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Abstract: In this paper, crucial aspects of the implications and the complexity of interconnected multi-
pollutant multi-effect assessments of both air pollution control strategies and the closely related reduction of 
Greenhouse Gas (GHG) emissions will be discussed. The main aims of the work described here are to identify 
the core problems which occur when trying to apply current state-of-the-art methodology to conduct 
integrated assessments – in this context, cost-benefit assessment (CBA) as well as cost-effectiveness 
assessment (CEA) – using sophisticated computer models and propose solutions to the problems identified. 
The approaches described will display the integrated use of databases, efficient Genetic Algorithms (GA) and 
already existing software tools and models in a unified model framework. The first part of the paper discusses 
the need for new developments in one particular field of Integrated Assessment Models (IAMs), the use of 
(typically) country-specific single pollutant abatement cost curves, which have been applied in a large number 
of modelling approaches with the aim to find cost effective solutions for given air quality targets. However, 
research conducted to find such cost effective solutions for the non-linear problem of tropospheric ozone 
abatement (dealing with two primary pollutants and their rather complex relationship to form tropospheric 
ozone) identified basic problems of cost-curve based approaches even in this two-pollutant case. The 
approach discussed here solves the key problems identified, making extensive use of databases in order to 
provide fast and high quality model input for CEA and CBA. In addition to that, the application of Genetic 
Algorithms will be discussed as a means to address extremely complex, vast solution spaces which are typical 
for the tasks IAMs are set to solve nowadays. In the final part of the paper, diversity increasing operators and 
methods to increase the performance of the GA to find optima are described and first results of extensive 
model runs are discussed. 
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1. SCOPE 

 
As air quality limit values have become more 
stringent during the last 20 years, and with the need 
to reduce emissions of greenhouse gases beyond 
the scope of no-regret technologies to achieve the 
Kyoto commitments, the costs of emission control 
has constantly gained importance. In international 
negotiations for instance the protocols to the 
UNECE Convention on Long-Range 
Transboundary Air Pollution (CLRTAP), the 
analysis of cost-effective ways to reduce emissions 
played a major role since the 1970s. Binding 
emission control targets for Sulphur Dioxide (SO2) 
and Nitrogen Oxides (NOx) were agreed upon with 
the backing of model calculations of the related 
costs of control strategies (cf. Amann et. al 1996, 
1999; Ap-Simon 1994a,b, and 1996; Bailey 1996 
as well as Gough et al. 1995, 1998), and even the 

most recent protocol to the CLRTAP, the 
Gothenburg Protocol was designed on the basis of 
IAM calculations using the RAINS model 
developed by IIASA. 
2. PROBLEM FORMULATION 
 
Integrated Assessment Models (IAMs) applied in 
this context mostly use(d) single abatement cost 
curves as input to their optimisation tools, in order 
to identify the least-cost ways to achieve given 
reduction targets, and to assess the overall costs of 
strategies. Typically, the analysis focussed on a 
single pollutant (e.g. SO2, NOx) with a (usually) 
linear relationship between emissions and 
concentrations, respectively emissions and effects. 
The case of acid rain and acidification in general 
(Gough et. al. 1995) is one of the most prominent 
examples, where reductions of emissions of SO2 
and/or NOx would usually lead to reduced 



deposition in the same order of magnitude. The 
assessment models had to take into account 
transport of pollutants through the air to some 
extent, in order to map the regional distribution of 
deposition changes, while chemical transformation 
of pollutants did not play a major role yet. 
When air pollution by tropospheric ozone became 
the focus, the modelling task turned more difficult, 
as the relationship between the emissions of ozone 
precursor substances NOx and Non-Methane 
Volatile Organic Compounds (NMVOCs), and to 
some extent Carbon Monoxide (CO) as well as the 
formation of ground level ozone is not linear. 
Thus, the assessment models needed to include 

more complex mechanisms to account for these 
non-linearities. At the same time, the results not 
only needed to address the question, which 
measures to take in order to achieve a cost-
effective solution, but instead had to tell, which 
pollutant to be controlled, and where – thus making 
the optimisation task more complex as the location 
and distribution of emission sources matters (cf. 
Friedrich and Reis, 2000). But even apart from the 
modelling aspects, the case of two pollutants to be 
controlled introduced an issue that has not been 
properly solved up to date. While in a single 
pollutant case, the costs per unit of pollutant 
controlled by a specific measure are usually easy to 
pinpoint, given sufficient information about 
activity rates, the technology and the economics of 
the respective installations, the situation becomes 
more difficult as soon as two pollutants were to be 
controlled, and measures existed, which would 
reduce the emissions of both pollutants when 
installed, usually with differing efficiency, thus 
creating the need for allocating cost proportions to 
single pollutant cost curves. Even though there are 
some possible ways to split the costs into different 
proportions and allocate these to different single 

