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Abstract: This paper presents a novel method for estimating “total” predictive uncertainty using machine 
learning techniques. By the term “total” we mean that all sources of uncertainty are taken into account, including 
that of the input and observed data, model parameters and structure, without attempting to separate the 
contribution given by these different sources. We assume that the model error, which is mismatch between the 
observed and modelled value reflects all sources of uncertainty. Fuzzy c-means clustering was employed to 
cluster the input space into different zones or clusters assuming that the all the examples those belong to the 
particular cluster have similar model errors. The prediction interval is constructed for each cluster on the basis of 
empirical distributions of the historical model errors associated with all examples of the particular cluster. 
Prediction interval for the individual example is derived from cluster based prediction interval according to their 
membership grades in each cluster. Linear or non-linear regression model is then built in calibration data that 
approximates an underlying functional relationship between an input vector and the computed prediction 
intervals. Finally, this model is applied to estimate the prediction intervals in verification data. The method was 
tested on hydrologic datasets using various machine learning techniques. Preliminary results show that the 
method has certain advantage if compared to other methods.  

Keywords: Model uncertainty; prediction interval; fuzzy clustering.  
 

1.  INTRODUCTION 

In forecasting environmental variables the decision 
makers often require not only point forecasts but also 
the associated uncertainty estimates. In weather 
prediction such practice is common but in other 
areas, e.g., in water and environmental management, 
the prevailing format of forecasting was for a long 
time deterministic and rarely took into account the 
various sources of uncertainties - input data, 
observed data, parameter, and model structure. 
Lately there is an increased interest to developing 
methods to quantify model uncertainty. This can be 
done using several approaches: 
• forecasting the model outputs probabilistically as 

it is often used in hydrological modeling 
[Krzysztofowicz, 2000]; 

• estimating uncertainty by analyzing the statistical 
properties of the model errors that occurred in 
reproducing the observed historical data. This 
approach has been used for time series forecasting 
[Wonnacott and Wonnacott, 1996, Nix and 
Weigend, 1994].  

• simulation and re-sampling based techniques, 
generally referred to as ensemble, or Monte Carlo 
methods (one of the versions of such approach 
used in hydrologic modeling is a generalized 
likelihood uncertainty estimator, GLUE [Beven 
and Binley, 1992]).  

• fuzzy theory based methods [Abebe et al., 2000; 
Maskey et al., 2004]. 

The first and the third approaches require the prior 
distributions of the uncertainty of the input 
parameters to be propagated through the model to the 
outputs. The second approach requires certain 
assumptions about the data and the errors, and, 
obviously, the relevance and accuracy of such 
approach depends on the validity of these 
assumptions. The last approach requires knowledge 
of the membership function of the quantity subject to 
the uncertainty. It should be noted that most of the 
researches are considering the individual sources of 
uncertainty (for example parameter or input data 
uncertainty) rather than the combined effect of all 
sources of uncertainty. 



 

This paper presents a novel approach using machine 
learning techniques to estimate the total model 
uncertainty that takes into account all sources of 
uncertainty without attempting to separate the 
contributions given by the different sources of 
uncertainty. We assume that the model error, which 
is mismatch between the observed and modelled 
value, reflects all the sources of uncertainty. In this 
paper, uncertainty is quantified in the form of two 
quantiles of the underlying distribution of model 
errors. Training (calibration) set is partitioned into 
different clusters having similar model errors; 
machine learning models are built for prediction 
intervals (PI) for each cluster and for each example. 
The proposed method is employed to estimate the 
PIs by several machine learning techniques for a 
number of environmental datasets, and is compared 
to other methods. 

2.  PREDICTION INTERVAL 

An interval forecast is usually comprised of the 
upper and lower limits between which a future 
unknown value (e.g. a point forecast) is expected to 
lie with a prescribed probability. This limit is called 
prediction limit (PL) or bound, while the interval is 
called the prediction interval (PI) (Figure 1). The 
prescribed probability is called confidence level. The 
following sub-sections briefly present the methods 
for constructing PI for the model outputs. 

 
Figure 1. Terminology used in the paper. 

2.1 Prediction Interval for Linear Regression 

We assume to have the regression model y = f(x) to 
predict a set of the observed (target) values ti, (i=1,..., 
n) associated with the real-valued input vectors xi, 
xi∈ℜm. Most of the methods to construct 100(1-α)% 
prediction limit (PL) for the model output typically 
assume that the error has Gaussian distribution with 
zero mean (so model bias is zero) and the standard 

deviation σ  and for one dimensional input (m=1) are 
expressed as: 

/ 2 / 2   , U LPL y z PL y zα ασ σ= + = −  (1) 

where PLU and PLL are the upper and lower PLs 
respectively, zα/2 is the value of the standard normal 
variate N(0,1) with cumulative probability level of 
α/2. Since prediction is assumed unbiased, PLs in (1) 
are symmetric about y. Generally error variance σ 2 is 
not known in practice and is estimated from the data. 
An unbiased estimate of σ2 with n–p degrees of 
freedom, denoted by s2, is given by the formula: 
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where p is number of parameters in the model and 
SSE is the sum squared error. 

