The Asymmetric Phase-Transfer Catalyzed Alkylation of Imidazolyl Ketones and Aryl Acetates and Their Applications to Total Synthesis

By

Michael A. Christiansen

A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Merritt B. Andrus
Steven L. Castle
Matt A. Peterson
Heidi R. Vollmer-Snarr
Roger G. Harrison

Department of Chemistry and Biochemistry
Brigham Young University
April 2010

Copyright © 2010 Michael A. Christiansen
All Rights Reserved
ABSTRACT

The Asymmetric Phase-Transfer Catalyzed Alkylation of Imidazolyl Ketones and Aryl Acetates and Their Applications to Total Synthesis

Michael A. Christiansen
Department of Chemistry and Biochemistry
Doctor of Philosophy

Phase-transfer catalysts derived from the cinchona alkaloids cinchonine and cinchonidine are widely used in the asymmetric alkylation of substrates bearing moieties that resonance-stabilize their enolates. The investigation of α-oxygenated esters revealed decreased α-proton acidity, indicating the oxygen’s overall destabilizing effect on enolates by electron-pair repulsion. Alkylation of α-oxygenated aryl ketones with various alkyl halides proved successful with a cinchonidine catalyst, giving products with high yield and enantioselectivity. The resulting compounds were converted to esters through modified Baeyer-Villiger oxidation.

Alkylation with indolyl electrophiles gave products that underwent decomposition under Baeyer-Villiger conditions. Alternative N-methylimidazolyl ketones were explored. Alkylated imidazolyl ketones, obtained in high yield and enantioselectivity, could be converted to esters through treatment with methyl triflate and basic methanol. This technique has the advantage of not requiring stoichiometric addition of chiral reagents, which is requisite when employing traditional chiral auxiliaries. This method’s utility is demonstrated in the total asymmetric syntheses of (+)-kurason B and analogs, and 12-(S)-HETE.

Kurasoin B is a fungal-derived natural compound possessing moderate farnesyl transfer (FTase) inhibitive activity (IC$_{50}$ = 58.7 µM). FTase catalyzes post-translation modifications of membrane-bound Ras proteins, which function in signal cell transduction that stimulates cell growth and division. The oncogenic nature of mutated Ras proteins is demonstrated by their commonality in human tumors. Thus, FTase inhibitors like (+)-kurason B possess potential as cancer chemotherapy leads. Derivatization may enable structure-activity-relationship studies and greater FTase inhibition activity to be found.

12-(S)-HETE, a metabolite from a 12-lipoxygenase pathway from arachidonic acid, has been found to participate in a large number of physiological processes. Its transient presence in natural tissues makes total synthesis an attractive avenue for obtaining sufficient quantities for further study. Five asymmetric syntheses of 12-(S)-HETE have been reported. Three require chiral resolutions of racemates, with the undesired enantiomers being discarded or used for other applications.

Asymmetric PTC alkylation is also described for aryl acetates, whose products were enantioenriched through recrystallization. This technique is applied to a total synthesis of the anti-inflammatory drug (S)-Naproxen.

Keywords: phase-transfer catalysis, asymmetric alkylation, kurason, 12-(S)-HETE, farnesyl transferase, acyl imidazole, aryl acetate, (S)-Naproxen
ACKNOWLEDGEMENTS

I thank my wife McKenna and my children, Adam and Grace, for supporting me during my many hours away conducting research. I thank my late father, who taught me how to work hard, to value learning, and to sacrifice present comforts for future success. To my other family members, including my mother, siblings, their spouses, and children: thank you for everything.

I am deeply grateful for the patience and assistance of my advisory committee members. They have answered endless questions through the years, helping me to develop a love and understanding of the field. I thank Dr. Merritt Andrus, most especially, for his unending flexibility and encouragement in allowing me to learn and mature through pursuing many of my own ideas in the lab, even when most didn’t work. He has never once raised his voice because of my failings and has remained ever optimistic in the face of challenge.

I’m most appreciative to Dr. Matt Peterson for allowing me to help with some of his work and thereby have my name on two of his publications. Though I’m not sure I deserve it, thank you. I’m further grateful to both Dr. Peterson and Dr. Steven Castle, as well as to Dr. Andrus again, for the many letters of recommendation they’ve written and tirelessly sent for me to various agencies and laboratories across the country. To Dr. Peterson, also: thank you for helping find me a post-doctoral position. I likewise thank my lab mates for all their help with our research through the years.

Most importantly, I thank the BYU Department of Chemistry for the chance to come. I’ve had countless growing experiences that extend beyond my coursework, lab research, and other projects. These have included many chances to teach undergraduate classes and labs, which is what I truly enjoy the most. Additionally, I’ve been given various fellowships, assistantships, and other financial rewards that I will never forget. Thank you, everyone.
Table of Contents

1. **BACKGROUND** .. 1

 1.1. (+)-Kurasoin B .. 1

 1.1.1. Ras Proteins and Farnesyl Transferase ... 1

 1.1.2. Isolation, Syntheses, and Characterization ... 2

 1.1.3. Biological Activity .. 4

 1.1.4. Additional Synthetic Efforts .. 5

 1.2. 12-(S)-HETE ... 6

 1.2.1. Background and Isolation ... 6

 1.2.2. Biological Activity .. 7

 1.2.3. Synthetic Overview ... 8

 1.3. (S)-Naproxen .. 9

 1.3.1. Discovery ... 9

 1.3.2. Biological Activity .. 9

 1.3.3. Synthetic Overview .. 10

 1.4. References and Notes .. 12

2. **ASYMMETRIC PHASE-TRANSFER CATALYZED ALKYLATION** .. 18
2.1. Background...18

2.2. PTC Alkylations of α-Oxygenated Substrates.................................22

2.3. Total Syntheses of (−)-Ragaglitazar and (+)-Kurasoin A....................24

2.4. Limits of the Methodology: Attempted Synthesis of (+)-Kurasoin B........26

2.5. References and Notes...27

3. PHASE-TRANSFER-CATALYZED ASYMMETRIC ACYLIMIDAZOLE ALKYULATION ...29

3.1. Bypassing the Baeyer-Villiger Oxidation Step................................29

3.2. Substrate, Catalyst, and Reaction Condition Development...................30

3.3. A Modified and Improved Synthesis of the Catalyst............................32

3.4. Finishing the Methodology..37

3.5. Further Optimization of the Catalyst ...38

3.6. Comparisons with Commercial Catalyst..41

3.7. References and Notes...41

4. THE TOTAL SYNTHESIS OF (+)-KURASOIN B42

4.1. Synthetic Analysis ...42

4.2. Making the Electrophile ...43

4.3. First-Generation Synthesis...44
4.4. Second-Generation Synthesis ... 45

4.5. Analog Syntheses ... 48

 4.5.1. First-Generation Analogs ... 48

 4.5.2. Indole Variation Through Modified Larock Chemistry 50

 4.5.3. Second-Generation Analogs .. 51

4.6. References and Notes ... 52

5. THE TOTAL SYNTHESIS OF 12-(S)-HETE ... 54

 5.1. Previous Synthetic Efforts ... 54

 5.2. Synthetic Analysis ... 56

 5.3. First-Generation Synthesis ... 57

 5.3.1. Making the Electrophile ... 57

 5.3.2. Alkylation Screen ... 58

 5.3.3. To Aldehyde 133 .. 61

 5.3.4. Making Wittig Salts 123 and 158 ... 61

 5.3.5. Coupling with Aldehyde 133 .. 66

 5.3.6. Completing the Synthesis ... 67

 5.4. Second-Generation Synthesis .. 68
5.5. References and Notes……………………………………………………………69

6. PHASE-TRANSFER CATALYZED ASYMMETRIC ARYLACETATE ALKYLATION…………………………………………………………72
 6.1. PTC Alkylation of α-Aryl Esters……………………………………………….72
 6.2. PTC Alkylation of 6-Methoxynaphthyl Acyl Esters…………………………..75
 6.3. Total Synthesis of (S)-Naproxen………………………………………………77
 6.4. Asymmetric PTC Alkylation of Phenyl Phenylacetates…………………………..79
 6.5. References and Notes…………………………………………………………80

7. EXPERIMENTAL DETAILS AND DATA……………………………………..83
 7.1. General Methods and Materials………………………………………………83
 7.2. Cerium Molybdate Stain…………………………………………………………84
 7.3. Procedures from Chapter 3……………………………………………………..84
 7.3.1. Acyl Imidazole Substrate Preparations…………………………………….84
 7.3.2. Alternative Route to Acyl Imidazole Substrates (EDCI-Free)……………88
 7.3.3. Catalyst Synthesis……………………………………………………………..93
 7.3.4. General Procedure for Racemic Alkylations………………………………99
 7.3.5. General Procedure for Asymmetric Alkylations…………………………..100
 7.3.6. Selected Alkylation Data………………………………………………….101
7.3.7. General Procedure for Converting Imidazole Products to Methyl Esters…………………………………………………………………………116

7.3.8. 2-NPM Removal with DDQ…………………………………………………119

7.4. Procedures from Chapter 4……………………………………………………120

7.4.1. Synthesis of Electrophile 44……………………………………………….120

7.4.2. Alkylating Substrate 58 with Electrophile 44…………………………123

7.4.3. Total Synthesis of (+)-Kurasoin B………………………………………125

7.4.4. First-Generation Analogs………………………………………………….134

7.5. Procedures from Chapter 5…………………………………………………..138

7.5.1. Synthesizing Electrophile 136……………………………………………138

7.5.2. PTC Alkylations…………………………………………………………….140

7.5.3. To Aldehyde 133…………………………………………………………..141

7.5.4. To Wittig Salt 158………………………………………………………….145

7.5.5. Coupling with *Trans*-Cinnamaldehyde………………………………..151

7.5.6. Completing the Synthesis…………………………………………………152

7.6. Procedures from Chapter 6…………………………………………………..155

7.6.1. Selected Substrate Preparations…………………………………………155

7.6.2. General Procedure for Racemic Aryl Acetate Alkylations………..157
7.6.3. General Procedure for Asymmetric Aryl Acetate Alkylations ………. 158

7.6.4. Selected Alkylations ... 159

7.6.5. Racemic Alkylation Products from Table 6.3 162

7.6.6. Recrystallization Data from Table 6.3 167

7.6.7. Total Synthesis of (S)-Naproxen ... 176

7.6.8. Synthesis of Catalyst 186 .. 182

7.7. Selected NMR Spectra .. 184
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-NPM</td>
<td>2-naphthalenemethyl</td>
</tr>
<tr>
<td>AIBN</td>
<td>azobisisobutyronitrile</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-butoxycarbonyl</td>
</tr>
<tr>
<td>Cd</td>
<td>cinchonidine or cinchonidinium</td>
</tr>
<tr>
<td>Cn</td>
<td>cinchonine or cinchoninium</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-dichloro-5,6-dicyano-1,4-benzoquinone</td>
</tr>
<tr>
<td>DEAD</td>
<td>diethyl azodicarboxylate</td>
</tr>
<tr>
<td>DIBAL-H</td>
<td>diisobutylaluminum hydride</td>
</tr>
<tr>
<td>DPM</td>
<td>diphenylmethyl</td>
</tr>
<tr>
<td>EDCI</td>
<td>N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride</td>
</tr>
<tr>
<td>ee</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-pressure liquid chromatography</td>
</tr>
<tr>
<td>HWE</td>
<td>Horner-Wadsworth-Emmons</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>Half maximal inhibitory concentration</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Name</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>KHMDS</td>
<td>potassium hexamethyldisilazide</td>
</tr>
<tr>
<td>LiHMDS</td>
<td>Lithium Hexamethyldisilazide</td>
</tr>
<tr>
<td>NBS</td>
<td>N-bromosuccinimide</td>
</tr>
<tr>
<td>NHC</td>
<td>N-heterocyclic carbenoid</td>
</tr>
<tr>
<td>Np</td>
<td>naphthyl</td>
</tr>
<tr>
<td>OTf</td>
<td>triflate (trifluoromethane sulfonate)</td>
</tr>
<tr>
<td>OTs</td>
<td>tosylate (p-toluenesulfonate)</td>
</tr>
<tr>
<td>PCC</td>
<td>pyridinium chlorochromate</td>
</tr>
<tr>
<td>PhH</td>
<td>Benzene</td>
</tr>
<tr>
<td>Piv</td>
<td>pivaloyl</td>
</tr>
<tr>
<td>PMB</td>
<td>p-methoxybenzyl</td>
</tr>
<tr>
<td>PTC</td>
<td>phase-transfer catalysis or phase-transfer catalyzed</td>
</tr>
<tr>
<td>TBAF</td>
<td>tetra-(n)-butylammonium fluoride</td>
</tr>
<tr>
<td>TBS</td>
<td>(t\text{e}rt)-butyl dimethylsilyl</td>
</tr>
<tr>
<td>TES</td>
<td>triethylsilyl</td>
</tr>
</tbody>
</table>
Chapter 1. Background

1.1. (+)-Kurasoin B

1.1.1. Ras Proteins and Farnesyl Transferase

Ras proteins are G-proteins that play central roles in various cell functions, including signal transduction and cell proliferation. The Ras super family includes over 100 proteins originating from three functional RAS genes: H-RAS, N-RAS, and K-RAS. RAS genes encode four cytoplasmic precursor proteins (H-Ras, N-Ras, and the alternatively spliced K-RasA and K-RasB), which are functionalized and diversified through various post-translational modifications. The first of these modifications is prenylation, followed by proteolysis, carboxymethylation, and palmitoylation.

Ras protein prenylation begins in the cytosol with farnesylation, which occurs at the cysteine residue of the protein’s CAAX (C, cysteine; A, aliphatic amino acid; X, any amino acid), CC, or CXC carboxy-terminal consensus sequences. Farnesylation is catalyzed by the 93 kDa enzyme farnesyl transferase (FTase), which binds the protein’s carboxy terminus in proximity to farnesyl pyrophosphate (FPP) and forms a thioether link with the 15-carbon farnesyl moiety. Further modifications then produce fully functional, membrane-bound proteins. Ras proteins that are modified so as to not undergo farnesylation fail to functionalize, despite further post-translational modifications.

RAS gene mutations are present in 20-30% of all human tumors, with higher frequencies observed in adenocarcinomas of the pancreas (90%), colon (50%), and lung (30%). RAS mutations have also been found in neoplasms of the small intestine, prostate, liver, skin, and thyroid, as well as in multiple myeloma and a number of leukemias, making them among the most frequently observed in human cancer. The more common mutations at codons 12, 13,
and 61 produce Ras mutants that fail to interact properly with GTPase activating proteins (GAPs).1,15 This inhibits the GTP hydrolysis necessary to turn Ras proteins “off”, thereby contributing to uncontrolled cell growth and cancer.

Oncogenic Ras activities might be subdued by inhibiting post-translational modification. This idea has led to great interest in FTase inhibitors as potential anti-cancer therapeutics.14,16-19 Various candidates have been explored, including FPP analogues, CAAX derivatives, and “bisubstrate” molecules bearing both FPP and CAAX moieties.1 Several of these drug leads have been explored in Phase I and Phase II clinical trials.1,20

FTase inhibitors have been found to act synergistically with other anticancer therapeutics, including paclitaxel and the epothilones, in halting tumor cell growth.21 Advantageously, FTase inhibitors exhibit minimal toxicity to healthy cells. This is thought to occur because cancerous activity is more frequently observed with mutations in N-Ras proteins. K-Ras proteins, which contribute less often to cancer and have a 10- to 50-fold higher affinity for FTase, may possess redundant functionality with N-Ras proteins.1 Thus, cancers caused by N-Ras mutations are selectively impeded by FTase inhibitors, whereas the more active K-Ras proteins continue to contribute to normal cell growth. Unfortunately, the higher affinity of K-Ras for FTase makes cancers caused by K-Ras mutation more resistant to FTase inhibition.1,22-24

\subsection*{1.1.2. Isolation, Syntheses, and Characterization}

While searching for natural FTase inhibitors, Ōmura and coworkers25 prepared 20 liters of broth from the cultured mycelia of the Japanese soil fungus \textit{Paecilomyces} species FO-3684. Extensive extractions yielded a heavy brown oil that was purified by HPLC to provide two unknown white powders in 2.1- and 4.5-milligram amounts. HR-FAB-MS (High-Resolution-
Fast-AIom-Tom bombadnent-Mass-Spectrometry) analysis revealed their molecular weights to be 256 and 279, respectively, and later HMQC experiments uncovered their structures to be 1 and 2 (Figure 1.1). These compounds were named kurasoins A and B.