abatement cost curves, most of them are more or 
less arbitrary and reflect more the preference of the 
model developer than anything. Furthermore, this 
approach implies a source for inconsistencies, as 
model solutions may lead to results where the same 
measure is applied due to its position in one cost 
curve and excluded because of a later position in a 
different cost curve.  
In this paper, these particular problems shall be 
discussed, with a focus on the current development 
towards multi-pollutant multi-effect assessment 
models, where a robust and transparent 
methodology to solve this problem could prove to 
be vital. In the second part, a new methodology to 

model the application of technical and non-
technical emission control measures and the 
respective costs of abatement is introduced and 
discussed in detail. Finally, an outlook will be 
given with respect to the application of this new 
methodology in the European research project 
MERLIN (see http://www.merlin-project.info). 
 
3. IAMS IN A MULTI-POLLUTANT MULTI-
EFFECT ENVIRONMENT 

 
To the same extent that the knowledge about air 
pollution and its impacts increased, the 
development of more and more complex models to 
analyse various aspects of air pollution in an 
integrated way took place. Figure 1 illustrates the 
level of complexity which is characteristic for 
current assessment tasks. And as it was indicated 
above, model concepts that have been suitable to 
address comparatively simple modelling and 
optimisation tasks are far less fit to cope with this 
level of complexity. 
3.1 Limitations in the Use of Single Pollutant 
Abatement Cost Curves 

Figure 1. Illustrating the Multi-Pollutant Multi-Effect Environment for IAMs 



As it was indicated in the problem formulation, 
single abatement cost curves for one specific 
pollutant and a source sector or country are widely 
used in IAMs. They usually serve the purpose to 
provide a function of costs and related emission 
(abatement) levels in a computable way, for 
instance as input to optimisation algorithms. 
However, the limitations of such single abatement 
cost curves are obvious, in particular in the view of 
the correlations between different pollutants and 
effects as indicated in Figure 1. Furthermore, 
generating abatement cost curves as input to 
optimisation leads to an artificial constraint of the 
models that are applied to find optimal solutions 
for a given task. As abatement options have to be 
ranked e.g. according to their unit costs (€/t), vital 
issues, such as a different abatement efficiency of a 
specific option depending on at what stage it is 
taken, cannot be accounted for (abatement 
measures applied to the same source sector often 
mutually influence their abatement efficiency, for 
instance, a measure that is applied first reducing 
x% of emissions from a specific source reduces the 
absolute efficiency – in terms of tonnes of 
pollutant abated – of a second measure applied to 
the same sector, and vice versa).  
Hence, a new approach has to be taken that is able 
to reproduce the complex interconnections between 
pollutants and effects, but at the same time has to 
be transparent and simple enough to keep 
uncertainties to a minimum. Here the extremely 
fast increase in both computer speed and data 
storage and handling capacities provides the basis 
for innovative solutions. Basically, the same data 
as would be needed to generate abatement costs 
curves is collected, with more level of detail even 
to improve the reproduction of sector-specific 
characteristics. This comprises the following main 
data types: 
• data on stock and activities (e.g. number of 

vehicles and annual mileage) 
• data on measures (e.g. applicability, efficiency, 

implementation degree, costs) 
• ‘meta-data’ (information on relationships 

between measures)  

Instead of trying to process and split this data into 
single abatement cost curves, the optimisation 
model is given full access to the databases, thus 
being able to select, apply and evaluate abatement 
options with a considerable degree of freedom. 
And as an additional benefit, this approach permits 
the inclusion of structural changes due to the 
implementation of abatement options, for instance 
increasing an activity of one sector in order to 
reduce that of another.  
This ‘measure-matrix-approach’ creates a number 
of additional modelling opportunities, e.g. by 
making it possible to assess single measures, 
individual sectors or whole countries/regions with 
simple presets, as no pre-processing of data is 
needed. Moreover, it does reflect the real-world 
characteristics of abatement options to a far greater 
extent than before, as in most cases, costs of 
abatement options are expressed relative to its 
application on stock or by activities. In addition to 
that, abatement options usually address not only 
one single pollutant, but a portfolio of different 
pollutants, either reducing or increasing emissions. 
This is of particular importance for the assessment 
of multi-effect problems, as such analyses usually 
have to achieve conflicting targets. Finally, this 
approach is not limited to mere technical 
abatement options, as it can include structural 
measures (e.g. changes in the sectoral structure of 
electricity generation etc.) and non-technical 
abatement options in the same way. 
3.2 Intelligent Algorithms to Solve Complex 
Problems 
A second critical issue for the assessment of 
complex multi-pollutant multi-effect problems is 
that of optimisation. While IAMs to date usually 
apply either linear optimisation algorithms (Amann 
et al., 1999), or simple iterative approaches 
(Friedrich and Reis, 2000), finding optimal 
solutions in a solution space as complex and vast 
as it is characteristic for multi-effect problems 
needs faster approaches. Here, evolutionary (as 
well known as ‘genetic’) algorithms (EA) can be 
the ideal tool, even though they have not been 
widely applied in the field of air pollution 