If the error variance s2 is not constant in the output 
space (i.e. y is heteroscedastic), then (2) can be 
modified to give an estimate for model output yi for 
each observation i as follows [Wonnacott and 
Wonnacott, 1996]: 

2 2 2 2(1 1/ ( ) /( 1) )
i i xys s n x x n s= + + − −  (3) 

where xi; 2
xs  and x  are the input, input sample 

variance and input mean respectively; i = 1,...,n. It 
can be seen that the error variance for the output yi is 
always larger than s2 and it depends on how far xi is 
from x . For multivariate linear regression, (3) can 
be modified as: 

2 2 1(1 x ( ) x )
i

T T
i iys s X X −= +  (4) 

where X is a matrix of input space, appended to a 
column of 1’s as the leftmost column, and xi is ith 
row of matrix X. This method will be referred to as 
linear regression variance estimator (LRVE) 
method. 

2.2 Prediction Interval for Non-Linear Regression 

For non-linear models especially for large number of 
variables with complex relationship and black box 
type models (for example, artificial neural networks) 
derivation of the error variance s2, and hence 
computation of the PI is not so easy. However, 
resampling based techniques have been reported in 
the literature to estimate s2 and thus to compute the 
PI for an artificial neural network (ANN), one of the 
non-linear regression models (see for example, Nix 
and Weigend [1994). Typically, these techniques are 



 

based on the premise that the error variance s2 can be 
decomposed into three terms: model bias, model 
variance, and target noise. The model variance can 
be estimated by building an ensemble of ANNs using 
data resampling. Target noise is estimated by 
training yet another ANN on the residuals of this 
ensemble’s predictions. The mentioned methods 
assume the zero mean of the error distribution (zero 
model bias) and this assumption is very often not 
justified. The necessity to generate many model 
ensembles to ensure a reliable estimate leads to high 
computation times.  

3.  MACHINE LEARNING TECHNIQUES 

A machine learning (ML) technique is an algorithm 
that estimates an unknown mapping between a 
system’s inputs and its outputs from the available 
data [Mitchell, 1998]. As such a dependency is 
discovered, it can be used to predict the future 
system’s output from the known input values. In this 
paper we used artificial neural networks (ANN), 
locally weighted regression (LWR) and M5 model 
trees (MT) as such techniques.  

An ANN is the most widely used ML technique and 
regarded as universal function approximation due to 
its ability to represent both linear and non-linear 
relationships Haykin [1999]. ANNs consist of a large 
number of simple processing elements called 
neurons or nodes. Each neuron is connected to other 
neurons by means of direct links, each being 
associated with a weight that represents information 
being used by the network in its effort to solve the 
problem. The weights are determined by training the 
networks based on pairs of input-output dataset.  

A model tree (MT) is hierarchical (tree-like) modular 
model consisting of splitting rules in non-terminal 
nodes and the multivariate linear regression models 
at the leaves, so it is analogous to a piecewise linear 
function. MT learning is fast and the results are 
interpretable. See Quinlan [1992] for more details. 

Locally weighted regression (LWR) (see Atkeson et 
al. [1997]) is an instance-based method; it predicts 
the given input instance by querying entire instance 
space to find those instances which are local 
(similar) to the given input instance and predicting 
based on those local instances. LWR generates local 
models by giving a higher weight to the instances in 
the neighbourhood of new input vector. It weights 
the training instances according to their distance to 
the test instance and builds a linear regression on the 
weighted data. Training instances close to the test 
instance receive a higher weight and those far away 
– a lower one.  

Clustering involves the task of partitioning a dataset 
into a number of homogenous clusters with respect 
to a suitable similarity measure. In the traditional 
hard clustering (e.g., using k-means method), each 
data point is assumed to be in exactly one cluster. 
This condition can be relaxed and allow for each 
instance to belong to a cluster with some degree, 
interpreted as a “fuzzy” membership in a cluster. A 
point may belong to several clusters with some 
degree (membership grade) in the range [0, 1]. The 
most known method of fuzzy clustering is the fuzzy 
c-means (FCM) [Bezdek, 1981]. 