![Structure of Kurasoins A and B](image)

Figure 1.1. Kurasoins A (1) and B (2).

In concert with this discovery, Ōmura’s group reported racemic syntheses of 1 and 2 from commercially available lactic acids (±)-3 and (±)-4, illustrated in Scheme 1.1. Ōmura later determined the kurasoins’ absolute stereochemical configurations through asymmetric total syntheses (Schemes 1.2 and 1.3). These routes provided 1 and 2 with respective yields of 5.0 and 5.7%.

![Scheme 1.1](image)

Scheme 1.1. Ōmura’s racemic syntheses of 1 and 2 from lactic acids 3 and 4.
1.1.3. Biological Activity

When employed in an FTase inhibition assay, kurasoins A and B were found to possess respective IC\textsubscript{50} values of 59.0 µM and 58.7 µM, respectively. Later investigations revealed that the S configuration was essential to the molecules’ bioactivities, with the S enantiomers being >6 times more potent than their R counterparts. Though micromolar potency is not sufficient for practical pharmaceutical application, derivatization of the kurasoins might provide increased efficacy and insight into their mode of action on FTase.

Independent model work by Pang et al. revealed more about the mode of interaction of kurasoin B with FTase. The calculated lowest energy complex of kurasoin B showed that its
carbonyl carbon interacts electrostatically with the divalent zinc cation present in FTase’s active site. Kurasoin B’s phenyl ring was found to π-stack with a tyrosine moiety in the enzyme’s active site, whereas its indolyl appendage interacts with four adjacent lysines. Kurasoin B’s free hydroxyl group then complexes with an approaching FPP molecule, inhibiting pro-Ras proteins’ abilities to be farnesylated at FTase’s active site.

1.1.4. Additional Synthetic Efforts

Since Ōmura’s asymmetric syntheses of the kurasoins were disclosed, previous members of our group successfully completed the only other asymmetric total synthesis of (+)-kurasoin A, achieved in 29% yield over 10 steps.\(^{28}\) Later efforts were undertaken in unsuccessful attempts to prepare (+)-kurasoin B, which will be addressed later on.

More recently, an asymmetric synthesis of 2 was disclosed by Fernandes.\(^{29}\) This route began by reducing commercial ester 5 to alcohol 6, which was then converted to bromide 7 (Scheme 1.4). Sharpless asymmetric dihydroxylation, followed by nucleophilic displacement of the terminal bromide, furnished epoxide 8 with a 95% ee in a two-step, one-pot procedure. Jones

\[
\begin{align*}
5: & \quad R = \text{CO}_2\text{Et} \\
6: & \quad R = \text{CH}_2\text{OH} \\
7: & \quad R = \text{CH}_2\text{Br} \\
\end{align*}
\]

\[
\begin{align*}
5 \xrightarrow{\text{K}_3\text{Fe(CN)}_6, \text{K}_2\text{CO}_3, \text{NaHCO}_3, \\
\text{MeSO}_2\text{NH}_2, (\text{DHQ})_2\text{PHAL},}
6 \xleftarrow{\text{DIBAL-H, 95\%}} \\
7 \xrightarrow{\text{Ph}_3\text{P, NBS, 95\%}} \\
\end{align*}
\]

\[
\begin{align*}
8: & \quad 95\% \text{ ee} \\
\end{align*}
\]

\[
\begin{align*}
2 \xrightarrow{\text{indole, Yb(OTf)}_3, 50\ \degree\text{C, 62\%}} \\
\text{9} \xrightarrow{\text{CrO}_3, 83\%} \\
\text{K}_2\text{CO}_3, \text{MeOH} (79\% \text{ from 7})
\end{align*}
\]

\textbf{Scheme 1.4.} Fernandes’ synthesis of 2.\(^{29}\)
oxidation gave 9, which was subjected to ytterbium-catalyzed ring opening with nucleophilic indole. This route provided 2 in 37% yield over six steps from 5.

1.2. 12-(S)-HETE

1.2.1. Background and Isolation

When triggered by various stimuli, phospholipase A₂, which is present in most mammalian cells, releases arachidonic acid 10 from glycerol moieties embedded in the cell’s phospholipid membrane (Figure 1.2). Arachidonic acid then serves as a synthetic precursor for a class of paracrine hormones called eicosanoids.

Three types of eicosanoids exist: prostaglandins, thromboxanes [formed from 10 through cyclooxygenase (COX) activity], and leukotrienes (produced from 10 by lipoxygenase enzymes).

\[\text{Membrane Phospholipid} \rightarrow \text{Phospholipase A}_2 \rightarrow \text{Prostaglandins} \rightarrow \text{Thromboxanes} \rightarrow \text{Leukotrienes} \]

Figure 1.2. Formation of eicosanoids from arachidonic acid (10).

In 1974, Hamberg and Samuelsson isolated three metabolites from aggregating platelet cells suspended in medium containing \(^{14}\text{C}\)-labeled arachidonic acid. One of these was a novel compound named 12(S)-hydroxy-5(E),8(Z),10(E),14(Z)-eicosatetraenoic acid (11), later known
as 12-(S)-HETE (Figure 1.3). Lacking the conjugated triene core characteristic of traditional leukotrienes formed from 5-lipoxygenase, 12-(S)-HETE’s discovery confirmed the existence of a previously unknown 12-lipoxygenase pathway from arachidonic acid.34 Compound 11 was later found in keratinocytes35 and psoriatic lesions.36

\begin{center}
\includegraphics[width=0.3\textwidth]{figure1_3.png}
\end{center}

\textbf{Figure 1.3.} 12-(S)-HETE.

1.2.2. Biological Activity

Though its precise functions remain largely unknown, 12-(S)-HETE has been implicated in many physiological processes, including inflammation34,37, stimulation of neutrophils38 and smooth muscle cells39, hypertension40, COX attenuation41, cellular response to epidermal growth factor and insulin42, human pancreatic cancer cell proliferation43, endothelial cell retraction44, angiogenesis45, tumor cell metastasis46, atherogenesis47, coronary thrombosis48, type I diabetes induction49, psoriasis34,50 and inhibition of apoptosis.51

In light of 12-(S)-HETE’s biological relevance, it would be very desirable to understand its specific functions. Unfortunately, the compound’s transience in biological tissues makes large-scale isolation impractical.34 Efficient total synthesis, therefore, has become an attractive goal, opening possible avenues for increased testing.
1.2.3. Synthetic Overview

Since its discovery, five syntheses of optically pure 12-(S)-HETE have been reported.52-56 Though thorough coverage is beyond the scope of this introduction, critical details will be addressed later on. As Table 1.1 summarizes, overall yields and route lengths vary. It is noteworthy that the more recent approaches by Sato, Spur, and Suh were all achieved through the use of different chiral resolutions of racemates, with the undesired enantiomers being unused in the total synthesis of 11.

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of steps</th>
<th>Overall yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corey</td>
<td>11</td>
<td>Unreported (>12.8)</td>
<td>52</td>
</tr>
<tr>
<td>Just</td>
<td>12</td>
<td>4.1</td>
<td>53</td>
</tr>
<tr>
<td>Sato</td>
<td>12</td>
<td>15.3</td>
<td>54</td>
</tr>
<tr>
<td>Spur</td>
<td>10</td>
<td>11.5</td>
<td>55</td>
</tr>
<tr>
<td>Suh</td>
<td>13</td>
<td>9.0</td>
<td>56</td>
</tr>
</tbody>
</table>

Table 1.1. Summary of the five published routes to optically active 12-(S)-HETE.

Interestingly, it has been found that 12-(R)-HETE (the enantiomer of 11) also possesses important bioactivity, being the more prominent enantiomer in psoriatic lesions and having greater potency than 12-(S)-HETE in attracting human leukocytes.31

Twenty-two years after publishing his 12-(S)-HETE synthesis,52 E. J. Corey reported a route to 12-(R)-HETE34 that employs a complimentary chiral antipode as reagent in its key step. This total synthesis will be addressed later on in this work.
1.3. (S)-Naproxen

1.3.1. Discovery

In consequence of a search for nitrogen-free, nonsteroidal antiinflammatory drugs (NSAIDs), the Syntex research group released a 1970 disclosure of several bioactive naphthylacetic acid derivatives. The most potent of these was the S enantiomer of 2-(6-methoxynaphthalen-2-yl)propanoic acid 12, which came to be known as (S)-Naproxen (Figure 1.4).

![Figure 1.4. (S)-Naproxen.]

Since its inception as an antiinflammatory drug in 1976, (S)-Naproxen has become one of the most profitable optically pure pharmaceuticals in the world. (S)-Naproxen and its sodium salt have been made available under various trade names, including Naprosyn, Anaprox, Midol Extended Relief, and Aleve.

1.3.2. Biological Activity

COX-1, being constitutively expressed in most tissues, participates in various homeostatic functions that include gastric cytoprotection. COX-2, which contributes more actively to pain and inflammation, is an inducible enzyme typically present in low levels. Indiscriminate attenuation of both COX enzymes would logically subdue the protective activities of COX-1, thereby causing adverse gastrointestinal side effects.
Many common NSAIDs inhibit both COX enzymes, and (S)-Naproxen is no exception, attenuating COX activity by blocking the active site that binds arachidonic acid (10). This obstructs prostaglandin and thromboxane syntheses, thereby reducing inflammation, fever, pain, and swelling. Unsurprisingly, (S)-Naproxen’s COX-1 inhibition damages the gastrointestinal tract among chronic users. Furthermore, regular (S)-Naproxen use can also cause cardiovascular problems like myocardial infarction and stroke.

(S)-Naproxen’s exact binding mode still remains unclear; however, studies suggest that the molecule’s acid moiety associates with an arginine residue in the COX isozymes’ active sites. (S)-Naproxen’s in vivo IC$_{50}$ values have not been reported, though in vitro numbers range from 1.7 to 17 µM (for COX-1) and 14 to 50 µM (for COX-2). Enantiopurity is crucial for potency: the R enantiomer of 12 is virtually devoid of any COX-attenuating activity.

1.3.3. Synthetic Overview

Thorough coverage of the vast number of (S)-Naproxen syntheses is well beyond the scope of this introduction. The first industrial-scale approach began by converting β-naphthol 13 to dibromide 14, as Scheme 1.5 illustrates. Treatment with bisulfite removed the more labile bromine at the 1-position, providing ether 15 after methylation. This intermediate was then converted to a Grignard reagent. Transmetalation with zinc (II) chloride and treatment with bromo ethylpropionate, followed by basic hydrolysis, then furnished racemic Naproxen 16 with a 50-60% yield over three steps. Recrystallization with cinchonidine gave two diastereomeric salts; the more potent enantiomer of 12 was obtainable from the less soluble salt in 47.5% yield (95% of the theoretical). This ultimately provided optically pure (S)-Naproxen in 20-25% yield over seven steps from β-naphthol.
Synthetic streamlining uncovered a more expeditious route to (S)-Naproxen, which circumvented the need for undesirable zinc byproducts.\(^{58}\) Shown in Scheme 1.6, intermediate 15 (obtained as per Scheme 1.5) was again converted to a Grignard reagent and then treated with a magnesium salt of bromo ethylpriopionate, furnishing racemic 16 in >90%. A less-expensive resolution, achieved through recrystallization from \(N\)-alkylglucamine, then gave optically pure 12 in 47.5% yield (95% of the theoretical). This alternative synthesis provided (S)-Naproxen in 36-38% yield over six steps from \(\beta\)-naphthol.

Scheme 1.5. The first industrial-scale approach to optically-pure 12.\(^{58}\)

Ongoing research continues to provide new routes to 12 that circumvent the need for wasteful resolutions of racemates, which account for two-thirds of the compound’s total
production cost. Such approaches include using materials from the chiral pool,58,64 asymmetric catalytic hydrogenation,65 and asymmetric hydroformylation,66 among others.58 As new technologies arise, more efficient means to this useful anti-inflammatory drug, as well as related compounds possessing other biologically valuable properties, are anticipated.

1.4. References and Notes

2.1. Background

Enantioselective carbon-carbon bond formation is a central objective of synthetic chemistry. One way of achieving this goal is by asymmetrically alkylating substrates with sp³-hybridized electrophiles. Most examples depend heavily on the use of chiral auxiliaries, which have to be added in stoichiometric amounts.¹

General, catalytic means of asymmetric alkylation are often limited to a narrow substrate scope.²⁻⁴ Within this field, asymmetric phase-transfer catalyzed (PTC) alkylation continues to broaden as a useful means of forming enantio-enriched C-C bonds.

Phase-transfer catalysts typically possess polar, charged centers and non-polar, hydrocarbon appendages, giving them partial dual solubility in both polar and non-polar media. Chiral quaternary ammonium salts are the catalysts of choice, since many are known or easily synthesized.

PTC alkylation of carbonyl-bearing substrates 17 (Figure 2.1) occurs under biphasic conditions (organic/aqueous or organic/solid), where deprotonation at the interphase (path A) gives achiral enolate complex 18.⁵ Alkylation with halide R₃X (path B) would then produce racemic product (±)-19. Divergently, cation exchange with an asymmetric ammonium catalyst X⁻ N°⁺(alk)₄⁺ (path C) would give non-racemic complex 20. Alkylation of this complex would form asymmetric product 19 and regenerate the catalyst.

Stereoselective outcome depends heavily on the relative rates of cation exchange (k₁) from 18 to 20 and their individual reactivities with R₃X (k₂ vs. k₃). When k₁ is slow and k₂ is
fast, racemic (\pm)-19 is favored. When k_1 is fast, the structure of 20 and its mode of interaction with the electrophile, as well as reaction conditions, contribute significantly to outcome.

Asymmetric PTC alkylation was pioneered by researchers at Merck, who treated substrates 21 with methyl chloride and catalyst 22 to give products 23 with high selectivity and yield (Scheme 2.1).

Figure 2.1. The mechanism of asymmetric phase-transfer catalyzed alkylation.\(^5\)

Asymmetric PTC alkylation was pioneered by researchers at Merck,\(^6\) who treated substrates 21 with methyl chloride and catalyst 22 to give products 23 with high selectivity and yield (Scheme 2.1).

Scheme 2.1. PTC methylation of 21 by Merck.\(^6\)-\(^7\)
O’Donnell extended the field by benzylating glycine derivative 24 through use of (+)-cinchonine catalyst 25, giving rise to phenylalanine derivative 26 (Figure 2.3).

\[
\text{25 (10 mol%)} \quad \text{26: 75%, 66% ee}
\]

Scheme 2.2. O’Donnell’s benzylation of 24 with cinchonine-derived catalyst 25.\(^8\)

Corey and Lygo independently benzylated 24 with (-)-cinchonidine anthracenylmethyl catalysts 27 and 28 to give ent-26 (Figure 2.4), thus demonstrating the enantio-complementarity of catalysts derived from (+)-cinchonine (29) and (-)-cinchonidine (30).\(^9-10\) These two diastereomeric cinchona antipodes are epimeric at the asterisked carbon stereocenters.

\[
\text{27: } R = \text{allyl, } X = \text{Br} \\
\text{28: } R = \text{H, } X = \text{Cl}
\]

Scheme 2.3. Corey and Lygo’s benzylation of 24 with cinchonidine catalysts 27 and 28.\(^9-10\)
Numerous cinchona catalysts have been reported since these groundbreaking findings, as portrayed generally in Figure 2.2. These may be easily modified at positions R₁, R₂, and Ar and are typically accessible in just a few linear steps from naturally occurring cinchona alkaloids.

![Cinchonidinium and Cinchoninium Catalysts](image)

Figure 2.2. General depiction of cinchonidinium (Cd) and cinchoninium (Cn) phase-transfer catalysts.

Additional PTC catalysts have also been developed by Maruoka from complimentary (S)- or (R)-biphenolic cores.¹¹ These generally require lower catalyst loadings, but take more steps to synthesize.¹²-¹⁴ Two representative examples are seen in the benzyla"ion of compounds 31 and 32 (Scheme 2.4).¹¹

![Scheme 2.4](image)

Scheme 2.4. Asymmetric PTC benzylations of 31 and 32 by Maruoka.¹¹
2.2. PTC Alkylations of α-Oxygenated Substrates

Despite a diversity of catalysts, until recently asymmetric PTC alkylations were limited to glycine derivatives such as 24 and 31, or cyclic β-keto esters like 32, all of which possess moieties that resonance-stabilize their respective enolates. To expand the field’s scope, members of the Andrus group examined replacing the nitrogen of 24 with an oxygen.

