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Abstract: We present a Cellular Automata based model for the simulation of the dynamics of plant populations.
The evolution of a plant population in a given area mainly depends on the resources available on the territory
(in turn influenced by other factors like sunlight, rain, temperature, and so on) and how different individuals
(plants) compete for them. Traditional methods used in this field are continuous and based on differential
equations that model the global evolution of the system: unfortunately, most of the data needed to provide
reliable parameters for these models are usually scarce and difficult to obtain. The model we present is instead
thought in a bottom–up fashion, and is based on a two-dimensional Cellular Automaton, whose cells, arranged
on a square grid, represent portions of a given territory. Some resources are present on the area, divided among
the cells. A tree is represented in the model by a set of parameters, defining its species, its size (that is, the
size of its parts such as limbs, trunk, and roots), the amount of resources it needs to survive, to grow, and/or
reproduce itself (produce fruits). The model has been applied to the simulation of populations consisting
of robiniae (black locust), oak, and pine trees, on the foothills of the italian alps, with encouraging results
reproducing real experimentally observed population trends.

Keywords: Cellular Automata; discrete models; plant population dynamics.

1 INTRODUCTION

Modeling the dynamics of plant populations liv-
ing in a given area is a widely studied and ex-
tremely challenging problem, as described for ex-
ample by M.G.Barbour et al. [1998] and J.Silverton
and D.Charlesworth [2001]. The main difficulty
lies in the acquisition of data for the definition
of the parameters of the models, that must cover
very long time periods, especially in the case of
perennial plants. Such data must include the re-
sources available on the territory, and those needed
by plants to sprout, survive, grow, and reproduce
themselves. In fact, the evolution of a plant popu-
lation is mainly influenced by the resources avail-
able (i.e. sunlight, water, substances present in
the soil), and how the different individuals com-
pete for them. Traditional models are continu-

ous and based on differential equations like those
introduced and employed (among many others)
by J.L.Uso-Domenech et al. [1995]; Q.Zeng and
X.Zeng [1996a, b]; C.Damgaard et al. [2002], and
usually model the evolution of the system with
global parameters such as the total number of trees
and their overall biomass. More recently, Cellular
Automata have been introduced to study this prob-
lem as for example by R.L.Colasanti and J.P.Grime
[1993]; H.Baltzer et al. [1998], but usually their ap-
plication was limited to the evolution of single in-
festing species.

In this paper, we present a discrete model based
on two–dimensional Cellular Automata, that allows
the simulation of the evolution of heterogeneous
plant populations composed by different perennial
species as in real woods and forests. The evolution



of the system is thus modeled in a bottom–up fash-
ion, that is, is the result of the interactions among
single individuals and their competition for the re-
sources available on the territory, as for example
discussed by D.Tilman [1994] and J.Ehrlen [2000].
In this paper, we show how the model has been ap-
plied to the simulation of populations consisting of
robiniae (black locust), oak, and pine trees on the
foothills of the italian alps, with encouraging results
reproducing real conditions. However, we believe
that its generality and flexibility make it suitable for
the simulation of different case studies and condi-
tions, with no changes in its basic structure.

2 CELLULAR AUTOMATA

A Cellular Automaton (CA) consists of a regular
discrete lattice of cells, where each cell is charac-
terized by a state belonging to a finite set of states.
Each cell evolves (changes its state) according to a
given update rule, which depends only on the state
of the cell and a finite number of neighboring cells.
All the cells of the automaton follow the same up-
date rule. The automaton evolves through a se-
quence of discrete time steps, where all cells update
their state simultaneously. For a more general intro-
duction on CA we refer the reader to, for example,
the book by E.Goles and S.Martinez [1990].

The idea of our model is that the cells of the CA
represent portions of a given area. Each cell con-
tains some resources, and if conditions are favor-
able, can host a tree. A tree is represented in the
model by a set of parameters, defining its species, its
size (that is, the size of its parts such as limbs, trunk,
and roots), the amount of each resource it needs to
survive, to grow, and reproduce itself (that is, pro-
duce fruits). A single tree has been “decomposed”
in different parts in order to reproduce the effect of
environmental influences. In fact, the environment
and the resources available determine how the over-
all biomass of the tree is divided among the differ-
ent parts composing it, as discussed by D.Tilman
[1988].