4.  METHODOLOGY 

Due to the various sources of uncertainty mentioned 
in the section 1, it is not surprising that the model 
outputs do not match the observed values well. The 
proposed method is based on an idea that the 
historical residuals (errors) between the model 
outputs and the observed data are the best available 
quantitative indicators of the discrepancy between 
the model and the real-world system or process, and 
give the valuable information that can be used to 
assess the model uncertainty. These residuals are 
often functions of the model input’s values and can 
be modelled. Note that in contrast to the methods 
considered above, we do not assume any distribution 
of model errors; as a consequence, the model bias 
can be non-zero.  
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Figure 2. Computation of the prediction interval in 

case of using fuzzy c-means clustering. 

The input dataset can be partitioned into several 
clusters corresponding to different values of 
historical residuals. It can be assumed that the region 
in the input space that is associated with any 
particular cluster has residuals with similar values. 
Having identified the clusters, the PIs for each 
cluster are computed from empirical distributions of 
the corresponding historical residuals. For instance, 
in order to construct 100(1-α)% PI, the α/2*100 and 



 

(1-α/2)*100 percentile values are taken from 
empirical distribution of residuals for lower and 
upper PI respectively. Typical value for α is 0.05, 
which corresponds to 95% confidence interval. If the 
input space is divided into crisp clusters, e.g., by k-
means clustering, and each instance belongs to 
exactly one cluster, this computation is 
straightforward. However, in the case of fuzzy 
clustering where each instance belongs to more than 
one cluster and is associated with several 
membership grades, the computation of the above 
percentiles should take this into account. To 
calculate PI, the instances should first be sorted with 
respect to the corresponding errors in ascending 
order. The following expression gives the lower 
prediction interval (PIC, see Figure 1 for 
terminology) for cluster i: 

, ,
1 1

       : / 2
j nL

i j i k i j
k k

PIC e j μ α μ
= =

= <∑ ∑  
(5) 

where j is the maximum value of it that satisfies the 
above inequality, ej is the error associated with the 
instance j (instances are sorted), μi,j is the 
membership grade of the jth instance to cluster i. 
Similar type of expression can be obtained for the 
upper PI (PICU). This is illustrated in Figure 2. 

Once the PI is computed for each cluster, the PI for 
each instance in input space can be computed; note 
that this computation also depends upon the 
clustering technique employed. If crisp clustering is 
employed, then the PI for each instance in the 
particular cluster is the same as that of the cluster. In 
case of fuzzy clustering, the so called “fuzzy 
committee” approach is used and the PI is computed 
using the weighted mean of the PI of each cluster as: 

, ,
1 1
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(6) 

where L
jPI and U

jPI  are the lower and upper PI for 
jth instance respectively. Once the lower and upper PI 
for each input instance is obtained, PLs are 
computed by simply adding model output to them: 

  ,L L U U
j j j j j jPL y PI PL y PI= + = +

 
(7) 

where L
jPL and U

jPL are the lower and upper PLs for 
jth instance respectively. Having these, two 
independent mapping functions are constructed that 
estimate an underlying functional relationship 
between an input x and the computed PLs limits as: 

(x;  ),   (x;  )L L L U U U
U UPL f PL fθ θ= =  

(8) 

where the mapping functions (.)L
Uf  and (.)U

Uf  
estimate the lower and upper PLs respectively, 

Lθ and Uθ are their parameters. Note that mapping 
functions can take any form, from linear regression 
to non-linear functions such as ANN. The target 
variable of these functions might be either the PI or 
PL. The mapping function fU will be referred to as 
the local uncertainty estimation model (LUEM).  

We assess the performance of the LUEM by 
evaluating the prediction interval coverage 
probability (PICP). The PICP is the probability that 
the target of an input pattern lies within the estimated 
PLs and is computed by the corresponding frequency 
as follows: 

1PICP count ,  : L U
j j jj j PL t PL

n
= ≤ ≤  

(9) 

If the clustering technique and the LUEM are 
optimal, then the PICP value will be consistently 
close to the (1-α)%. Another performance measure 
for the PL was used as well. This is the mean 
prediction interval (MPI) calculated across all points 
in the test dataset. It is estimated by  

1

1MPI [ ]
n U L

j j
j

PL PL
n =

= −∑  
(10) 

 

5.  EXPERIMENTAL DESIGN 

5.1 Datasets 

The method was tested on a number of datasets; here 
the results for hydrologic datasets are reported. They 
related to the river flows prediction in the Sieve 
catchment in Italy [e.g., Solomatine and Dulal, 
2003]. Prediction of river flows Qt+i several hours 
ahead (i=1, 3 or 6) is based on using the previous 
values of flow ( )t qQ τ−  and previous values of 

rainfall ( )t rRE τ− , where τ q is between 0 and 2 
hours and τ r is between 0 and 5 hours. The 
regression models were based on 1854 examples. 
Test data consisted of 300 instances. Note that the 
input variables were the same for the prediction 
model, clustering, and LUEM.  