It was initially unclear how this modification might affect reactivity. α-Proton pKa values are about 19.7 for 24,\(^{15}\) stabilized by delocalization into the unsaturated diphenylketimine moiety. The pKa for an oxygenated surrogate was less obvious. Though an oxygen’s higher electronegativity could inductively stabilize the enolate and decrease pKa, its additional lone electron pair and lack of resonance delocalization might have the opposite effect.

To address this question, compounds 34 were prepared and tested with Corey catalyst 27 (Scheme 2.5). Various conditions were screened, but failed to produce observable reactivity. Apparently, oxygen’s destabilizing effects predominate, decreasing α-proton acidity.

\[
\begin{align*}
\text{Br} & \quad \text{ROH, NaH, RT} \\
\text{Bu}_4\text{N}^+ & \quad \text{DMF} \\
\text{R} = \text{Bn, p-MeO-Ph} \\
\text{CPH}_3, -\text{C(O)Ph}
\end{align*}
\]

Scheme 2.5. Previous group members’ attempts at PTC alkylation of substrates 34.

Because a ketone’s α-protons are more acidic than an ester’s, it was reasoned that a ketone surrogate for 34 might improve reactivity. Hence, aryl ketones 35 were prepared and benzylated with catalyst 36 at -40 °C (Table 2.1).\(^{16-17}\) Reactivity was markedly improved, with the 2,5-dimethoxy-appended ester giving the best enantioselectivity (entry 11).
A screen of oxygen-protecting groups revealed that the diphenylmethyl (DPM) group gave ideal reactivity, and substrate 37 (Table 2.2) was subsequently studied. Alkylations with allyl, benzyl, and propargyl electrophiles provided compounds 38 in high yields and excellent enantioselectivities. Aliphatic halides failed to give positive results. Products 38 could be converted to aryl esters by exposure to non-epoxidizing Baeyer-Villiger conditions developed by Shibasaki.

<table>
<thead>
<tr>
<th>entry</th>
<th>Ar</th>
<th>time (h)</th>
<th>yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>phenyl</td>
<td>26</td>
<td>74</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>p-anisyl</td>
<td>6</td>
<td>82</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>o-anisyl</td>
<td>8</td>
<td>78</td>
<td>66</td>
</tr>
<tr>
<td>4</td>
<td>m-anisyl</td>
<td>16</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>N,N-dimethylaniline</td>
<td>13</td>
<td>87</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>o-tolyl</td>
<td>12</td>
<td>72</td>
<td>62</td>
</tr>
<tr>
<td>7</td>
<td>2,4-xylyl</td>
<td>8</td>
<td>70</td>
<td>66</td>
</tr>
<tr>
<td>8</td>
<td>5-methyl-2-anisyl</td>
<td>11</td>
<td>83</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>1-naphthyl</td>
<td>8</td>
<td>78</td>
<td>55</td>
</tr>
<tr>
<td>10</td>
<td>2,4-dimethoxy</td>
<td>13</td>
<td>90</td>
<td>54</td>
</tr>
<tr>
<td>11</td>
<td>2,5-dimethoxy</td>
<td>7</td>
<td>83</td>
<td>71</td>
</tr>
</tbody>
</table>

Table 2.1. Preparation and PTC benzylations of substrate 25.
2.3. Total Syntheses of (−)-Ragaglitazar and (+)-Kurasoin A

The now-developed methodology was next applied to an asymmetric total synthesis of the diabetes drug (−)-ragaglitazar 39 (Scheme 2.6). This synthesis featured the asymmetric PTC alkylation of 37 with electrophile 40 in its key step, arriving at 41 in 95% yield and 83% ee. DPM removal was accomplished by treating 41 with titanium (IV) chloride; subjection to the aforementioned Shibasaki Baeyer-Villiger conditions (TMS-peroxide, SnCl₄, and sulfonamide

Table 2.2. PTC alkylation of 37.

<table>
<thead>
<tr>
<th>entry</th>
<th>RX</th>
<th>time (h)</th>
<th>yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>allyl-Br</td>
<td>5</td>
<td>83</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>allyl-I</td>
<td>3</td>
<td>81</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>allyl-Br</td>
<td>5</td>
<td>78</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td>allyl-Br</td>
<td>4</td>
<td>85</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>allyl-Br</td>
<td>8</td>
<td>80</td>
<td>84</td>
</tr>
<tr>
<td>6</td>
<td>allyl-Br</td>
<td>4</td>
<td>89</td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>allyl-Br</td>
<td>24</td>
<td>91</td>
<td>88</td>
</tr>
<tr>
<td>8</td>
<td>n-Bu-Br</td>
<td>8</td>
<td>70</td>
<td>66</td>
</tr>
<tr>
<td>9</td>
<td>BnBr</td>
<td>13</td>
<td>94</td>
<td>86</td>
</tr>
<tr>
<td>10</td>
<td>4-t-Bu-BnBr</td>
<td>5</td>
<td>96</td>
<td>84</td>
</tr>
<tr>
<td>11</td>
<td>2-Ph-BnBr</td>
<td>5</td>
<td>96</td>
<td>84</td>
</tr>
<tr>
<td>12</td>
<td>2-MeO-5-NO₂-BnBr</td>
<td>5</td>
<td>96</td>
<td>84</td>
</tr>
</tbody>
</table>
42) then provided aryl ester 43, whose ee was boosted to 95% after recrystallization from 1:1 Et₂O/hexanes. Subsequent transformations then led to the final target 39 in 38% yield over 10 steps.

Scheme 2.6. The total synthesis of (-)-ragaglitazar.¹⁷

A later synthesis of (+)-kurasoin A 1 was realized from 43 (Scheme 2.7).¹⁹ As with (-)-ragaglitazar, asymmetric PTC alkylation and Baeyer-Villiger oxidation were employed as key steps in the synthesis.

Scheme 2.7. Andrus group total synthesis of (+)-kurasoin A (1).¹⁹
2.4. Limits of the Methodology: Attempted Synthesis of (+)-Kurasoin B

A total synthesis of (+)-kurasoin B 2 began with the PTC alkylation of substrate 37 with electrophile 44 (Scheme 2.8).\(^5\) This provided 45 in 90\% yield and 82\% ee. Unfortunately, all attempts to convert to ester 46 only resulted in substrate decomposition, even when alternative N- and O-protecting groups were employed.

![Scheme 2.8. Attempted synthesis of 46 en route to (+)-kurasoin B (2).\(^5\)](image)

A different route was investigated, based on Larock’s indole syntheses from 2-iodoaniline 47 and various internal alkynes.\(^{20-21}\) PTC alkylation of 37 with electrophile 48 gave intermediate 49 with high yield and enantioselectivity (Scheme 2.9).\(^5\) Exposure to catalytic palladium (II) acetate, 2-iodoaniline 47, LiCl, and Na\(_2\)CO\(_3\) in DMF at 90 °C then produced 50. As with 45, all attempts to convert 50 to its aryl ester derivative failed. It was hoped, then, that 49 might be esterified prior to indole formation, giving 51 as a synthetic precursor to compound 52 and, ultimately, (+)-kurasoin B. Unfortunately, all conditions failed to give 51, effectively ending work toward 2 through alkylation of 37.
The indole moiety’s sensitivity to Baeyer-Villiger oxidation demonstrated the limits of the new PTC methodology. An alternative PTC alkylation methodology that did not require Baeyer-Villiger oxidation was consequently desired.

2.5. References and Notes

Chapter 3. Phase-Transfer-Catalyzed Asymmetric Acylimidazole Alkylation

3.1. Bypassing the Baeyer-Villiger Oxidation Step

As explained in chapter 2, it became desirable to create a PTC methodology that provided \(\alpha \)-oxy, \(\alpha \)-alkylated esters without requiring harsh Baeyer-Villiger conditions. A potential alternative was inspired by a report from Evans’ group at Harvard, in which the imidazole appendages of ketones 53 were activated with iodomethane or methyl triflate and then displaced by various nucleophiles.\(^{1-3}\) This one-pot, two-step transformation converted ketones 53 to esters, acids, or amides 54 in high yield without disturbing their indole moieties.

![Scheme 3.1. Nucleophilic displacement of the imidazole moiety in 53.](image)

We reasoned that if imidazolyl ketones of type 55 underwent expeditious alkylation with electrophile 44, then the resulting products 56 might be converted to methyl esters 57. This route would circumvent Baeyer-Villiger oxidation and provide a new PTC methodology ideal for an alternate route to (+)-kurasin B.

![Scheme 3.2. Envisioned synthesis of indole-appended compounds 57.](image)
3.2. Substrate, Catalyst, and Reaction Condition Development

To test this plan, 2-naphthalenemethyl (2-NPM) protected substrate 58 was prepared and screened with four catalysts to form product 59 (Table 3.1). Though Andrus catalyst 60 gave 86% ee, its accompanying 58% yield was modest. By comparison, cinchonidinium (Cd) dimer catalyst 61 provided 59 in 82% yield and 86% ee (ee’s measured by comparison with racemic samples via chiral HPLC).

![Diagram of the reaction]

Table 3.1. Catalyst screen in the PTC benzylation of 58.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Time (h)</th>
<th>Yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>6</td>
<td>77</td>
<td>74</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>58</td>
<td>71</td>
</tr>
<tr>
<td>60</td>
<td>16</td>
<td>58</td>
<td>86</td>
</tr>
<tr>
<td>61</td>
<td>4.5</td>
<td>82</td>
<td>86</td>
</tr>
</tbody>
</table>

An O-protecting group screen was done next, which showed the 2-NPM group to be ideal in terms of overall yield and enantioselectivity (Table 3.2, entry 1). Surprisingly, DPM protection, which had been optimal for substrate 37, gave comparably modest results (entry 2).

![Diagram of the reaction]

Table 3.2. O-protecting group screen.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Time (h)</th>
<th>Yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58: R = 2-NPM</td>
<td>4.5</td>
<td>82</td>
<td>86</td>
</tr>
<tr>
<td>2</td>
<td>62: R = DPM</td>
<td>5.5</td>
<td>70</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>63: R = Bn</td>
<td>7</td>
<td>75</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>64: R = PMB</td>
<td>5</td>
<td>78</td>
<td>81</td>
</tr>
</tbody>
</table>
Imidazolyl variation was next explored, which revealed the modest performances of N-phenyl and N-benzyl imidazole-appended substrates 65 and 66 (Table 3.3, entries 2–3). By comparison, N-methylbenzimidazolyl ketone 67 gave 76% yield and 93% ee (entry 4).

Because substrates 58 and 67 both performed so well, neither was abandoned at this juncture. Instead, an in-depth study of reaction conditions was conducted. Ultimately, ideal results were obtained by employing CsOH·H$_2$O as the base at -40 °C in either dichloromethane or 1:1 CH$_2$Cl$_2$/n-hexane. These conditions provided benzylated products with yields and enantiomeric excesses above 90% in many cases.

When investigations with allyl bromide began, substrate 67 gave surprisingly modest yields of 41–54% and ee’s of less than 72% at best. Surprisingly, other electrophiles performed
even worse, showing the excellent performance of the 67/benzylbromide system to be somewhat atypical. The exact cause of this outcome remains unclear, but focus naturally shifted to allylating 58, which occurred with a satisfactory 70% yield and 80% ee during initial trials.

When the preliminary batch of catalyst 61 ran out after introductory investigations, efforts to repeat its synthesis according to Park’s original report and previous group members’ notes resulted in discoveries crucial to the catalyst’s improvement and the project’s ultimate success.

3.3. A Modified and Improved Synthesis of the Catalyst

Catalyst 61 was originally synthesized by Park and coworkers, who used it in the asymmetric alkylation of 24 with various allyl, benzyl, and propargyl electrophiles. Park’s route began with the palladium-catalyzed reduction of (−)-cinchonidine 30 to (−)-hydrocinchonidine 68, achieved in 92% yield as Scheme 3.3 depicts (vide infra). Separate treatment of 2,7-dimethylnaphthalene 69 with NBS and AIBN then produced intermediate 70 with an 88% yield. When combined at high temperature, 68 and 69 furnished a reportedly light-pink di-ammonium salt 71 in 97% yield, which was subsequently allylated to give catalyst 61.

To synthesize the new batch of catalyst, we followed Park’s procedure, seamlessly providing compounds 68 and 70. However, when these were combined to produce 71, a dark-purple syrup formed in which no product was detectable by HRMS. (No further characterization of this mixture was performed.)
A second attempt on smaller scale formed the light-pink solid desired, but scale-up once again yielded a dark-purple syrup. Presuming that intermediates 68 and 70 were somehow impure, these were newly synthesized and submitted freshly on large scale to form 71. Strangely, a yellow solid was now obtained, which eventually gave catalyst 61 in 60% yield after chromatographic purification. Unfortunately, PTC allylation of substrate 58 with this batch of catalyst provided product with a modest 44% yield and 53% ee. Formation of 71 was clearly a problematic step in the catalyst’s synthesis, though the cause for this difficulty remained as yet enigmatic.

Scheme 3.3. Park’s original synthesis of catalyst 61.6
The purity of 68 and 70 was carefully determined by developing new conditions for monitoring reaction progression via TLC. Great attention was also paid to spectroscopic characterization of products. By increasing the number of Fourier transforms, our first clear NMR spectra for 68 and 70 were obtained. Despite our growing confidence in the purity of these compounds, a renewed attempt to prepare 71 once again gave a dark-purple mixture.

It was hypothesized that one of four factors might be causing failure in the formation of the catalyst: (1) trace Pd/C left in 68 was causing detrimental effects; (2) syringes or needles were contaminated; (3) solvents were not sufficiently dry; or (4) reaction temperature was too high.

These questions were eventually addressed by intentionally adding trace amounts of Pd/C and water in separate formations of 71. It was found that Pd/C caused formation of the dark-purple syrup, whereas water resulted in yellow discoloration. Hence, great effort was taken thereafter to thoroughly dry solvents and to completely filter Pd/C from 68, which was ultimately isolated in 67% yield as an off-white solid (free from any gray discoloration).

With reagents and conditions now optimized, large-scale reaction of 68 with 70 at lower temperature (50 °C) gave 71 as the desired, light-pink solid. Surprisingly, rinsing the crude product with dichloromethane and methanol during flask transfer converted it to a dark-red solid, in which the presence of byproduct 72 (Scheme 3.4) was confirmed by HRMS (481.2827 [M+H]$^+$ found; calcd 481.28 for [C$_{32}$H$_{37}$N$_2$O$_2$]$^+$). Compound 72 is likely produced through a solvation/substitution reaction of methanol for one of the two hydrocinchonidinium moieties. Catalyst formed from this batch of 72 gave poor enantioselectivity and yield in PTC alkylations.
With these observations now made after many optimization experiments, 68 was synthesized again and filtered thoroughly to ensure removal of Pd/C. Dry solvents were employed, which ultimately furnished 71 cleanly as a light-pink solid on 500 mg scale. 71 was not rinsed with methanol, and subsequent allylation then furnished catalyst 61.

Catalyst purification was now addressed. Earlier cinchona catalysts synthesized by our group were being tediously purified by column chromatography in 5% methanol-dichloromethane. The reason for this was that recrystallization from dichloromethane-hexane, as described by Park, had repeatedly failed in our lab, resulting in the crude catalyst remaining completely dissolved in solution.

Recrystallization was now explored. In time it was found that the crude catalyst could be dissolved in a minimal amount of warm dichloromethane and then precipitated instantly by copious addition of hexanes. When filtered immediately, 61 was obtained cleanly as a light-yellow solid in 96% yield. If left in solution, crystalline 61 redissolved.

Previous batches of 61 had failed to give acceptable results with any electrophiles other than benzyl bromide. In contrast, our latest batch, which was prepared according to the modifications just described, showed dramatic improvement, giving products 73 with high yields and excellent enantioselectivities (Table 3.4).
Table 3.4. PTC alkylations of substrate 58 with optimized batch of catalyst 61.
3.4. Finishing the Methodology

The next step in developing the methodology was to displace the N-methylimidazole appendages of the alkylated products. After screening many conditions, we found that stirring compounds 73 with methyl triflate for three days facilitated imidazolium formation. Addition of sodium methoxide/methanol then provided methyl esters 74 with quantitative yield and no measurable epimerization. Alternative nucleophiles (ethanol, isopropanol, morpholine, and hydrogen peroxide) were ineffective.