When a tree produces fruits, some seeds are scat-
tered in the neighboring cells. A seedling can sprout
in a cell when the latter contains a seed, no other
tree, and a sufficient amount of each resource. In
this case, a tree is born, and the state of the cell
now comprises also all the parameters defining the
tree present in it (otherwise set to zero, if no tree is
present). Then, the cell has also to contain enough
resources to sustain the growth of the plant. The
quantity of resources needed varies according to the

Figure 1: Von Neumann (left) and Moore (right)
neighborhoods. In CA, the update of the state of
a cell (the central one in the figure) depends on the
state of the cell itself and on the state of cells defined
as its neighbors.

species of the tree and its size. When a tree starts
growing, its increasing mass begins to need a larger
amount of resources, that can also be taken from the
neighbors of the cell where it is located. Thus, the
sprouting or the growth of other trees in its prox-
imity is negatively influenced, that is, the tree starts
competing for resources with the others. Whenever
a tree cannot find enough resources to survive, it
dies.

3 THE MODEL

We now give a more formal description of the
model. The cells of the automaton are arranged on
a two–dimensional square grid. The state of each
cell is defined by a flag denoting whether or not it
contains a tree, and a set of variables denoting the
amount of each resource present in the cell, as well
as the features of the tree (possibly) growing in it.
The update rule of the automaton mainly depends
on the presence of a tree in a cell. In case a tree is
present, part of the resources of a cell (and in the
neighboring ones, if the tree is large enough) are
absorbed by the tree. Every cell also produces at
each update step a given amount of each resource
(that in any case cannot exceed a maximum thresh-
old value). The production of resources in the cells
is determined by a set of global parameters that re-
produce environmental factors such as rain, pres-
ence of animals in the area, and so on. The effect
of the presence of a tree in a cell on the neighbor-
ing ones has been modeled by making resources
flow from richer cells to poorer ones (that usually
contain less resources since a part of them is con-
sumed by the tree). The resources we explicitly in-
cluded in the model are water, light, nitrogen, and
potassium. Both von Neumann and Moore neigh-
borhoods (shown in Fig. 1) have been considered in
the simulations. The CA can be thus defined as:

CA = 〈R, N, Q, f, I〉



where:

• R = {(i, j)|1 ≤ i ≤ N, 1 ≤ j ≤ M} is a
two–dimensional N × M lattice;

• H is the neighborhood, that can be either the
von Neumann or Moore neighborhood;

• Q is the finite set of cell state values;

• f : Q × Q|H| → Q is the state transition
function;

• I : R → Q is the initialization function.

3.1 The Cells

Each cell of the automaton reproduces a square por-
tion of terrain with a side ranging from three to five
meters. As mentioned before, each cell contains
some resources, and can host a tree. Thus, the pos-
sible states of a cell must define:

• The type of terrain the cell reproduces;

• The resources present in the cell;

• The amount of resources the cell produces at
each update step, and the maximum amount
of resources it can contain, according to its
type;

• Whether a tree is present in the cell, or not;

• If a tree is present:

– the size of the tree;

– the amount of each resource it needs at
each update step to survive and grow;

– the amount of each resource stored by
the tree at previous update steps;

• Seeds scattered by trees living in the area.

If we assume that k types of resource and l different
tree species are present in the area, the finite set of
states Q can be defined as follows:

Q = {R,M,P, T,ZT ,NT ,UG
T ,US

T ,RT ,MT ,GT ,S}

where:

• R = {r1, . . . , rk} is a vector defining the
amount of each resource present in the cell;

• M = {m1, . . . , mk} is the maximum amount
of each resource that can be contained by the
cell;

• P = {p1, . . . , pk} is the amount of each re-
source produced by the cell at each update
step;

• T is a flag indicating whether a tree is present
in the cell or not;

• ZT = {zr
T , zt

T , zl
T , zf

T } is a vector defining
the size of the different parts of the tree (in
our model, roots, trunk, leaves, and fruits);

• NT = {nT [1], . . . , nT [k]} are the amounts
of each resource the tree takes from the cell
at each update step (in turn depending on its
size ZT );

• U
G
T = {uG

T [1], . . . , uG
T [k]} is the vector

defining the amount of each resource needed
at each update step by the tree to grow;

• U
S
T = {uS

T [1], . . . , uS
T [k]} is a vector defin-

ing the minimum amount of each resource the
tree needs at each update step to survive; for
each i, 1 ≤ i ≤ k, we have uS

T [i] < uG
T [i] <

nT [i];

• RT = {rT [1], . . . , rT [k]} is the amount of
each resource stored by the tree at previous
update steps;

• MT is a vector of threshold values for differ-
ent parameters defining the tree, such as max-
imum size, maximum age, minimum age for
reproduction, maximum number of seeds pro-
duced for each mass unity of fruits, and so on.
These threshold values can be fixed or picked
at random in a given range when a new tree is
created;

• GT = {gr
T , gt

T , gl
T , gf

T } is a vector defining
the growth rate of each of the parts of the tree,
that is, how much each part of the tree grows
when enough resources are available;

• S = {s1, . . . , sl} is a vector defining the
number of seeds present in the cell for each
of the l species growing in the territory.

