.5
-4

W 0.30574 A A 0.50436 W

       0.31731 W A 0.013418
t t t t

tt

= ⋅ ⋅ + ⋅ +
+ ⋅ ⋅ +

 (3) 
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-4 -3 -4 -1
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W 0.078319 W 0.23946 W W A

       0.49433 W 0.31486 A A 0.0047945
t t t t t

t t t

= ⋅ + ⋅ ⋅ ⋅ +

+ ⋅ + ⋅ ⋅ +
 (4) 

0.5 0.5
-1W 1.0073 W At tt= ⋅ ⋅  (5) 

where the subscript t stands for time, in terms of 
6-hour sampling rate and A refers to air tempera-
ture. 

Eq. (3) is the best performing for 1-step-ahead 
prediction. Eq. (4) is the best working in 2-step-
ahead, 4-step-ahead and 6-step-ahead prediction 
(one step corresponds to 6 hours). Eq. (5) was 



 

chosen as the best working in simulation because 
of its more likely physical behaviour, than the best 
CoD-best-working model for simulation, which 
generates unlikely overestimated values for peak 
zones, because it does not contain W terms. In-
deed, it does not take into consideration the effects 

related to the thermal inertia of the stream, 
through the thermal capacity of water. 

Table 2 shows the performances of the resulting 
models, in term of average CoD and percentage 
standard deviation. 
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Figure 1. Comparison between measured data and EPR simulated data. 

B est inf illing  o f m issin g data  for test set

T ime [days]
01

/0
1/

95

01
/0

2/
95

01
/0

3/
95

01
/0

4/
95

01
/0

5/
95

01
/0

6/
95

01
/0

7/
95

01
/0

8/
95

01
/0

9/
95

01
/1

0/
95

01
/1

1/
95

01
/1

2/
95

T
em

pe
ra

tu
re

 [
°C

]

0

5

10

15

20 M easured data
EPR i nf i l l ing

 

Figure 2. Best infilling of missing data. 

Table 2. Statistics on model performances. 

EPR 
model 

Evaluation on 
Average 

CoD 

Standard 
deviation  

% 
(3) 1-step-ahead 0.984 0.101 

2-step-ahead 0.971 0.173 

4-step-ahead 0.958 0.256 

(4) 

6-step-ahead 0.934 0.400 

(5) Simulation 0.878 0.412 

 



 

The three models were obtained by using the fol-
lowing cost functions: 

• CVT for Eq. (3). 

• SCV for Eq. (4). 

• RCV for Eq. (5). 

Note that all the cost functions produced models 
with similar performances. We consider similar 
performances as strong indicators of the robust-
ness of EPR methodology. 

4.3 Comments on EPR results 

All models found have a simple structure, enable 
the gaps in data to be reconstructed and are good 
at on-line forecasting and simulation. Such struc-
tures can allow a physical interpretation. In par-
ticular, Eq. (3) and Eq. (4) suggest a strong link 
between the output water temperature at time t 
and the water temperature at the time t-1. This 
interpretation is confirmed by the presence in both 
equations of the term Wt-1, multiplied by the 
higher coefficient in the expression. This occurred 
very frequently in all models. Another frequent 
term is the product between At and At-1, indicating 
a likely effect of the air temperature at time t and 
t-1 on water temperature. Webb confirmed this by 
physical observations and with a different ap-
proach to data analysis [Webb et al., 2003]. Fur-
ther terms contained by models are considered of 
uncertain origin, and more likely associated with 
the background noise in data. The simulation 
model, whose time plot is represented in Figure 1, 
has a very compact unbiased expression. This is 
due to the similar shape, on average, of the curves 
representing the time plot of air temperature and 
water temperature. Previous studies [Webb et al., 
2003; Mohseni and Stefan, 1999] underline the 
quasi-linear relationship between water and air 
temperatures, which is confirmed by our simula-
tion model. Neglecting the stochastic information 
from measured data, the simulation emphasizes 
the quasi-linear relationship, and the Wt-1 compo-
nent seems to explain the non-linear behaviour 
that occurs in particular ranges of temperature 
[Webb et al., 2003]. Finally, in Figure 2, we can 
see the best infilling of data in the test set. We 
infilled using Eq. (4) for short and medium-size 
gaps, and Eq. (5) for long-size gaps. Maximum 
care was taken to ensure that the reconstructed 
values were physically possible. However, the 
missing samples ranging between the 23/10/95 
and the 08/11/95 (right side of Figure 2), are not 
well reconstructed, because of the same size gap 
in the input data series. Therefore we linearly ap-

proximated the missing air temperatures, thereby 
obtaining reproduction of water temperatures. 

5. CONCLUSIONS 

EPR results for the case study show the effective-
ness of the multi-model approach in dealing with 
environmental problems. We proved the ability of 
EPR to get parsimonious and efficient models, 
which can be flexibly adapted to an accurate on-
line forecasting and simulation. The case study 
confirmed the real capabilities of the multi-model 
approach enabled by EPR. Additionally, the multi-
model EPR strategy not only gave a good physical 
insight of the phenomenon, but also helped fill 
missing data, resulting in models that forecast the 
water temperature. The analysis of similar models 
returned by different objective (cost) functions 
ensured a robust choice of the best models.  The 
cost functions were of general type, and not de-
signed specifically for this case study, suggesting 
that EPR can be used without much customising 
for a particular problem.  
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