With imidazole displacement now optimized, product 74 (where R = Bn) was treated with DDQ to remove the 2-NPM protecting group (Scheme 3.6). These conditions afforded optically active 75 in 70% yield. Optical rotation comparison with known 75 confirmed the absolute stereoconfiguration as S.

Scheme 3.5. Converting ketones 73 to esters 74.

Scheme 3.6. Converting product 74 to known hydroxy ester 75.
These final developments represent a new PTC route to asymmetric α-oxy, α-alkylated esters that does not require Baeyer-Villiger oxidation. This work culminated in a published summary of our most important findings.\(^{8}\)

3.5. Further Optimization of the Catalyst

Further discoveries relating to the catalyst’s synthesis have been made since generating the data featured in Table 3.4. These came about when HRMS examination of in-house batches of catalyst showed the presence of two unexpected ions at 377 and 417, respectively. Candidate structures 76 and 77, shown in Figure 3.1, were proposed.

\[
\begin{align*}
76 & \quad \text{C}_{25}\text{H}_{33}\text{N}_{2}\text{O}^+ \quad \text{Exact Mass: 377.26} \\
77 & \quad \text{C}_{28}\text{H}_{37}\text{N}_{2}\text{O}^+ \quad \text{Exact Mass: 417.29}
\end{align*}
\]

Figure 3.1. Structures 76 and 77.

Potential origins of 76 and 77 are somewhat straightforward. During catalyst formation from 71, hydroxyl attack might occur, liberating free hydrocinchonidine 68 and forming byproduct 78 (Scheme 3.7). Subsequent allylation of 68, expected in the presence of excess allyl bromide, could then produce inseparable contaminants 76 and 77. These might behave as competitive, non-selective catalysts, explaining the poor results sporadically obtained with some catalyst batches.
When allylating 71 during the final step of the catalyst’s synthesis, excessive reaction time might presumably exacerbate this effect and increase the amounts of 76 and 77. Monitoring the reaction in situ by HRMS revealed that starting material 71 was completely consumed after only 15 minutes. This contrasts sharply with Park’s original procedure, which calls for stirring the reaction at room temperature for four hours.

To avoid these contaminants and thereby improve catalyst performance, modifications to the synthesis of the catalyst were developed (Scheme 3.8). The most meaningful advance of this improved procedure lies in the thoroughness of its experimental details, which now make the catalyst’s preparation comparatively straightforward and reproducible. A researcher with minimal lab experience can now reproducibly synthesize 61 with high yield in only a few days.

Scheme 3.7. Proposed origin of byproducts 76 and 77.
Through this process, several improvements to the catalyst’s synthesis have been made. First, TLC conditions are now reported for monitoring reaction completion during the formation of intermediates 68 and 70. Next, higher-yielding conditions (benzoyl peroxide in refluxing benzene) are now used as an alternative means to 70. The yellow, dark-red, or dark-purple contaminants, which give rise to unsuitable catalyst, are now reported as byproducts to the synthesis of 71 under certain conditions. Likely causes of these contaminants are also confirmed. Additionally, formation of byproduct 72 is reported; avoiding exposure of 71 to methanol is critically noted. Byproducts 76 and 77 are duly noted, resulting in optimal catalyst.

Scheme 3.8. Modified synthesis of catalyst 61.
formation by running the final step for only 15 minutes. Lastly, the mode of catalyst purification by recrystallization is now reported with sufficient detail to allow its reproducible application, and printed NMR spectra for the catalyst and each intermediate in its synthesis are published.

3.6. Comparisons with Commercial Catalyst

Since this work began, catalyst 61 was made commercially available by Aldrich. For comparison’s sake, commercial 61 was purchased and used to benzylate 58 under the same conditions shown in Table 3.4, entry 6. This reaction ran 19 hours and gave product 73 in 86% yield and 76% ee. When commercial catalyst was tested by HRMS for the presence of contaminants 76 and 77, only 76 was observed [found 377.2592 (M)\(^+\) and 378.2724 (M+H)\(^+\), calcd 377.26 for (C\(_{25}\)H\(_{33}\)N\(_2\)O)\(^+\) and 378.27 for (C\(_{25}\)H\(_{34}\)N\(_2\)O)\(^+\)].

3.7. References and Notes

Chapter 4. The Total Synthesis of (+)-Kurasoin B

4.1. Synthetic Analysis

With the new methodology now developed, the stage was set to complete the total synthesis of (+)-kurasoin B. This was envisioned retrosynthetically through benzyl Grignard addition and deprotection of 79 (Scheme 4.1). Compound 79, in turn, would originate from straightforward manipulations of 80, which would be obtained from an asymmetric PTC alkylation of 58 with electrophile 44.

![Scheme 4.1. Retroanalysis of 2.](image)

In the forward sense, it was envisioned that compound 80 could be converted to 79 via the approach illustrated in Scheme 4.2. Formation of methyl ester 81 could be accomplished via treatment of 80 with methyl triflate and sodium methoxide. Boc removal would give 82, and deprotection of the 2-NPM group would furnish 83; this could then be converted to Weinreb amide 84. Protecting this intermediate’s free hydroxyl group as a TES ether would then provide
Although this deprotection/reprotection sequence might appear inefficient, previous work with (+)-kurasoin A had shown it necessary to prevent undesired byproduct formation and low overall yield during benzyl Grignard addition. Treatment of 79 with BnMgCl would give 85, and reaction with TBAF would then unveil the final target.

Scheme 4.2. Planned synthesis of (+)-kurasoin B 2 from 80.

4.2. Making the Electrophile

Despite its commercial availability, a synthetic route to electrophile 44 was sought, due to the compound’s high cost ($356 per gram). Attempted brominations of 86 (accessible in one step from 3-methylindole) failed, even after applying numerous conditions suggested by literature precedent (Scheme 4.3).

Scheme 4.3. Bromide 44 was inaccessible from 86.
An alternative route, shown in Scheme 4.4, was pursued from indole-3-carboxaldehyde 87. Following published conditions,4 N-Boc protection of 87 provided 88 in quantitative yield, and sodium borohydride reduction of 88 gave 89. At this stage, different bromination conditions were explored. Treatment with Br$_2$/Ph$_3$P/Et$_3$N failed, giving only a complex mixture. By comparison, an alternative procedure with mesyl chloride and lithium bromide5 gave spectroscopically pure 44 in quantitative yield. This product was a deep-purple solid that became more darkly colored over time. All alkylations with this electrophile gave modest selectivity (<50% ee), so an improved procedure was sought. This led to the treatment of 89 with PBr$_3$ at low temperature, giving electrophile 44 as a white solid in 92% yield. The first alkylation of 58 with this electrophile provided 80 in 83% yield and 95% ee.

![Scheme 4.4. Completed synthesis of electrophile 44.](image)

4.3. First-Generation Synthesis

When the synthesis of compound 80 was attempted again (this time on two-gram scale) with the now-optimized catalyst, product 80 was obtained in 91% yield and \textasciitilde100% enantiomeric purity (Scheme 4.5). With 80 now in hand, displacement of the N-methylimidazole group was
explored. Eventually, conditions were found that provided 82 in 75% yield, with some epimerization (84% ee). Fortuitously, cleavage of the Boc group also occurred, thereby increasing the simplicity of the overall synthesis.

\[
\begin{align*}
58 & \xrightarrow{44, 61 (10 \text{ mol%})} \text{58} \\
& \quad \text{CH}_2\text{Cl}_2, \text{CsOH} \cdot \text{H}_2\text{O} \\
& \quad -40 \ ^\circ\text{C}, 60 \text{ h}, 91\% \\
& \quad \text{1. MeOTf, CH}_3\text{CN} \\
& \quad \quad \text{m. sieves, RT, 24 h} \\
& \quad \text{2. MeOH, DBU, 1 h} \\
& \quad \text{80 (>99\% ee)} \\
& \quad \text{82 (75%, 84\% ee)}
\end{align*}
\]

Scheme 4.5. Synthesis of 82 from 58.

With 82 in hand, removal of the 2-naphthalenemethyl protecting group was explored.\(^7\) Unfortunately, every condition examined—including high-pressure hydrogenation and treatment with boron trichloride or DDQ—failed, producing only complex mixtures or no reaction. Attempts to remove the 2-NPM protecting group during later stages of the synthesis were also unsuccessful.

4.4. Second-Generation Synthesis

At this stage, benzyl-protected substrate 63 was reconsidered. This compound had performed satisfactorily in earlier studies (see Table 3.2, entry
3) and seemed a better alternative to 58, given the difficulty we encountered in trying to remove the 2-NPM protection from 82.

 Gratifyingly, PTC alkylation of 63 with electrophile 44 gave product 90 in 98% yield and ~100% enantiomeric purity (Scheme 4.6). Besides providing a slightly higher yield than 58 in this alkylation (compare Scheme 4.5), substrate 63 also required less reaction time (3.5 hours versus 60 hours for 58). With product 90 now in hand, treatment with methyl triflate and basic methanol provided ester 91 in 94% yield, with some epimerization (88% ee).

Scheme 4.6. Synthesis of 91 from 63.

Conditions were now screened to remove 91's benzyl protecting group (Table 4.1).

Complex mixtures resulted from treatment of 91 with DDQ and Pd(OH)_2/H_2 (entries 1-2), while 10% Pd/C gave incomplete reactivity (entry 3). Boron trichloride eventually proved suitable,

<table>
<thead>
<tr>
<th>entry</th>
<th>conditions</th>
<th>results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DDQ, 1:1 CH_2Cl_2/H_2O</td>
<td>complex mixture</td>
</tr>
<tr>
<td>2</td>
<td>20% Pd(OH)_2/C, H_2, MeOH</td>
<td>complex mixture</td>
</tr>
<tr>
<td>3</td>
<td>10% Pd/C, H_2, EtOH</td>
<td>no rxn.</td>
</tr>
<tr>
<td>4</td>
<td>BCl_3, CH_2Cl_2, -78 °C</td>
<td>83 formed (56%)</td>
</tr>
<tr>
<td>5</td>
<td>BCl_3, CH_2Cl_2, -78 °C →-20 °C</td>
<td>83 formed (quant.)</td>
</tr>
</tbody>
</table>

DDQ = 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

Table 4.1. Benzyl deprotection screen of 91.
giving ester 83 cleanly in 56% yield at -78 °C (entry 4). When the temperature was increased to -20 °C as the reaction proceeded, quantitative product formation ensued (entry 5).

Besides having the more easily-cleaved benzyl protecting group, substrate 63 is less expensive to make than 58. This is because 63 is formed from benzyl alcohol (20¢ per gram), while 58 is made from costlier 2-naphthalene methanol ($15.66 per gram). The efficiency of compound 63 in asymmetric PTC alkylation, coupled with its relatively low cost, proved doubly advantageous to the attractiveness of this method.

With enantioenriched 83 now formed on large scale, seamless manipulations thereafter completed the total synthesis of (+)-kurasoin B. As Scheme 4.7 illustrates, treatment with N,O-dimethylhydroxylamine·HCl and trimethyl aluminum provided Weinreb amide 84 in 92% yield. TES protection then gave 79, and benzyl Grignard addition gave 85. Final deprotection with TBAF then provided (+)-kurasoin B (2) in 43% yield over ten steps from benzyl alcohol. Data obtained from our synthetic sample, including optical rotation, matched those of the natural compound, culminating in a published summary of the total synthesis.\(^7\)

![Scheme 4.7. Final steps to (+)-kurasoin B (2) from 83.](image-url)
4.5. Analog Syntheses

4.5.1. First-Generation Analogs

In hopes of conducting structure-activity relationship studies and possibly discovering (+)-kurasoin B derivatives with higher FTase-inhibitory activity, analogs of type 92 were desired (Figure 4.1). To this end, intermediate 79 was reacted with commercial Grignard reagents 93-95 to give 96-98 after TBAF deprotection (Scheme 4.8).

![Scheme 4.8. Syntheses of analogs 96-98 from 79.](image)

Indole variation proved more challenging. Despite the existence of substituted indoles of type 99 (Figure 4.2), their commercial availability is often limited and cost-prohibitive.

![Figure 4.2. General representation of 3-formylindole variants.](image)
One exception is 5-bromoindole 100. Based on literature precedent, it was envisioned that coupling reactions with 100 might produce various substituted indoles that could eventually lead to an expanded library of (+)-kurasoin B analogs.

![Figure 4.3. Bromoindole 100.](image)

To this end, electrophile 101 was prepared from 100 in a sequence analogous to the one used to prepare 44 (Scheme 4.4). This electrophile was then used in the PTC alkylation of substrate 58, giving 102 in 87% yield (Scheme 4.9). Compound 102, for which no enantiomeric excess was measured, was then examined as a substrate for Suzuki couplings to form analogs 103. A variety of attempts were unsuccessful, but exhaustive optimization was not pursued.

![Scheme 4.9. Attempted Suzuki couplings of 102 to form 103.](image)
An alternative route to indole variation was envisioned from N-Boc-protected TBS ether 104, as well as from aldehyde 100 itself (Scheme 4.10). Multiple Suzuki conditions (not shown) with various coupling partners failed to give products 105 in significant quantities, despite the use of reactive NHC ligand 106 during many attempts. Alternative Negishi conditions, for which some literature precedent was known, were also unsuccessful, due to the apparent stability of indoles 100 and 104.

Scheme 4.10. Attempted Suzuki couplings of 100 and 104 to form 105.

4.5.2. Indole Variation Through Modified Larock Chemistry

At this stage modification of Larock’s indole chemistry was considered. It was reasoned that available iodoanilines or accessible amino tosylates or triflates 107 might provide indoles 108 after TMS removal. These could then be transformed into electrophiles 109 as an alternative means to (+)-kurasoin B analogs. Unfortunately, all attempts at indole formation from arenes 107 failed, effectively halting our work toward indole variation.

Scheme 4.11. Envisioned syntheses of 109 from 107.
4.5.3. Second-Generation Analogs

Despite these setbacks, PTC alkylation of 63 was done with 101 to give 110 in 90% yield and 84% ee on large scale (Scheme 4.12). This was then converted to 111. Work currently advances toward bromoindolyl analogs 112-115, with the reaction conditions and unoptimized yields indicated. Once their preparations are completed, these analogs will be tested alongside compounds 96-98 for FTase-inhibitory activity.

4.6. References and Notes

Chapter 5. The Total Synthesis of 12-\((S)\)-HETE

5.1. Previous Synthetic Efforts

Of the various routes to 12-HETE mentioned in chapter 1, two bear particular relevance to our work. The first, reported by Spur et al.,\(^1\) began by chiral resolution of epoxide 116 with catalyst 117, which gave enantiopure 118 in 45% yield (Scheme 5.1). Treatment of 118 with lithiated 1-heptyne, followed by TES protection, then gave 119. Swern oxidation of 119 selectively affected the primary TES ether, directly affording aldehyde 120. This was then reacted with stabilized Wittig reagent 121 to produce compound 122. Exposure to Wittig salt 123

Scheme 5.1. Spur and coworkers’ synthesis of 12-\((S)\)-HETE (11).\(^1\)
(addressed later on) provided 124, which was hydrogenated with Lindlar catalyst to access 125. Deprotection and hydrolysis then furnished the final product with an 11.5% yield over 10 steps from 116.

Corey’s route to 12-(R)-HETE\(^2\) began by coupling 126 with 127 to form allyl bromide 128, which was then converted to ester 129 (Scheme 5.2). Asymmetric dihydroxylation with AD-mix-\(\beta\) occurred with concomitant lactonization, producing intermediate 130 in 95% ee. Lindlar reduction provided the \(Z\)-olefinic moiety; the free alcohol was converted thereafter to a mesyle, and the lactone reduced to a lactol, giving 131. Reaction with 123 (shown above) then provided \((R)\)-132, which was hydrolyzed to the final target (no yield reported). The synthesis was reported as embarking eight total steps from 126. However, formation of 123 was lower-yielding and required the same number of steps as 131. Hence, the total synthesis was actually done over eight steps from hex-5-yenitride (the precursor to 123) with <12.8% yield (no yield reported for the last step). Its advantage lies in its amenability to 12-(S)-HETE 11 by using complimentary AD-mix-\(\alpha\) in the key step.