Figure 2. Implementation of an evolutionary algorithm in IAM 



modelling yet (cf. Loughlin et al., 2000). As their 
name suggests, EAs optimise in a way similar to 
that of nature, using concepts such as 
recombination, mutation and fitness for survival to 
induce a process of evolution towards an optimal 
solution. An exemplary implementation is 
described here.  
The optimisation algorithm as it is applied in the 
MERLIN project forms the core of an IAM to 
conduct cost-effectiveness (CEA) and cost-benefit 
analysis (CBA) of combined strategies to reduce 
air pollutant and greenhouse gas emissions 
simultaneously. This IAM is termed Optimisation 
Model for Environmental Integrated Assessment 
(OMEGA-2, the first OMEGA model was 
developed for the optimisation of Ozone abatement 
strategies, see Friedrich and Reis, 2000). The 
implementation of an evolutionary algorithm to 
identify optimal bundles of abatement measures is 
illustrated in Figure 2.  
The decision to apply EA emerged, as it became 
clear that the problem to be solved was 
characterised by a vast solution space, as hundreds 
of different abatement options could be combined. 
For this particular situation, other approaches that 
were investigated, for instance global or local 
random choice, gradient based algorithms or divide 
and conquer strategies could not offer satisfactory 
performance.  On the other hand, a ‘black-box’ 
situation had to be avoided, as for this particular 
task, the pathway to an optimal solution can 
provide as vital information as the solution itself.  
In principle, the problem to be solved can be 
formulated as follows: from all possible abatement 
options (‘measures’), the set of measures has to be 
identified, which fulfils all criteria (in this case air 
quality limit values and GHG emission limits) 
simultaneously at least costs. 
Steps 1 and 2 form the initialisation to start the 
optimisation and enter the loop, where – in our 
case – abatement options are selected to reduce a 
variety of emissions to air. In step 3 the resulting 
changes of concentrations of pollutants are 
calculated, using so-called source-receptor 
matrices  (SR-M). To reduce computational effort 
in this step, the resolution of the matrices will first 
be reduced and then gradually increase every 
generation run, until the finest grid resolution of 
50x50 km will be achieved.    
Thus using the total costs of the abatement 
measures and the preset thresholds that are still 
exceeded, the strategies can be evaluated in step 5. 
This approach allows different weights for limit 
values that are not achieved, introducing a so-
called “fitness value” which will then be used to 
discard the worst performing strategies.  
Pairs of strategies (parent-generation) are selected 
according to their degree of fitness, which will pass 
their measures on to two newly formed strategies 
(child-generation). In a first step, an n-point 

crossover mutation approach will be implemented 
in the algorithm, as it is illustrated in Figure 3 (in 
this case, a two-point cross-over,) where the parent 
measures are cut in a number of pieces, which are 
then recombined to form the offspring. 
The position of the measures within the strategies 
will play an important role as well. If, for instance, 
two strategies with sufficient fitness are selected in 
step 5, it would be harmful, to place measures of 
the first strategy which, for instance, focus mainly 
on reduction of one particular pollutant in one 
country at the beginning and those of the second 
strategy at the end. In this case their offspring (the 
next generation) would probably consist of one 
strategy, that has no such measures at all and one 
that has twice as much as needed, thus resulting in 
unbalanced individual strategies in the next 
generation.   
To overcome this, groups of measures are formed 
that have more or less  similar effects, where some 
measures may be members of several groups. This 
will be done automatically, so new measures can 
easily be added to the measure database. The 
strategies will consist of several sections, and every 
section can only include measures of one single 
group. So the mixing up of measures in step 5 will 
either be done by copying the whole measure 
group of one parent strategy or by n-point-
crossover. Aside from solving the problem 
mentioned above, the measure groups also allow 
small variations of the strategies, as follows.  

Most evolutionary algorithms simulate mutation of 
the individuals. In step 6, some strategies are 
chosen by random, and one or more of its measures 
will be replaced by other ones, that roughly, but 
not exactly, have the same effect. Because this is 
the case for measures of the same group, each one 
which fits into the same position of the strategy 
(and thus is a member of the same section) can be 
chosen. To make sure, that the fitness cannot 
decrease from generation to generation, the chosen 
strategy shall be duplicated, and only the copy will 
be allowed to mutate. This combination of a global 
search method (the crossover of strategies, done in 

Second parent strategySecond parent strategy

First parent strategyFirst parent strategy First child strategyFirst child strategy

Second child strategySecond child strategy

cutting points 

cutting points 

Figure 3. Illustration of a 2-point-crossover 
mutation 



step 5) and a local one (mutation as done in step 6) 
is often considered to be the key to the power of 
EAs in optimisation problems. 
The following improvements of the EA-approach 
are in the process of being implemented and tested: 
• Inclusion of special strategies as subsets of the 

starting population, to direct the search to 
regions of the solution space, which indicate 
potential for local/global optima. 