3.2 The Update Rule

At each update step of the automaton, the tree
present in each cell (if any) takes the resources it
needs from the cell itself and uses them to survive,



grow (if enough resources are available), and pro-
duce seeds. If the resources available in the cell ex-
ceed its needs, the tree stores some resources. Con-
versely, if the resources available in the cell are not
sufficient, the tree uses resources stored at previous
update steps. If also the resources stored are not
sufficient for the tree to survive, the tree dies. A
newborn plant can sprout in a vacant cell, if the lat-
ter contains a seed of its species, and again enough
resources.

Moreover, we defined the update rule in order to
reproduce the increasing influence that a growing
tree can have on neighboring cells. For example,
its roots can extend beyond the limits of the cell
hosting it. Or, when it gets taller, it shades an in-
creasingly wider area around itself, thus having a
negative influence on the growth of other trees in
its neighborhood. We modeled the impact of a tree
in a given position on its neighborhood by making
resources flow from richer cells to poorer ones. In
other words, a cell hosting a large tree is poor on
resources, since the tree at each update step takes
most (or all) of them. If the neighboring cells are
vacant, their resources remain unused, and thus are
richer than the one hosting the tree. Therefore, if we
let resources flow from richer cells to poorer neigh-
bors, the effect is that in practice a large tree starts to
collect resources also from neighboring cells. No-
tice that if we include sunlight among the resources
contained by a cell, we can model in this way also
the “shade” effect. Also, in this way it is possible
to render more fertile areas located in the proximity
of rivers or lakes, since water contained into them
spills in neighboring terrain cells. Seeds are also in-
troduced in the model as a resource that moves from
cell to cell. Thus, a trees can scatter their seeds in
the surrounding area.

Each update step of the automaton covers a given
period of time. As shown here, the rules are suitable
for one year updates (that is, each cell update repro-
duces the evolution of the population in one year),
but they can nevertheless be further fine–grained
in order to model for example single seasons, by
changing the amount of resources produced by cells
at each step (see the Resource Production rule be-
low).

Now, let C(i, j) be the cell located at position (i, j)
in the lattice. With R(i, j) we will denote the re-
source vector of cell C(i, j), with M(i, j) the max-
imum resource values, and so on. The transition
function can be divided in four sub–steps, defined
as follows.

Tree sustenance. If a tree is present in cell
C(i, j), it takes from it a given quantity (defined
by NT (i, j)) of each available resource R(i, j). If,
for some resource i, the amount available ri(i, j)
is lower than the corresponding value in NT (i, j),
then the tree takes the whole quantity ri(i, j). The
amount of resources taken depends on the size of
the tree ZT (i, j). Then, if enough resources (those
taken at this step, plus the resources stored at pre-
vious steps), are available, as defined by vector
U

G
T (i, j), the tree grows, that is, each part grows

according to the growth rate vector GT (i, j) associ-
ated with the tree. Else, the resources might be just
sufficient for the tree to survive (vector U

S
T (i, j)).

In this case, the tree parameters are left unchanged.
In both cases, the tree “burns” an amount of each re-
source, as defined by vector U

G
T (i, j) or U

S
T (i, j).

All the unused resources collected at this step are
stored and added to vector RT (i, j). Otherwise,
if the overall amount (stored plus collected) of at
least one resource is under the “survival thresh-
old” of the tree, the latter dies. The tree also dies
when it reaches its maximum age defined in vector
MT (i, j). All the resources that are not absorbed
by the tree can remain in a cell, or disappear.

Tree reproduction. We have two cases to con-
sider: a tree is present in the cell, or the cell is
vacant. In the former case, the tree may produce
some seeds (if it is old enough, and according to the
size of its fruits zf

T (i, j)), that are used to update the
corresponding variable in the seed vector S(i, j).
Also, new trees cannot sprout from seeds contained
in a cell if a tree is already present. Instead, a cell
can be vacant and contain some seeds. If the re-
sources present in the cell are sufficient (quantities
defined as global parameters for each tree species)
a new tree is born. If seeds from different species
are present in the cell, the winning species is cho-
sen at random, with probability proportional to the
number of its seeds.