Scheme 5.2. Corey and coworkers’ synthesis of 12-(R)-HETE.\(^2\)
5.2. Synthetic Analysis

To further showcase the utility of our PTC alkylation methodology, a route to 12-(S)-HETE \(\text{11} \) was devised, as depicted in Scheme 5.3. Retrosynthetically, \(\text{11} \) was envisioned as arising from \(\text{123} \) and \(\text{133} \). Compound \(\text{133} \), in turn, could come from reacting aldehyde \(\text{134} \) with Wittig reagent \(\text{121} \). Compound \(\text{134} \) could be derived from \(\text{135} \), which could originate from the asymmetric PTC alkylation of \(\text{63} \) with electrophile \(\text{136} \).

![Scheme 5.3. Retroanalysis of \(\text{11} \).](image)

In the forward direction, treating \(\text{135} \) with methyl triflate and basic methanol would yield ester \(\text{137} \), and careful reduction of \(\text{137} \) would give aldehyde \(\text{134} \) (Scheme 5.4). Reaction with \(\text{121} \) would then produce \(\text{133} \). Noting \(\text{133} \)’s structural similarity to \(\text{122} \) above, coupling with Wittig reagent \(\text{123} \) would be anticipated to provide \(\text{138} \). Deprotection and hydrolysis would then give the final target, formed over 10 steps from the benzyl alcohol used to make \(\text{63} \).
5.3. First-Generation Synthesis

5.3.1. Making the Electrophile

The synthesis began by examining PTC alkylation with electrophile 136. This had been done earlier on substrate 58 (see Table 3.4, entry 10) to give product with an acceptable 77% yield and 79% ee. Unfortunately, the reaction suffered from irreproducibility. Typical alkylations with electrophile 136 resulted in 45-65% yields and ee’s below 75%.

Our earlier syntheses of 136 had been done by reducing 2-octyn-1-ol to Z-2-octen-1-ol and then converting the alcohol to its bromide derivative.3-4 However, this bromide had never been properly characterized. As modest alkylations of 58 and 63 continued, our electrophile’s purity was questioned. Alternative routes to purer electrophile were consequently examined.

The first was envisioned by coupling 1395-6 with hexanal to produce ester 140, which could undergo reduction to alcohol 141 and subsequent conversion to bromide 138 (Scheme 5.5). Despite clean formation of 139, all coupling reactions with hexanal failed. Hence, attention was turned back to reducing 2-octyn-1-ol. After exploring several conditions, use of catalytic nickel

Scheme 5.4. Planned synthesis of 11 from 135.
(II) acetate proved successful, providing pure 141 (no E isomer detected) in 85% yield. This reaction had to be monitored by taking an aliquot from the reaction mixture in situ and analyzing it by 1H NMR spectroscopy prior to quench and workup. Successful bromination of 141 was eventually achieved with PBr$_3$, providing spectroscopically pure 136 in 97% yield. Low vacuum was necessary when concentrating 136 and its precursors, due to their high volatility.

\[\text{ArO} \xrightarrow{\text{CHO}} \text{CO}_2\text{Et} \]

\[\xrightarrow{\text{CH}_3\text{CN or THF}} \]

\[\xrightarrow{\text{DIBAL-H, -78 °C, CH}_3\text{OH}} \text{CO}_2\text{Et} \]

\[\xrightarrow{\text{Ni(OAc)}_2 \cdot 4\text{H}_2\text{O, NaBH}_4} \text{CHO} \]

\[\xrightarrow{(\text{H}_2\text{NCH}_2)_2, \text{MeOH, H}_2, 22\ h, 85\%} \]

\[\text{Ar} = \text{2-tBuPh} \]

\[\text{2-octyn-1-ol} \]

\[\text{139} \]

\[\text{140} \]

\[\text{141: } R = \text{OH} \]

\[\text{136: } R = \text{Br} \]

\[\text{PBr}_3, \text{Et}_2\text{O} \]

\[5\ h, 97\% \]

\[\text{Scheme 5.5. Investigated routes to electrophile 136.} \]

5.3.2. Alkylation Screen

Initial alkylations of 63 with 136 were conducted without purification (Table 5.1). Instead, ee’s were measured quickly by chiral HPLC after flushing the crude product through a short silica pad. Decreasing to 2.0 equivalents of electrophile caused unacceptably sluggish reactivity (entry 1), while 4.0 equivalents gave product in 65% ee (entry 2). Solvent screens showed modest improvement when a 2:1 mixture of dichloromethane/n-hexane was employed (entry 3). Decreased base equivalency also caused unacceptably slow reactivity (entry 4), while lowered temperature (-60 °C) provided 135 after 23 hours in 80% ee (entry 5).
Catalysts depicted in Figure 5.1 were used in a broad alkylation screen under now-optimized conditions, producing the data shown in Table 5.2. Novel catalyst 142, developed from the fairly inexpensive 2,6-dimethylnaphthalene, only gave product with a 54% ee (entry 2). Commercial Maruoka catalysts 143 and 144 (added in 1 mol percent) resulted in excessive reaction times (entries 3-4). Catalyst 60 gave a complex mixture (entry 5), while 145 and 146 caused unacceptable reaction times (entries 6-7). Pleasingly, catalysts 36 and 147 produced ee’s of 86-87% (entries 8-9). Furthermore, novel catalyst 148 furnished product with a superior 88% ee, which was reproducible on large scale.

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent/temperature</th>
<th>modifications</th>
<th>time (h)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH₂Cl₂, -40 °C</td>
<td>2.0 equiv 136</td>
<td>>48</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>CH₂Cl₂, -40 °C</td>
<td>4.0 equiv 136</td>
<td>28</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>2:1 CH₂Cl₂/n-hex, -40 °C</td>
<td>4.0 equiv 136</td>
<td>25</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>2:1 CH₂Cl₂/n-hex, -40 °C</td>
<td>2.0 equiv CsOH·H₂O used</td>
<td>>48</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>2:1 CH₂Cl₂/n-hex, -60 °C</td>
<td>4.0 equiv CsOH·H₂O used</td>
<td>23</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 5.1. Condition screens in alkylation 63 with electrophile 136.
Table 5.2. Catalyst screen.

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>time (h)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
<td>>48</td>
<td>a--</td>
</tr>
<tr>
<td>2</td>
<td>142</td>
<td>25</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>143 (1 mol%)</td>
<td>>48</td>
<td>a--</td>
</tr>
<tr>
<td>4</td>
<td>144 (1 mol%)</td>
<td>>48</td>
<td>a--</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>16</td>
<td>complex mixture</td>
</tr>
<tr>
<td>6</td>
<td>145</td>
<td>>48</td>
<td>a--</td>
</tr>
<tr>
<td>7</td>
<td>146</td>
<td>>48</td>
<td>a--</td>
</tr>
<tr>
<td>8</td>
<td>36</td>
<td>23</td>
<td>86</td>
</tr>
<tr>
<td>9</td>
<td>147</td>
<td>18</td>
<td>87</td>
</tr>
<tr>
<td>10</td>
<td>148</td>
<td>22</td>
<td>88</td>
</tr>
</tbody>
</table>

aee not measured

Figure 5.1. Catalysts used in Table 5.2.
5.3.3. To Aldehyde 133

Product 135 was next reacted in crude form with methyl triflate and sodium methoxide/methanol to give 137 in 75% yield over two steps from 63 (Scheme 5.6). Slight epimerization was observed, with 137 being isolated in 84% ee. Conversion to aldehyde 134 proceeded smoothly in 82% yield by employing DIBAL-H at -78 °C, and treatment with commercial reagent 121 in benzene gave α,β-unsaturated aldehyde 133 in 99% yield. With this key intermediate now in hand, attention turned to Wittig salt 123.

Scheme 5.6. Formation of α,β-unsaturated aldehyde 133 from 135.

5.3.4. Making Wittig Salts 123 and 158

Three different routes to 123 are known. In their racemic synthesis of 12-HETE, Gunn and Brooks began by lithiating chloropentyne 149 and adding ethylene oxide to access alcohol 150 (Scheme 5.7). Nitrile substitution, acidification, and methyl esterification with diazomethane, followed by palladium-catalyzed reduction, then provided alcohol 151.
Straightforward transformations continued thereafter to 123 in 20% yield over eight steps from 149.

\[
\begin{align*}
\text{149} & \quad \overset{n-\text{BuLi, BF}_3\cdot\text{OEt}_2, \quad -78 ^\circ\text{C}, 45\%}{\xrightarrow{\text{150}}} \\
\end{align*}
\]

1. NaCN, Me$_2$SO, 93%
2. EtOH/H$_2$O, NaOH, 70%
3. CH$_2$N$_2$, quant.
4. Pd/BaSO$_4$, quinoline, H$_2$, 86%

Scheme 5.7. Gunn synthesis of 123.$^{14-15}$

Just and coworkers, who published a synthesis of 12-(\(S\))-HETE in 1986,16 formed 123 by the same route used in Corey’s 12-(\(R\))-HETE synthesis.2,17 This began by converting nitrile 152 to orthoester 153 in 89% yield. Lithiation and treatment with ethylene oxide,18 followed by acidification and reduction, then gave alcohol 151. Sequential manipulations thereafter provided 123 in 18% yield over six steps from 152.

\[
\begin{align*}
\text{152} & \quad \overset{\text{MeOH/HCl, 89\%}}{\xrightarrow{\text{153}}} \\
\end{align*}
\]

1. Li/NH$_3$/ethylene oxide
2. HCl; 3. BN$_2$, H$_2$

Scheme 5.8. Route to 123 used independently by Just and Corey.$^{16-18}$
A more expeditious route to 123 by Rokach et al. began by employing LiHMDS to couple Wittig salt 154 (made quantitatively from 3-bromopropanol)19 with aldehyde 155. The crude product was then deprotected to provide alcohol 151. Bromination, iodination, and reaction with triphenylphosphine then afforded 123 in 68% yield over seven steps from 3-bromopropanol.

\begin{center}
\begin{tikzpicture}
 \node[draw,rectangle,inner sep=0.5cm] (a) at (0,0) {TBSO\text{PPh}_3\text{Br}};
 \node[draw,rectangle,inner sep=0.5cm] (b) at (2,0) {OHC\text{CO}_2\text{Me}};
 \node[draw,rectangle,inner sep=0.5cm] (c) at (4,0) {R \text{CO}_2\text{Me}};
 \node[draw,rectangle,inner sep=0.5cm] (d) at (6,0) {151: R = \text{OH}};
 \node[draw,rectangle,inner sep=0.5cm] (e) at (8,0) {154};
 \node[draw,rectangle,inner sep=0.5cm] (f) at (10,0) {155};
 \node[draw,rectangle,inner sep=0.5cm] (g) at (12,0) {123: R = (\text{PPh}_3)^{+}\text{I}^{-}};
 \node[draw,rectangle,inner sep=0.5cm] (h) at (14,0) {1. LiHMDS, -78 °C \quad \text{THF/HMPA}};
 \node[draw,rectangle,inner sep=0.5cm] (i) at (16,0) {2. TBAF (83\%)};
 \node[draw,rectangle,inner sep=0.5cm] (j) at (18,0) {DIPHOS, \text{CBr}_4};
 \node[draw,rectangle,inner sep=0.5cm] (k) at (20,0) {1. NaI (89\% from 151) \quad \text{2. PPh}_3 (92\%)};
 \node[draw,rectangle,inner sep=0.5cm] (l) at (22,0) {156};
 \node[draw,rectangle,inner sep=0.5cm] (m) at (24,0) {1. \text{MeOH/TEA}};
 \node[draw,rectangle,inner sep=0.5cm] (n) at (26,0) {2. \text{PCC, CH}_2\text{Cl}_2};
\end{tikzpicture}
\end{center}

Scheme 5.9. Rokach’s route to 12319

Incomplete experimental details made these procedures all potentially challenging. It was eventually opted to follow Rokach’s route, however, since it gave product in higher yield and included the greatest amount of procedural information.

We followed Rokash’s conditions to seamlessly obtain compound 154 in quantitative yield from 3-bromopropanol20-21 However, attempts to prepare 155 from δ-valerolactone 156 gave product that was heavily contaminated by an unidentified aromatic compound22-23 Purification by chromatography and distillation failed.

\begin{center}
\begin{tikzpicture}
 \node[draw,rectangle,inner sep=0.5cm] (a) at (0,0) {156};
 \node[draw,rectangle,inner sep=0.5cm] (b) at (2,0) {1. \text{MeOH/TEA}};
 \node[draw,rectangle,inner sep=0.5cm] (c) at (4,0) {155};
 \node[draw,rectangle,inner sep=0.5cm] (d) at (6,0) {2. \text{PCC, CH}_2\text{Cl}_2};
\end{tikzpicture}
\end{center}

Scheme 5.10. Attempted formation of 155 from 15622-23
An alternative approach was envisioned in which benzyl ester 157 could serve as a surrogate for 155 (Scheme 5.11). Compound 157 is UV-active, a desirable property that would enable easier chromatographic purification and monitoring of reaction progress via TLC. One potential synthetic advantage of 158 over 123 would be the possibility of doubly deprotecting intermediate 159 with boron trichloride in a single step, instead of the two steps required by synthon 138.

According to plan, 156 was converted smoothly to alcohol 160 in 97% yield. As anticipated, compound 160 was UV-active and easily purified by column chromatography. Oxidation with PCC then provided 157 cleanly after column purification.

Scheme 5.11. Envisioned formation of 158 en route to 12-(S)-HETE 11.

Scheme 5.12. Preparation of 157 from 156.
As Table 5.3 illustrates, coupling screens proved lithium and sodium hexamethyl-
disilazides ineffective at producing 161 (entries 1-2). These only gave dark mixtures of
unidentifiable byproducts. Screens with n-butyllithium and sodium hydride gave modest yields
initially (entries 3-4), but n-butyllithium’s performance improved as temperatures were varied
(entries 5-7), ultimately providing 161 in 97% yield. As with compounds 136 and 141 above,
concentration of 161 had to be done cautiously under low vacuum to prevent product loss.

<table>
<thead>
<tr>
<th>entry</th>
<th>conditions</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LiHMDS, THF, HMPA, -78 °C</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>NaHMDS, THF, HMPA, -78 °C</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>n-BuLi, THF, -30 °C</td>
<td>7.7</td>
</tr>
<tr>
<td>4</td>
<td>NaH, THF, RT</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>n-BuLi, THF, -90 °C</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>n-BuLi, THF, RT</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>a-n-BuLi, THF, -30 °C</td>
<td>97</td>
</tr>
</tbody>
</table>

*a*Low vaccum used during concentration

Table 5.3. Condition screen in forming 161.

Deprotection of 161 unveiled alcohol 162 in 85% yield (Scheme 5.13). Direct
conversion to iodide 163 was then facilitated through use of triphenylphosphine, imidazole, and
iodine (98% yield), and overnight treatment with triphenylphosphine in refluxing acetonitrile
gave 158 quantitatively as desired. As anticipated, each of these intermediates was UV-active,
which facilitated chromatographic purification. Once optimized, this route provided 158
efficiently from δ-valerolactone (156) in 74% yield over six steps.
5.3.5. Coupling with Aldehyde 133

Initial couplings of Wittig salt 158 with aldehyde 133 gave product 159 in only 19% yield. To conserve precious 133, cinnamaldehyde 164 was used as a test substrate to optimize conditions (Table 5.4). When a first trial gave no product (entry 1), 158 was purified by column chromatography in 5% MeOH/CH₂Cl₂. This salt, isolated as a dark yellow syrup, was found to

\[
\text{Scheme 5.13. Formation of } 158 \text{ from 161.}
\]

<table>
<thead>
<tr>
<th>entry</th>
<th>conditions</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(^a) (t)-BuLi, m. sieves, THF, HMPA, (-30 \degree C)</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>KHMDS, m. sieves, THF, HMPA, (-30 \degree C)</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>(t)-BuLi, m. sieves, THF, HMPA, (-30 \degree C)</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>(n)-BuLi, m. sieves, THF, HMPA, (-30 \degree C)</td>
<td>44</td>
</tr>
<tr>
<td>5</td>
<td>(n)-BuLi, m. sieves, THF, HMPA, (-40 \degree C)</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>(n)-BuLi, m. sieves, THF, HMPA, (-78 \degree C)</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>(^b)MeLi, m. sieves, THF, HMPA, (-78 \degree C)</td>
<td>84</td>
</tr>
</tbody>
</table>

\(^a\)158 used without purification or \(P_2O_5\) drying

\(^b\)158 used after purification and \(P_2O_5\) drying

Table 5.4. Condition screen for coupling 158 with cinnamaldehyde (164).
be extremely water sensitive and only functioned well when subjected to overnight concentration in vacuo with phosphorous pentoxide (P$_2$O$_5$). In time, screening of the base revealed n-butyllithium’s superiority (entries 2-4), though decreased temperature limited reactivity (entries 5-6). Vigorous drying by azeotropic distillation with THF/toluene, followed by in vacuo concentration overnight in the presence of P$_2$O$_5$, provided 158 in its driest form. Renewed reactivity with methyllithium then produced 165 cleanly in 85% yield.