5.2 Procedure 

A LUEM model was constructed to estimate the PI 
on the test dataset as follows. The Fuzzy c-means 



 

clustering technique was first employed to construct 
the PI for each cluster and then each instance in the 
training dataset. Note that the input to the LUEM 
may constitute part or all of input variables, which 
are used in the prediction model. The targets for the 
LUEM are the upper and lower PLs which are 
computed from the PIs by adding model outputs. The 
PLs were constructed for 95% confidence level 
unless specified otherwise. 

First, the LUEM using bivariate linear regression 
was employed for dataset consisting the two most 
influencing input variables (variables with the 
highest correlation with the output). Then the input 
variables set was extended (SieveQ1, SieveQ3 and 
SieveQ6 datasets). To estimate the effect of models’ 
complexity on the PLs, experiments were also 
conducted using LWR, MT and ANNs.  

6.  RESULTS AND DISCUSSION 

The number of clusters was optimized (more on that 
see [Shrestha and Solomatine, 2006]) using the Xie-
Beni separation index. The optimal numbers of 
clusters are between 4 and 6. Figure 3 shows 
clustering of input examples in Sieve catchment for 1 
hour ahead prediction of runoff (SieveQ1 dataset). 
The results show that the input examples with very 
high runoff have maximum membership grades to 
Cluster 1 (denoted by C1). The input examples with 
very low values of runoff have maximum 
membership grades to cluster 5 (C5).  
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Figure 3. Clustering of input examples in SieveQ1 

training dataset using fuzzy c-means clustering.  

The performance of the LUEM is compared to that 
of the LRVE approach on the dataset with two input 
variables. It is observed that the LUEM shows 
superior performance with respect to both the PICP 
and the MPI. The performance of the models with 
more lagged input variables was compared to that of 
other machine learning techniques. We employed 

multiple linear regression, LWR, ANN and MT to 
predict runoff 1, 3 and 6 hours ahead (SieveQi 
datasets). We also used these methods to estimate the 
PLs. The results show that the performance of MT is 
better than that of the other methods; performances 
of linear regression and LWR are comparable. 

Figure 4 shows the computed PLs for 95% 
confidence level in SieveQ1 test dataset using MT. It 
can be seen that 96.67% of the observed data are 
enclosed within the PLs. This value is very close to 
the desired value of 95%. We compared the results 
with the uniform interval method (UIM) that 
constructs single PI from the empirical distribution 
of errors on the whole training data and is applied 
uniformly to the test dataset. The LUEM performs 
consistently better than the UIM as PICPs of LUEM 
are closer to the desired confidence level. 
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Figure 4. Computed prediction limits for SieveQ1 

test dataset.  
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Figure 5. The PICP for different values of 

confidence level.  

Figure 5 shows the deviation of the PICPs from the 
desired confidence level (MT model was used). The 
PIs were constructed for various confidence levels 
ranging from 10% to 99%. It is to be noticed that the 
PICPs are very close to the desired confidence levels 



 

at values higher than 80% and in practice the PI are 
constructed around this value. Furthermore, it can be 
noted that the PIs are too narrow in most of the cases 
as the PICPs are below the straight line. Such 
evidence was also reported by Chatfield [2000]. In 
these cases the LUEM underestimates uncertainty of 
the model outputs. Table 1 shows the computed PIs 
(SieveQ1 dataset) using 95% degree confidence 
level.  

Table 1. Results on test dataset using M5 model tree. 
LUEM  UIM  Experi- 

ment 
RMSE 

PICP MPI PICP MPI 
SieveQ1 3.61 96.67 15.25 91.33 11.80 
SieveQ3 13.67 95.67 43.27 89.33 40.58 
SieveQ6 22.89 97.67 96.34 91.33 81.6 

 

Figure 6 presents a fan chart showing the MPI with 
the different forecast lead times and the different 
confidence levels. It is evident that the width of the 
PI increases with the increase of the confidence 
level. Moreover it is also illustrated that the width of 
PI increases as forecast lead time increases 
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Figure 6. Fan chart showing the model uncertainty 

for various forecast horizons. The darkest strip 
covers 10% probability and the lightest - 99%. 

7.  CONCLUSIONS 

A novel method to estimate the total uncertainty of 
the model outputs using machine learning techniques 
is presented. It explicitly takes into account all 
sources of uncertainty of the model outputs and is 
independent of the prediction model structure as it 
requires only the model outputs. Unlike the existing 
techniques the methodology does not require the 
knowledge of prior distribution of parameters or 
errors. The upper and lower prediction intervals are 
calculated independently. 

The methodology was applied to the data-driven 
prediction (regression) models based on both 

artificial and real hydrologic datasets, and was 
compared to LRVE approach typically used with the 
linear regression models. The advantages of the new 
method were demonstrated.  
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