Resource production. In the third sub–step, each
cell produces a given amount of resources, accord-
ing to its production vector P(i, j). In any case, the
amount of each resource contained in the cell cannot
exceed the corresponding maximum value defined
by vector M(i, j).

Resource flow. In this step, resources are bal-
anced among neighboring cells, in order to let re-
sources flow from richer to poorer cells. Let rh(i, j)
be the amount of resource h contained by cell
C(i, j), and assume that we are using the von Neu-
mann neighborhood. r′h(i, j), the amount of re-



source i after this update sub–step, is defined as:

r′h(i, j) =
rh(i, j)

2
+

rh(i + 1, j) + rh(i − 1, j)

8
+

rh(i, j + 1) + rh(i, j − 1)

8

In other words, we can see each cell as divided
in four parts, each one containing the amount
rh(i, j)/4 of resource h, and corresponding to one
of the neighbors. The amount of resource h con-
tained in each part is balanced with the correspond-
ing part of the neighbors. In case we adopt the
Moore neighborhood, we can imagine the cells as
split into eight portions. The effect is that, if cell
C(i, j) is richer on resource h than its neighbors,
part of its content will spill into them. As mentioned
before, r′h(i, j) cannot exceed the corresponding
maximum value defined for the cell (mh(i, j)). In
this case, we set r′h(i, j) = mh(i, j). The same rule
is applied to each of the components of the seeds
vector S(i, j).

3.3 The Initial Configuration

The initial configuration of the CA can be defined
by the user, by setting appropriate resource parame-
ters for each cell. Also, some trees might be already
present on the territory, with all the variables defin-
ing them set. Or, the territory might be empty, with
some seeds scattered here and there (clearly, if no
tree and no seeds are present, nothing happens when
the automaton is started).

4 THE USER INTERFACE

The model has been implemented in C++ under
Windows NT. The user interface permits to define
explicitly:

• Different types of cell, according to the max-
imum amount of resources the cell can con-
tain and the amount of resources it produces,
in order to resemble the features of differ-
ent types of terrain. Moreover, it also possi-
ble to reproduce rivers (by setting high values
for water content and production, and zero
maximum content values for other resources),
rocky terrain (with very low values for all
the resources), roads (zero values for all the
resources), rivers and lakes (containing only
water) and so on;

Figure 2: The user interface showing the total num-
ber of trees, and the number of trees of each species
present in the area for the example shown in Fig. 4.

• Different tree species according to the amount
of resources needed at each update step, to the
growth rate of the different parts, that is, how
resources are distributed among the different
parts, the quantity of seeds produced. There
is no upper bound on the number of species
that can be defined;

• Additional resources, other than those shown
in this article;

• The initial configuration of the automaton.

The interface shows step–by–step the evolution of
the system, giving a straightforward image of the
growth of the trees. Moreover, it is possible to show
the distribution of the resources on the territory at
each step, and the overall results of the simulation
(total number of trees, trees for each species, total
biomass, biomass of each single species and single
tree, and so on), as shown in Fig. 2,3, and 4. In our
experiments we could easily implement on standard
desktop PCs CA consisting of thousands of cells,
corresponding to several hectares of land, and a sin-
gle update of the automaton (including the graphic
layout) took a few seconds. Thus, the model seems
to be suitable for the simulation of case studies of
feasible size.

5 CONCLUSIONS

In this paper we presented a model based on CA for
the simulation of the dynamics of plant populations.
Our simulations, reproducing populations of black
locusts, oaks and pine trees living on the foothills
of the italian alps have shown results qualitatively
similar to real case studies.



Figure 3: An initial configuration of the automaton (left). The dark strip represents a river. The image to the
right shows the initial distribution of potassium in the cells. Darker areas are richer on potassium.

Figure 4: Example of the user interface, showing three different stages of the evolution of a plant population
composed by black locusts, oaks, and pine trees, starting from the initial configuration of Fig 3.

We believe that the flexibility of the model, that al-
lows the user to define explicitly different types of
terrain and tree species, can provide an useful tool
for the simulation of real case studies and a better
understanding of the main factors influencing the
dynamics of plant populations.
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