5.3.6. Completing the Synthesis

Salt 158 was found to decompose slowly over time. Consequently, its ability to provide positive results gradually ceased, eventually necessitating preparation of a new batch. Once prepared and properly dried, fresh 158 was coupled with 133 (200 mg scale) under optimized conditions to furnish 159 (Scheme 5.14). Disappointingly, this proceeded with only a 33% yield after purification. Cleavage of both the benzyl ether and ester of 159 in a single step proved

![Scheme 5.14. Final steps to 12-(S)-HETE 11 from aldehyde 133.](image-url)
unsuccessful. Instead, treatment with boron trichloride at low temperature furnished intermediate 166, in which only the benzyl ether was cleaved (32% yield). LiOH-mediated hydrolysis of the ester was then performed following Corey’s procedure,\(^2\) but the amount of compound 11 isolated was too small to characterize spectroscopically. We were able to detect product 11 in the crude reaction mixture by HRMS after quench and workup.

5.4. Second-Generation Synthesis

In light of the coupling failures with Wittig salt 158, a second-generation synthesis of 12-(S)-HETE is currently in development. This is projected to unfold as Scheme 5.15 depicts, by converting aldehyde 134 (prepared as per Scheme 5.6) to vinyl iodide 167.\(^{24\text{-}25}\)

Separate

\[
\begin{align*}
\text{O} & \quad \text{CrCl}_2, \text{CH}_3, \\
\text{H} & \quad \text{dioxane/THF} \\
\text{OBn} & \quad \text{I} \\
\text{134} & \quad \text{OBn} \quad \text{167}
\end{align*}
\]

\[
\begin{align*}
\text{HO} & \quad \text{CO}_2\text{Bn} \\
\text{162} & \quad \text{NaOAc, PCC,} \\
\text{CH}_2\text{Cl}_2 & \quad \text{O} \\
\text{CO}_2\text{Bn} & \quad \text{168}
\end{align*}
\]

\[
\begin{align*}
\text{TMS-CH}_2\text{=N}_2 & \quad \text{or CBr}_4, \text{PPh}_3, \text{BuLi} \\
\text{169} & \quad \text{167, Pd(PPh}_3)_4, \\
& \quad \text{Cul, n-PrNH}_2
\end{align*}
\]

\[
\begin{align*}
\text{CO}_2\text{Bn} & \quad \text{Ni(OAc)}_2\cdot4\text{H}_2\text{O, NaBH}_4 \\
\text{170} & \quad (\text{H}_2\text{NCH}_2)_2, \text{MeOH, H}_2 \\
& \quad \text{159}
\end{align*}
\]

\[
\begin{align*}
\text{1. BCl}_3, \text{CH}_2\text{Cl}_2, -78 \degree \text{C} \\
\text{2. LiOH, MeOH/THF} \\
\text{162,} & \quad \text{CO}_2\text{H}
\end{align*}
\]

\[
\begin{align*}
\text{HO} & \quad \text{11}
\end{align*}
\]

Scheme 5.15. Second-Generation route to 12-(S)-HETE 11 currently underway.
oxidation of alcohol 162 (prepared as per Scheme 5.13) should yield aldehyde 168. Treatment with TMS-diazomethane or CBr₄, PPh₃ and n-butyllithium should then provide terminal acetylene 169. Sonagashira coupling with 167, for which similar conditions were reported in a 12-(S)-HETE synthesis by Sato and coworkers, should then produce intermediate 170. Half reduction of the internal alkyne should proceed without disturbing the olefinic moieties, giving compound 159. Benzyl deprotection and hydrolysis should then give 12-(S)-HETE 11, obtained over seven steps in the longest linear sequence from benzyl alcohol (the precursor to 134).

5.5. References and Notes

 Glynn, R. E.; Horn, C. L.; Ioannidis, S.; Lyne, P.; Newcombe, N. J.; Oza, V. B.; Pass, M.;

15. Perchonock, C. D.; Finkelstein, J. A.; Uzinskas, I.; Gleason, J. G.; Sarau, H. N.; Cieslinski,

Chapter 6. Phase-Transfer Catalyzed Asymmetric Arylacetate Alkylation

6.1. PTC Alkylation of α-Aryl Esters

Attention turned next to the asymmetric PTC alkylation of esters lacking α-oxygenation, beginning with test substrate 171, which was benzylated with various catalysts and a multitude of conditions (not shown) to provide 172 with modest enantioselectivities (Scheme 6.1).

![Scheme 6.1. Asymmetric PTC benzylations of 171.]

Ester variation was explored by preparing an extensive library of substrates 173 (Scheme 6.2, vide infra). These were asymmetrically benzylated under a vast array of conditions (not shown) with catalysts 27 and 36. Dimer catalyst 61, whose synthesis had not yet been optimized by this time, performed quite poorly with these substrates. The highest ee’s obtained (60-74%) were not reproducible. Typical enantiomeric excesses ranged from 40–55%.

When the synthesis of catalyst 61 had finally been optimized, esters and ketones 175 (shown in Table 6.1 below) were explored in anticipation of a new methodology applicable to (S)-Naproxen 12. Surprisingly, the N-methylimidazolyl variant gave no observable enantioselectivity (entry 1). Slight improvements were obtained with various aryl esters and amides (entries 2-5 and 7), though selectivities were still modest. The phenethyl variants, in
contrast, gave marked enhancement (entries 10-12), with the phenethyl ester featured in entry 10 providing 176 in near-quantitative yield.

As Table 6.2 illustrates (**vide infra**), no selectivity enhancements were observed when various catalysts were screened in the allylation of phenethyl ester 177. Not surprisingly, higher temperature decreased reaction time (entry 5), while lower temperature had the opposite effect (entry 6); however, enantioselectivity remained a modest 56% ee at best.

Scheme 6.2. Asymmetric PTC benzylation of esters 173.

As Table 6.2 illustrates (**vide infra**), no selectivity enhancements were observed when various catalysts were screened in the allylation of phenethyl ester 177. Not surprisingly, higher temperature decreased reaction time (entry 5), while lower temperature had the opposite effect (entry 6); however, enantioselectivity remained a modest 56% ee at best.
Table 6.1. Alkylation screen of β-naphthyl esters and ketones 175.

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>R'X</th>
<th>yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>BnBr</td>
<td>73</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>BnBr</td>
<td>83</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>BnBr</td>
<td>67</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>BnBr</td>
<td>86</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>BnBr</td>
<td>98</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>allyl-Br</td>
<td>67</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>allyl-Br</td>
<td>54</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>allyl-Br</td>
<td>48</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>allyl-Br</td>
<td>92</td>
<td>34</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>allyl-Br</td>
<td>99</td>
<td>56</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>allyl-Br</td>
<td>78</td>
<td>59</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>allyl-Br</td>
<td>78</td>
<td>54</td>
</tr>
</tbody>
</table>

^a6-MeO-naphthyl acetate used as substrate
As additional attempts at optimization continued to give modest improvements, abandonment of the project was considered. However, it was fortuitously discovered that product 178 could be recrystallized overnight from 1:1 ether/hexanes to produce an enantio-enriched product. This gave pure 178 in 63% yield and 93% ee, all without any chromatographic purification.

This technique was successfully applied to alkylations with other electrophiles, generating enantio-enriched products 179 (Table 6.3). Thus a new route to asymmetrically α-alkylated naphthyl acetates had been devised.

6.2. PTC Alkylation of 6-Methoxynaphthyl Acyl Esters

While engaged in this research we discovered a recent report by Kumar and Ramachandran\(^1\) that featured the asymmetric methylation of tert-butyl ester 180, catalyzed by cinchonine catalyst 181 (Scheme 6.3, vide infra). This technique generated product 182 in 74%

\[\text{entry} \quad \text{catalyst} \quad \text{temp (°C)} \quad \text{time (h)} \quad \text{yield (%)} \quad \text{ee (%)} \]

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>temp (°C)</th>
<th>time (h)</th>
<th>yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61</td>
<td>-40</td>
<td>8</td>
<td>99</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>-40</td>
<td>8</td>
<td>72</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>143 (1 mol%)</td>
<td>-40</td>
<td>8</td>
<td>81</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>144 (1 mol%)</td>
<td>-40</td>
<td>8</td>
<td>52</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>61</td>
<td>-20</td>
<td>4</td>
<td>84</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>61</td>
<td>-60</td>
<td>50</td>
<td>76</td>
<td>49</td>
</tr>
</tbody>
</table>

Table 6.2. Catalyst alkylation screen with substrate 177.
yield and 56% ee. Recrystallization from tert-butyl alcohol then gave enantioenriched 183 in 93% ee, though no isolated yield was reported. Hydrolysis then provided (S)-Naproxen 12 in 94% yield.

For the sake of comparison, substrate 180 was prepared by our group and treated with catalyst 61 and methyl iodide under our conditions. Surprisingly, no measurable product was formed, even after 48 hours. 2-Phenethyl ester 184, by comparison, underwent complete allylation after only 18 hours with catalyst 61 (Scheme 6.4). (Methylation was not attempted.) This quantitatively provided 185 in 43% ee. Recrystallization from 1:1 ether/hexanes then furnished enantioenriched product in 93% ee and 62% yield.

Table 6.3. PTC alkylations of 177 and enantio-enriching kinetic resolutions of 179.
Absolute configurations of products thus far were presumed to be \(R \) based on previous alkylations with cinchonidine catalysts. This was corroborated by Ramachandran’s production of \(S \)-product 182 using complimentary cinchonine catalyst 181. A total synthesis of \((S) \)-Naproxen from 184 was therefore reasoned to similarly require a cinchonine catalyst. Consequently, novel bis-cinchoninium catalyst 186 was prepared (Figure 6.1).
The total synthesis began with Willgerodt-Kindler\(^2\) conversion of acetyl naphthalene 187 to morpholine thioamide 188 in 98% yield (Scheme 6.5). Hydrolysis and EDCI coupling with phenethanol then gave ester 184 in 76% yield. PTC methylation of 184 with catalyst 186 proceeded smoothly at -30 °C to give 189 in 71% yield and 92% ee after recrystallization from

![Figure 6.1. Cn catalyst 186.](image)

Scheme 6.5. Total synthesis of (S)-Naproxen 12 from 187.\(^3\)-\(^4\)
1:1 ether/hexanes. This intermediate’s optical rotation and HPLC data matched those of a separate sample of 187 made from commercial (S)-Naproxen, thereby confirming its absolute configuration as S.3-4

Hydrolysis was facilitated smoothly in 91% yield with non-epimerizing conditions reported by Carpino and Tunga.5 Our synthetic 12 matched a commercial sample by HRMS, NMR spectroscopy, and optical rotation. This new method furnished (S)-Naproxen in 48% yield over six steps from 6-methoxy-2-naphthalene 187.

The elegance of this approach lies in the fact that only two intermediates (184 and 188) require chromatographic purification, and the key step generates 189 in 71% yield and 92% ee with no requisite chromatography. This is potentially advantageous over traditional routes to (S)-Naproxen that necessitate costly chiral resolutions and recycling of racemates6-9 or chiral auxiliaries that have to be recovered.10-12

6.4. Asymmetric PTC Alkylation of Phenyl Phenylacetates

As the arylacetate alkylation methodology progressed, a single allylation of substrate 190 was found to give product in 77% yield and 93% ee without any enantio-enriching recrystallization (Scheme 6.6).3

$$\text{Scheme 6.6. PTC alkylation of substrate 190.}$$
This finding might be logically extended to 4-oxygenated derivatives of type 191 in an anticipated route to the isoflavanoid S-equol (Scheme 6.7).13-20 Synthetically, PTC alkylation of 191 with electrophile 19221-23 would be anticipated to generate product 193. The requisite S-configuration would be expected through use of cinchonine catalyst 186. Reduction of 193 would then give diol 194 with concomitant pivalate removal, and ring-closing Mitsunobu chemistry could provide 19521-23. Di-demethylation of 195 would then unveil the final target over four steps from 191. Work toward this end is currently underway.

\begin{center}
\includegraphics[width=\textwidth]{scheme67.png}
\end{center}

\textbf{Scheme 6.7.} Planned total synthesis of the isoflavonoid (S)-equol.

\section*{6.5. References and Notes}

Chapter 7. Experimental Details and Data

7.1. General Methods and Materials

Air and water sensitive reactions were performed in flame-dried glassware under nitrogen atmosphere. Air and moisture sensitive reagents were introduced via dry syringe or cannula. THF, methylene chloride, acetonitrile, DMF, triethylamine, DMSO, benzene, methanol, toluene, and diethyl ether were drawn from a pressurized dry solvent system, which maintains solvent dryness by flushing HPLC (or comparable) grade solvents through activated alumina casks stored under argon. (Freshly distilled solvents would serve as adequate substitutes.) HPLC grade chloroform, ethanol, and hexanes were dried over 4 Å molecular sieves before use. Flash chromatography was carried out using 230 x 400 mesh silica gel purchased from Sorbent Technologies (catalog #30930M). Analytical thin-layer chromatography (TLC) was performed with silica gel 60 F254, 0.255 mm pre-coated TLC plates, purchased from Merck. TLC plates were visualized using UV254 and a cerium molybdate stain with charring (see procedure below). All 1H NMR spectra were obtained with 300 or 500 MHz Varian spectrometers using TMS (0.0 ppm) or chloroform (7.27 ppm) as an internal reference. Signals are reported as m (multiplet), s (singlet), d (doublet), t (triplet), q (quartet), bs (broad singlet), dd (doublet of doublets), or dq (doublet of quartets); the coupling constants are reported in hertz (Hz). 13C NMR spectra (75 or 125 MHz) were acquired with chloroform (77.2 ppm) as the internal standard. Mass spectral data (HRMS) were obtained using an Agilent multi-mode source mass spectrometer. Optical rotations were acquired with a Bellingham and Stanley Limited ADP220 polarimeter using the sodium D line at ambient temperature. Low temperatures were maintained using a Neslab CC100 immersion cooler with a cooling probe placed in an acetone bath.
7.2. Cerium Molybdate Stain

A solution of cerium molybdate stain was prepared by dissolving 0.5 g ceric ammonium nitrate, 24 g ammonium molybdate tetrahydrate, and 28 mL concentrated sulfuric acid in 500 mL distilled water, stirred for three hours at room temperature to form a clear, yellow solution. TLC plates, once developed, were dipped in this solution and then charred, glass side down, on a hot plate, until spot visualization occurred.

7.3. Procedures from Chapter 3

7.3.1. Acyl Imidazole Substrate Preparations

\[\text{Br}O\text{H} \quad \text{O} \quad \text{O} \quad \text{OH} \quad \text{N} \quad \text{NaH, THF, n-Bu$_4$N$^+$I$^-$, 0 °C} \]

\[\text{2-(naphthalen-2-ylmethoxy) acetic acid.} \] To a flame-dried 100 mL round bottom flask (flask A) was added bromoacetic acid (2.054 g, 1.0 equiv) and THF (42 mL, 0.35 M). Sodium hydride (886 mg, 2.5 equiv) was then added carefully. This suspension was stirred at room temperature until hydrogen gas stopped evolving, monitored by attaching an outlet tube from the flask to a bubbler. Once this occurred, flask A was cooled to 0 °C. To a separate flask 100 mL round bottom flask (flask B) was added naphthalene methanol (1.59 g, 0.68 equiv) and THF (42 mL, 0.35 M). This was also cooled to 0 °C. The contents of flask B were then added to flask A at 0 °C, and the combined solution was warmed to room temperature with vigorous stirring. n-tetrabutyl ammonium iodide (55 mg, 0.05 equiv) was then added, and the resulting mixture was
fitted with a water condenser and brought to reflux, which continued with vigorous stirring for 4 hours. The reaction flask was then cooled to 0 °C and ethanol (10 mL) was added. This crude mixture was concentrated by rotary evaporator, and the solid material was diluted with ethyl ether (40 mL) and was extracted with saturated aqueous sodium bicarbonate (3 x 50 mL). The aqueous layer was then carefully acidified to pH 2 with 1 N aqueous HCl, and was extracted with CH₂Cl₂ (5 x 50 mL). The acid product was then dried over magnesium sulfate, filtered, and concentrated in vacuo to give an off-white solid, isolated in a quantitative yield of the crude product (2.44 g).