• Preference for pairs consisting of solutions of 
the same neighbourhood to support local 
search. 

• Enhancement of the fitness of young solutions, 
i.e. leaving the mutation operator enough time 
to improve them locally, so they are not 
prematurely suppressed by older ones.  

• Use of diversity increasing operators, 
preventing the search to ignore promising 
regions too early in favour of few strategies 
with high fitness.  

• Simulation of SINEs (short interspersed 
elements) to provide points to the crossover 
operator where cutting is done with increased 
probability. 

 
As first result of OMEGA tested on some subsets 
of the final measure and stock/activity databases 
indicate, the diversity increasing operators seem to 
be most promising, since the whole population 
soon converges to some local optimum (see 
Figure 4), hence the mating operator did not have 
strong effects anymore. 
Probably the most prominent of diversity 

increasing operators are the “Messy Genetic 
Algorithms”, proposed by Goldberg in 1989 and 
generalised by van Veldhuizen in 1999 to multi-
objective problems. Unfortunately this approach is 
not suited well for interacting measures which in 
some cases might in-/exclude others or modify 
their effects. Hence, to force the algorithms to 
cover at least the major part of the search space, 
the target presets were altered by some vanishing 
trigonometric function, which takes the generation 
number as an argument. This can best be 

recognised by Figure 5, showing the optimisation 
progress restricted to the solvent use sector, where 
more or less only one single pollutant (non-
methane volatile organic compounds, short: 
NMVOC) is of importance. 

 
Figure 4. Premature convergence to local optimum 

 
Figure 5. Changing VOC-Targets 
 
 
Figure 6. : Twofold evaluation 
 
Of course the algorithm computing time increases 
until it converges, but the optimum found in most 
runs was slightly better. Further improvement was 
achieved, when the best strategy of every 
generation was also evaluated by the fixed 
reduction targets and stored if it was the best one 
found so far, to be included in the population from 
time to time. Looking at this best abatement 
strategy of every generation the costs can only 
increase if it came closer to some reduction target 
(in any country), which was not met before. 
For comparison Figure 6 shows two typical 
optimisation runs, at the top with oscillating 
emission reduction targets and only a simple 
evaluation with regard to the distance to oscillating 
reduction targets, and below an optimisation run 
where every strategy is evaluated twofold (using 
the distance to the fixed reduction targets as well as 
to the oscillating targets). The upper figure 
indicates that when the optimisation approaches a 
threshold, which was not met so far, costs can 
increase in the early stage of the optimisation, but 
in contrast to the lower figure, shows a monotonic 
decrease of costs afterwards.   
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4. SUMMARY AND CONCLUSIONS 
 
The previous sections have given an insight in both 
the most prominent problems for IAM in a multi-
pollutant multi-effect environment, and innovative 
solutions to tackle them. To some extent, it is 
astonishing, that only little development in the field 
of IAMs for CEA and CBA could be witnessed 
during the last decade, while increasing computing 
power and growing knowledge about causes and 
effects of air emissions improved the situation for 
modelling to quite some extent.  
However, as the problems to be addressed are 
marked by increasing levels of complexity, new 
approaches need to be taken. This is even more 
true, as the next development steps for IAMs are 
quite predictable. On the one hand, cross-media 
approaches need to be established, as research has 
already identified the importance of, for instance, 
deposition of air pollutants into surface water and 
soils. In a similar way, carbon sequestration in soils 
or oceans, or emissions of specific pollutants from 
soils to air are of importance. On the other hand, 
economic evaluation of environmental costs, both 
costs of abatement and external effects of 
environmental pollution, gains more and more 
importance for policy implementation. Thus, the 
full integration of models and tools for 
macroeconomic assessment of key indicators (e.g. 
GDP, employment effects, distributional effects, 
burden sharing etc.) has to be realised.  
The benefits of this approach are obvious: No 
allocation of costs to single abatement cost curves 
is needed. Furthermore, measures are either 
applied, or not, reflecting a real-world choice of 
options. As the model selects measures from a 
database, maximum flexibility is achieved, new 
measures can easily be introduced, or others 
removed. Finally, the order in which measures are 
applied is taken into account. Hence, the problems 
described in Sect. 3.1. cannot occur. 
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