N-methoxy-N-methyl-2-(naphthalen-2-ylmethoxy)acetamide. To a flame-dried 50 mL round-bottom flask, 2-(naphthalen-2-ylmethoxy) acetic acid (2.24 g, 10.34 mmol, 1.0 equiv) was dissolved in CH₂Cl₂ (41 mL) and cooled, while stirring, to 0 °C under N₂. To this were added N,O-dimethylhydroxylamine hydrochloride (1.51 g, 97.55 mmol, 1.5 equiv), 4-(dimethylamino)pyridine (316 mg, 122.17 mmol, 0.25 equiv), diisopropylethylamine (2.88 mL, 129.25 mmol, 16.5 equiv), and N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDCI, 1.982 g, 191.71 mmol, 10.34 equiv). This mixture was then stirred, warming gradually overnight to room temperature, for 25 hours. The reaction was then quenched by adding H₂O (50 mL) and CHCl₃ (50 mL). The layers were separated, and the aqueous layer was extracted with CHCl₃ (3 x 50 mL). The combined organic layers were then washed sequentially with 3M aqueous H₃PO₄ (1 x 10 mL), saturated aqueous NaHCO₃ (1 x 10 mL), and brine (1 x 10 mL). The combined organic layers were dried (MgSO₄), filtered, and concentrated by rotary...
evaporator. The crude product was isolated without purification as an off-white solid (2.63 g, 98% yield). Data are: TLC R\textsubscript{f} = 0.55 (50% EtOAc/hexanes); 1H NMR (CDCl\textsubscript{3}, 300 MHz) \textdelta 7.84-7.83 (m, 4H), 7.55 (d, J = 4.2 Hz, 1H), 7.48-7.45 (m, 2H), 4.84 (s, 2H), 4.33 (s, 2H), 4.56 (s, 3H), 3.18 (s, 3H); 13C NMR (CDCl\textsubscript{3}, 75 MHz) \textdelta 135.4, 133.5, 133.3, 128.5, 128.2, 128.0, 127.1, 126.4, 126.2, 73.5, 67.4, 61.6.

\begin{center}
\begin{tikzpicture}
\node at (0,0) {\text{THF, -78 °C, 85%}};
\end{tikzpicture}
\end{center}

\textbf{1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) ethanone (58).} To a flame-dried 25 mL round-bottom flask (flask A), N-methylimidazole (1.08 mL, 13.57 mmol) was dissolved in THF (4.0 mL). This was cooled, while stirring, to 0 °C. \textit{n}-butyl lithium (1.6 M in hexanes) was then added dropwise (8.15 mL), and the resulting orange solution was stirred at 0 °C for 1 hour. As flask A neared one hour of stirring, 1-morpholino-2-(naphthalen-2-ylmethoxy) ethanone (1.55 g, 5.43 mmol) was dissolved in THF (5.43 mL) in a separate, flame-dried 25 mL pear-shaped flask (flask B), cooled to -78 °C. Once flask A had stirred for 1 hour, it was also cooled to -78 °C and was added to flask B by cannula, giving a dark-green solution. This combined solution was then warmed to -40 °C and stirred for 1 hour, during which time it warmed further to -15 °C. The reaction was quenched by the addition of a 1 N aqueous HCl (20 mL), stirred for 5 minutes, and then diluted with a saturated solution of aqueous NaCl (10 mL) and saturated aqueous sodium bicarbonate (10 mL). This suspension was then transferred to a separatory funnel and was extracted with EtOAc (3 x 50 mL) and CH\textsubscript{2}Cl\textsubscript{2} (1 x 50 mL). The combined organic layers were dried over magnesium sulfate, filtered, and concentrated by rotary
evaporator. The crude product was then purified by column chromatography in 50%
EtOAc/hexanes to afford 1.29 g (85%) of the desired compound as an off-white solid. Data are:
TLC R_f = 0.35 (50% EtOAc/hexanes); ^1^H NMR (CDCl_3, 300 MHz) δ 7.84-7.80 (m, 4H), 7.54 (d,
J = 2.5 Hz, 1H), 7.45-7.43 (m, 2H), 7.04 (s, 1H), 6.95 (s, 1H), 4.98 (s, 2H), 4.85 (s, 2H), 3.93, (s,
3H); ^1^C NMR (CDCl_3, 75 MHz) δ 188.3, 141.2, 135.3, 133.5, 133.3, 129.5, 129.2, 128.5, 128.2,
127.9, 127.2, 127.1, 126.3, 126.2, 7.8, 72.4, 36.0; HRMS found 281.1285 [M+H]^+, calcd
280.1212 for C_{17}H_{16}N_{2}O_{2}^+.

![Image of compound 67]

1-(1-methyl-1H-benzo[d]imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)ethanone (67).

Following the same technique used described for 58, where N-methylbenzimidazole was used in
place of N-methylimidazole, 67 was obtained in 71% yield (455 mg) as an off-white solid. Data
are: TLC R_f = 0.80 (50% EtOAc/hexanes); ^1^H NMR (CDCl_3, 300 MHz) δ 7.86-7.82 (m, 4H),
7.59 (d, J = 4.2 Hz, 1H), 7.47-7.29 (m, 6H), 5.18 (s, 2H), 4.90 (s, 2H), 4.00 (s, 3H); ^1^C NMR
(CDCl_3, 75 MHz) δ 191.2, 144.1, 141.8, 136.8, 135.2, 133.5, 133.4, 128.6, 128.2, 128.0, 127.1,
126.4, 126.3, 126.2, 124.2, 122.0, 110.8, 73.8, 73.2, 32.2; HRMS found 330.1368 [M]^+,
calcd 330.1368 for C_{21}H_{18}N_{2}O_{2}^+.

87
7.3.2. Alternative Route to Acyl Imidazole Substrates (EDCI-Free)

![Chemical structure]

1-morpholino-2-(naphthalen-2-ylmethoxy) ethanone. To a flame-dried 50 mL round bottom flask was added 2-(naphthalen-2-ylmethoxy) acetic acid (1.53g, 7.08 mmol) and CH₂Cl₂ (14.15 mL). This solution was cooled with stirring to 0 °C. Oxalyl chloride (1.54 mL, 17.69 mmol) was then added, with vigorous stirring. This was followed by careful addition of 3 drops of DMF, added very slowly to avoid uncontrolled bubbling over. This mixture was then stirred at 0 °C, warming to room temperature overnight, for 18.5 hours. Benzene (14.15 mL) was then added, and the solvent was evaporated off using a rotary evaporator. More benzene (14.15 mL) was then added and then evaporated off once again rotary evaporator. This addition of benzene, followed by its removal via evaporation, was repeated one more time to remove excess oxalyl chloride. More CH₂Cl₂ (14.15 mL) was then introduced, and the solution was cooled with stirring once again to 0 °C. Triethyl amine (2.96 mL), morpholine (1.85 mL, 21.23 mmol), and dimethylamino pyridine (0.86 g, 0.71 mmol) were then added, whereupon the reaction was stirred for 6.5 hours. The reaction was then quenched by addition of a 1N aqueous HCl (20 mL) and added to a separatory funnel. The aqueous layer was extracted with CH₂Cl₂ (3 x 50 mL), dried over MgSO₄, filtered, and purified by column chromatography (100% EtOAc) to afford 1.55 g (77%) of the desired compound as a yellow oil. Data are: TLC Rf = 0.4 (2 x 50% EtOAc/hexanes); ¹H NMR (CDCl₃, 300 MHz) δ 7.87-7.80 (m, 4 H), 7.51-7.48 (m, 3H), 4.77 (s, 2H), 4.21 (s, 2H), 3.65-3.60 (m, 6H), 3.47-3.45 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 168.0,
134.9, 133.5, 133.4, 128.6, 128.2, 127.1, 127.20, 126.5, 126.4, 126.1, 73.6, 69.5, 67.0, 45.8, 42.34; HRMS found 286.1438 [M+H]⁺, calcd 286.1438 for C₁₇H₂₀NO₃⁺.

1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) ethanone (58). To a flame-dried 25 mL round-bottom flask (flask A), N-methylimidazole (1.08 mL, 13.57 mmol) was dissolved in THF (4.0 mL). This was cooled, while stirring, to 0 °C. n-butyl lithium (1.6 M in hexanes) was then added dropwise (8.15 mL), and the resulting orange solution was stirred at 0 °C for 1 hour. As flask A neared one hour of stirring, 1-morpholino-2-(naphthalen-2-ylmethoxy) ethanone (1.55 g, 5.43 mmol) was dissolved in THF (5.43 mL) in a separate, flame-dried 25 mL pear-shaped flask (flask B), cooled to -78 °C. Once flask A had stirred for 1 hour, it was also cooled to -78 °C and was added to flask B by cannula, giving a dark-green solution. This combined solution was then warmed to -40 °C and stirred for 1 hour, during which time it warmed further to -15 °C. The reaction was quenched by the addition of a 1 N aqueous HCl (20 mL), stirred for 5 minutes, and then diluted with a saturated solution of aqueous NaCl (10 mL) and saturated aqueous sodium bicarbonate (10 mL). This suspension was then transferred to a separatory funnel and was extracted with EtOAc (3 x 50 mL) and CH₂Cl₂ (1 x 50 mL). The combined organic layers were dried over magnesium sulfate, filtered, and concentrated by rotary evaporator. The crude product was then purified by column chromatography in 50% EtOAc/hexanes to afford 1.29 g (85%, 73% from naphthalene methanol) of the desired compound as an off-white solid. Substrates shown from table 1 (where Ar = N-
methylbenzimidazole, N-phenylimidazole, and N-benzylimidazole) were prepared in the same manner, substituting the parent heterocycles for N-methylimidazole as shown in this procedure. Data are: TLC R_f = 0.35 (50% EtOAc/hexanes); ^1H NMR (CDCl_3, 300 MHz) δ 7.84-7.80 (m, 4H), 7.54 (d, J = 2.5 Hz, 1H), 7.45-7.43 (m, 2H), 7.04 (s, 1H), 6.95 (s, 1H), 4.98 (s, 2H), 4.85 (s, 2H), 3.93, (s, 3H); ^13C NMR (CDCl_3, 75 MHz) δ 188.3, 141.2, 135.3, 133.5, 133.3, 129.5, 129.2, 128.5, 128.2, 127.9, 127.2, 127.1, 126.3, 126.2, 72.8, 72.4, 36.0; HRMS found 281.1285 [M+H]^+, calcd 280.1212 for C_{17}H_{16}N_{2}O_{2}^+.

\[
\begin{align*}
\text{Br} \quad \text{O} \quad \text{OH} & \quad \text{NaH, THF, n-Bu_4N^+I}, \\
& 0 \degree \text{C to rt, 134%}
\end{align*}
\]

2-(benzyloxy)acetic acid. Bromoacetic acid (18.89 g, 135.93 mmol, 1.0 equiv) was dissolved in THF (387 mL, 0.239 M with respect to the alcohol) in a flame-dried 1000 mL round bottom flask with a stir bar (flask A). Sodium hydride (8.167 g, 340.28 mmol, 3.68 equiv) was then added carefully. This suspension was stirred at room temperature until hydrogen gas stopped evolving, monitored by attaching an outlet tube from the flask to a bubbler. Once this occurred, flask A was cooled to 0 °C under N_2. To a separate, flame-dried 500 mL round bottom flask with a stir bar (flask B), benzyl alcohol (9.57 mL, 92.47 mmol, 1.0 equiv) was dissolved in THF (387 mL, 0.239 M). This was also cooled, with stirring under N_2, to 0 °C. The contents of flask B were then transferred to flask A at 0 °C, and the combined solution was warmed to room temperature with vigorous stirring. N-tetrabutyl ammonium iodide (2.527 g, 0.074 equiv) was added, and the resulting mixture was fitted with a water condenser and brought to reflux, which continued with vigorous stirring for 19 hours. The reaction flask was then cooled gradually to 0 °C and ethanol (93 mL) was added. This crude mixture was concentrated by rotary evaporator,
and the solid material was diluted with Et₂O (200 mL) and transferred to a separatory funnel. The resulting suspension was extracted with saturated aqueous sodium bicarbonate (3 x 100 mL). The combined aqueous layers were then carefully acidified to pH 2 with 1 N aqueous HCl and were then transferred to another large separatory funnel. This suspension was then extracted with CH₂Cl₂ (5 x 100 mL). These combined CH₂Cl₂ organic layers were now dried over MgSO₄, filtered, and concentrated in vacuo to give the crude acid quantitatively as an off-white solid (20.59 g), which was used without further purification.

2-(benzyl(xyloxy)-1-morpholinoethanone. 2-(benzyloxy) acetic acid (8.16 g, 49.13 mmol, 1 equiv) was dissolved in CH₂Cl₂ (98 mL, 0.5 M) in a flame-dried 1000 mL round bottom flask with a stir bar. This solution was cooled, while stirring, to 0 °C under N₂. Oxalyl chloride (10.7 mL, 122.8 mmol, 2.5 equiv) was then added, followed by CAREFUL AND SLOW addition of DMF (1 mL), done very slowly to avoid uncontrolled bubbling over. This was then stirred at 0 °C, warming to room temperature overnight, for 16 hours. Benzene (98 mL, 0.5 M) was then added, and the solvent was carefully evaporated off using a rotary evaporator. More benzene (98 mL, 0.5 M) was then added and evaporated off once again using the rotary evaporator. A third addition of benzene (98 mL, 0.5 M), followed by its evaporation, was then done. These three benzene distillations were done to remove excess oxalyl chloride. More CH₂Cl₂ (98 mL, 0.5 M) was then added, and the solution was cooled, with stirring under N₂, to 0 °C. Triethyl amine (20.54 mL, 147.4 mmol, 3 equiv), morpholine (12.85 mL, 147.4 mmol, 3 equiv), and dimethylamino pyridine (0.6 g, 4.91 mmol, 0.1 equiv) were then added, and the reaction was
stirred for 6.5 hours. The reaction was then quenched by addition of 1N aqueous HCl (20 mL) and was transferred to a separatory funnel. The layers were mixed and then separated, and the aqueous layer was extracted with CH\textsubscript{2}Cl\textsubscript{2} (5 x 30 mL). The combined organic layers were then dried over MgSO\textsubscript{4}, filtered, and purified by column chromatography (50% EtOAc/hexanes, then 100% EtOAc) to afford 8.391 g (73% yield, 98% from benzyl alcohol) of the title compound as a yellow oil. (Note: Once done with the benzene distillations, it is important to clean out the rotary evaporator by aspirating distilled water and acetone directly into the catch trap in alternating fashion, three times each, to remove excess oxalyl chloride condensed at this stage.) Data are:

TLC \textit{R}\textsubscript{f} = 0.38 (100% EtOAc); 1H NMR (CDCl\textsubscript{3}, 500 MHz) \(\delta \) 7.29 - 7.23 (m, 5 H), 4.52 (t, \(J = 3.5 \), 2H), 4.09 (t, \(J = 4 \), 2H), 3.58 (bs, 2H), 3.54 (bs, 4H), 3.39 (d, \(J = 1.75 \), 2H); 13C NMR (CDCl\textsubscript{3}, 125 MHz) \(\delta \) 167.9, 137.4, 128.7, 128.2, 73.4, 69.6, 67.0, 45.8, 42.3; HRMS found 236.1281 [M+H]+, calcd 236.1281 for C\textsubscript{13}H\textsubscript{18}NO\textsubscript{3}+.

\[
\begin{align*}
\text{O} & \text{O} \\
\text{N} & \text{O} \\
\text{O} & \text{O} \\
\text{N} & \text{N} \\
\text{Li} & \text{O}
\end{align*}
\]

\(\text{THF, -78 °C to -15 °C, 86%} \)

2-(benzylOxy)-1-(1-methyl-1H-imidazol-2-yl)ethanone (63). 1-methylimidazole (0.774 mL, 9.75 mmol, 2.5 equiv) was dissolved in THF (2.9 mL, 1.33 M) in a flame-dried 25 mL round-bottom flask (flask A) and was cooled under N\textsubscript{2} to 0 °C. \(N \)-butyl lithium (1.6 M in hexanes, 5.36 mL, 8.58 mmol, 2.2 equiv) was then added dropwise, and the resulting yellow solution was stirred at 0 °C for 1 hour. As flask A neared its one hour of stirring, 2-(benzylOxy)-1-morpholinoethanone (0.917 g, 3.9 mmol) was dissolved in THF (3.9 mL, 1 M) in a separate, flame-dried 50 mL round-bottom flask (flask B) with a spin vane. This was cooled, while
stirring under N₂, to -78 °C. Once flask A had been stirred for 1 hour, it was also cooled to -78 °C and was transferred to flask B by cannula, giving a dark brown solution. This mixture was then warmed to -40 °C and stirred for 1 hour, during which time it warmed further to -15 °C. The reaction was quenched by the addition of 1 N aqueous HCl (5 mL), was stirred for 5 minutes, and was then diluted with a saturated solution of aqueous NaCl (10 mL) and saturated aqueous sodium bicarbonate (10 mL). This suspension was then transferred to a separatory funnel and was extracted with CH₂Cl₂ (5 x 50 mL). The combined organic layers were dried over magnesium sulfate, filtered, and concentrated by rotary evaporator. The crude product was then purified by column chromatography (50% EtOAc/hexanes, then 100% EtOAc) to afford 0.775 g (86%, 84% from benzyl alcohol) of the desired compound as an off-white solid. Data are: TLC Rf = 0.54 (100% EtOAc); ¹H NMR (CDCl₃, 300 MHz) δ 7.43 – 7.4 (m, 2H), 7.37 – 7.28 (m, 3H), 7.08 (s, 1H), 7.03 (s, 1H), 4.94 (s, 2H), 4.69 (s, 2H), 4.00 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 188.3, 137.8, 129.5, 128.7, 128.3, 128.1, 127.2, 73.7, 72.3, 36.1; HRMS found 231.1302 [M+H]+, calcd 231.1128 for C₁₃H₁₅N₂O₂⁺.

7.3.3. Catalyst Synthesis

Hydrocinchonidine (68). To a flame-dried, 3-neck round bottom flask with a stir bar was added (-)-cinchonidine 30 (5 g, 16.98 mmol, 1 equiv), followed by anhydrous MeOH (154 mL, 0.11
M). 10% Pd/C was then added carefully (1 g, 1 g Pd/C for every 5 g (-)-cinchonidine). H₂ gas (1 large balloon) was afterward introduced by evacuating the flask 3 times and flushing it under H₂ atmosphere. The reaction was then stirred at room temperature under H₂ balloon pressure for 10.5 h. The crude reaction mixture was afterward filtered through celite thusly: a 500 mL, 25-50 micron filter cup filled with celite 545 was placed over a 1 L filter flask and was bathed in CH₂Cl₂. The crude reaction mixture was then added to the top of the celite and vacuum-filtered through the celite, with CH₂Cl₂ used as the eluent solvent (added frequently enough to prevent air from introducing bubbles in the celite). Periodic swabs with capillary tubes were taken from the drip off the filter cup as the liquid passed through. Each swab was monitored under UV light for luminescence, indicating the presence of the hydro-cinchonidine product. When the luminescent color had dissipated under UV, the filtration was stopped. The resulting filtered liquid was then concentrated in a 500 mL round bottom flask to give an off-white solid. (Note: If this solid bears any black or gray color, it may be indicative of the presence of either unfiltered Pd/C or contaminating celite. Under such circumstance, the product should be re-filtered through celite prior to its suspension in hexanes.) This solid was suspended in hexanes (200 mL, 0.085 M) and was stirred at RT for 1 h. The resulting precipitate, hydrocinchonidine, was then filtered, concentrated by rotary evaporator, and collected as an off-white solid (4.7 g, 93% yield). (Note: The final product can be compared by TLC to the starting material, to ensure reaction completion. Starting material, R_f = 0.275 (100% MeOH); product, R_f = 0.15 (100% MeOH).) When running the ¹H NMR, an increased number of Fourier transfer scans were necessary. Data are: TLC R_f = 0.15 (100% MeOH); ¹H NMR (CHCl₃-d₃, 500 MHz): δ 8.90 (d, J = 2.3 Hz, 1H), 8.13 (d, J = 4 Hz, 1H), 8.05 (d, J = 4 Hz, 1H), 7.71 (t, J = 8 Hz, 1H), 7.59 (d, J = 2.3 Hz, 1H), 7.53 (t, J = 8 Hz, 1H), 5.64 (bs, 1H), 3.39 – 3.38 (m, 1H), 3.16 – 3.13 (m, 1H), 3.09 – 3.04 (dd,
1H), 2.87 (bs, 1H), 2.66 – 2.62 (m, 1H), 2.42 – 2.38 (m, 1H), 1.782 (d, J = 1.2 Hz, 1H), 1.73 – 1.66 (m, 2H), 1.56 – 1.54 (m, 1H), 1.45 -1.40 (m, 2H), 1.28 – 1.24 (m, 2H), 0.82 (t, J = 7.5 Hz, 3H); 13C NMR (CHCl3-d1, 125 MHz): δ 150.25, 149.1, 148.3, 130.4, 129.0, 126.6, 123.1, 118.1, 72.4, 60.2, 58.7, 43.3, 37.6, 28.4, 27.6, 25.5, 21.7, 12.1; HRMS found 297.1961 [M+H]+, calcd 297.1961 for [C19H25N2O]+.

![Chemical Structure](image)

2,7-bis(bromomethyl) naphthalene (70). To a flame-dried 250 mL round bottom flask with a stir bar was added 2,7-dimethylnaphthalene 69 (1.48 g, 9.47 mmol, 1 equiv), followed by PhH (190 mL, 0.05 M). N-bromosuccinimide was then added (3.75 g, 21.05 mmol, 2.223 equiv), followed by benzoyl peroxide (123 mg, 0.509 mmol, 0.0538 equiv). This suspension was then heated and stirred vigorously at reflux (~120 °C) for 8 h. The reaction was monitored by TLC for consumption of starting material (Rf = 0.7; product, Rf = 0.345, 5% EtOAc/Hexanes). Once this stirring was done, the reaction mixture was cooled slowly to 0 °C and was filtered through a 25-50 micron filter cup. (All solid collected in the filter cup is precipitate succinimide; the final product remains in the mother liqueur.) The mother liqueur was concentrated by rotary evaporator and the residue was recrystallized from CHCl3/hexanes thusly: warm CHCl3 was added until the crude solid dissolved; then a generous amount of hexanes at RT was added until precipitation occurred. The suspension was capped and cooled in the freezer overnight. The next morning it was filtered to give 2,7-Bis(bromomethyl)naphthalene 70 as an off-white solid (2.73 g, 92% yield). Data are: TLC Rf = 0.345 (5% EtOAc/Hexanes); 1H NMR (CHCl3-d1, 500
MHz): \(\delta 7.85 \) (d, \(J = 7.5 \) Hz, 2H), 7.55 (d, \(J = 8.5 \) Hz, 2H), 7.29 (s, 2H), 4.69 (s, 4H); \(^{13}\)C NMR (CHCl\(_3\)-d\(_1\), 125 MHz): \(\delta 128.8, 128.1, 127.7, 33.9 \).

2,7-bis(hydrocinchonidinium-N-methyl) naphthalene dibromide (71). To a pre-weighed 250 mL round bottom flask with a stir bar were dissolved 2,7-Bis(bromomethyl)naphthalene 70 (1.5 g, 4.77 mmol, 1 equiv) and hydrocinchonidine 68 (2.88 g, 9.73 mmol, 2.04 equiv) in EtOH (7.2 mL, 0.662 M), DMF (8.6 mL, 0.552 M), and CHCl\(_3\) (2.9 mL, 1.655 M). This suspension was heated to reflux (100-120\(^\circ\)C) and stirred vigorously for 2 H. The reaction was monitored for the consumption of 2,7-Bis(bromomethyl) naphthalene by TLC (\(R_f \) = 0.345, 5% EtOAc/Hexanes). The reaction was then cooled to room temperature and diluted with MeOH (29 mL, 0.1655 M) and Et\(_2\)O (87 mL, 0.055 M). This suspension was stirred at room temperature for 1 H. The crude, light-pink precipitate was afterward filtered through a 25-50 micron filter cup and was rinsed with Et\(_2\)O (3x25 mL). It was scraped out of the filter cup using a spatula and was placed back in the original pre-weighed reaction flask, isolated as a pink solid (3.94 g, 4.34 mmol, 91% yield). Data are: \(^1\)H NMR (DMSO-\(d_6\), 500 MHz, with increased Fourier transfers): \(\delta 9.00 \) (d, \(J = 2.3 \) Hz, 2H), 8.33 (d, \(J = 4 \) Hz, 2H), 8.22 (d, \(J = 4 \) Hz, 2H), 8.14 (d, \(J = 4 \) Hz, 2H), 7.92 (d, \(J = 4.2 \) Hz, 2H), 7.88 – 7.84 (m, 4H), 7.75 (t, \(J = 7.5 \) Hz, 2H), 6.78 (d, \(J = 2 \) Hz, 2H), 6.63 (s, 2H), 5.31 (d, \(J = 6.5 \) Hz, 2H), 5.12 (d, \(J = 6 \) Hz, 2H), 4.36 (bs, 2H), 3.98 (t, \(J = 8 \) Hz, 2H), 3.53 (m, 2H), 2.18-2.08 (m, 4H), 1.98 (bs, 2H), 1.77 – 1.72 (m, 4H), 1.41 – 1.39 (m, 2H), 1.28 – 1.61 (m,
4H), 0.72 (t, J = 7 Hz, 4H); large extraneous peaks: δ 3.36 (H2O in DMSO-d6), 2.5 (DMSO-Hx in DMSO-d6). HRMS: 746.4560 [C50H58N4O2] and 374.2353 [C50H58N4O2]2+/2 found; calcd 746.4549 for [C50H58N4O2]2+. (Note: If the initial reaction suspension turns dark purple or red soon after reflux, this indicates Pd/C contamination. The resulting product will not form good catalyst. Crude 71 should not be rinsed with MeOH, or byproduct 72 will result, turning the light-pink solid product to a dark red. Compound 72 confirmed by HRMS: 481.2827 [M+H]+ found; calcd 481.2850 [C32H37N2O2]+. Contamination with 72 will result in poor catalyst.

2,7-bis[O(9)-allyldrocinchonidinium-N-methyl]naphthalene dibromide (61). To a 100 mL round bottom flask with a stir bar was added 2,7-bis(hydro-cinchonidinium-N-methyl) naphthalene dibromide 71 (4.258 g, 4.695 mmol, 1 equiv) and CH2Cl2 (13.5 mL, 0.35 M). Allyl bromide (2.38 mL, 28.17 mmol, 6 equiv) was then added, followed by 50% aqueous KOH (47 mL, 0.1 M), forming a yellow-brown solution. This was stirred at room temperature for 15 minutes, during which time the solution turned yellow-orange. At this stage a small amount of the reaction solvent was removed with a pipet, diluted with CH2Cl2, and rushed to the mass spec lab for analysis, which revealed complete consumption of the starting material ([M+2H]2+/2 =
373.2207 for \([C_{50}H_{58}N_4O_2]^{2+}/2\). The reaction was afterward quenched by addition of 30 mL H₂O and was transferred to a separatory funnel. The layers were mixed and then separated, and the aqueous layer was extracted with CH₂Cl₂ (3 x 75 mL). The combined organic layers were dried over MgSO₄, filtered thoroughly, concentrated by rota-evaporation, and then purified by recrystallization as follows: the crude solid was dissolved in a minimal amount of warm CH₂Cl₂; then hexane at ambient temperature was added generously, causing swift precipitation. The precipitate was filtered immediately through a 25-50 micron filter cup. (Note: the crude product should be filtered immediately after recrystallization. If left in the recrystallization solvent, it will dissolve.) The filtered product, 2,7-bis\([O(9)\text{-allylhydrocinchonidinium-}N\text{-methyl}\] naphthalene dibromide 61, was isolated as a light-orange solid (4.44 g, 4.50 mmol, 96%). Data are: ¹H NMR (DMSO-\(d_6\), 500 MHz, with increased Fourier transfers): \(\delta\) 9.03 (s, 1H), 8.39 (s, 2H), 8.27 – 8.23 (m, 4H), 8.15 (d, \(J = 8.5\) Hz, 2H), 7.94-7.88 (m, 4H), 7.81-7.78 (m, 2H), 7.64 (t, \(J = 5\) Hz, 2H), 6.50 (s, 2H), 6.23-6.16 (m, 2H), 5.50 (d, \(J = 8.7\) Hz, 2H), 5.33-5.32 (m, 4H), 5.06 (d, \(J = 6.25\) Hz, 2H), 4.41 – 4.38 (m, 2H), 4.14 – 4.09 (m, 2H), 4.04 – 3.99 (m, 4H), 2.32 – 2.29 (m, 2H), 2.11 – 2.07 (m, 2H), 2.00 (bs, 2H), 1.76 (bs, 4H), 1.52 (t, \(J = 13.5\), 2H), 1.23 – 1.16 (m, 6H); large extraneous peaks: \(\delta\) 5.75 (CH₂Cl₂ in DMSO-\(d_6\)), 3.33 (H₂O in DMSO-\(d_6\)), 2.49 (DMSO-\(H_x\) in DMSO-\(d_6\)). HRMS found 413.2587 [M+2H]²⁺/2; calcd 413.2588 for \([C_{50}H_{66}N_4O_2]^{2+}/2\). (Note: Allylation of unreacted hydrocinchonidine gives byproducts 76 and 77, which are inseparable from catalyst 61 and may behave as competitive catalysts. Improved catalyst is made if the hydrocinchonidine is completely consumed during the formation of intermediate 71. If allylation of 71 is run too long, increased formation of 76 and 77 will result. The presence of byproducts 76 and 77 was confirmed by HRMS. For 76: found 377.2587 [M⁺]; calcd 377.2587 for \([C_{25}H_{33}N_2O]\). For 77: found 417.2904 [M⁺]; calcd
417.2900 for [C$_{28}$H$_{37}$N$_2$O]$^+$. Trace amounts of 76 seem unavoidable, confirmed by HRMS in the purest batches of catalyst.

76

C$_{25}$H$_{33}$N$_2$O$^+$
Exact Mass: 377.26

77

C$_{28}$H$_{37}$N$_2$O$^+$
Exact Mass: 417.29

7.3.4. General Procedure for Racemic Alkylations

(±)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)-3-phenylpropan-1-one

(Table 3.4). To a flame-dried round bottom flask was added 1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)-ethanone 58 (50 mg, 0.178 mmol), n-Bu$_4$N$^+ Br^-$ (6.5 mg, 0.021 mmol) and CH$_2$Cl$_2$ (1.78 mL). The solution was cooled to 0 °C and then CsOH·H$_2$O (0.120 g, 0.712 mmol) was added in one portion. The mixture stirred at 0 °C for 10 min, at which time benzyl bromide (0.106 mL, 0.89 mmol) was added. The mixture then stirred at 0 °C, allowing to warm to room temperature overnight, for 17 h, at which time the reaction was diluted with Et$_2$O (30 mL) and H$_2$O (10 mL). The layers were mixed and then separated and the organic layer was washed with a saturated aqueous solution of aqueous NaCl (1 x 10 mL) and then dried over MgSO$_4$. The mixture was filtered, the solvent was removed by rotary evaporator, and the crude
residue was purified by column chromatography (40% EtOAc/hexanes) to afford 0.031 g (47%) of the desired compound as an off-white solid. Data are: TLC $R_f = 0.4$ (40% EtOAc/hexanes); 1H NMR (CDCl$_3$, 300 MHz) δ 7.81-7.79 (m, 1H), 7.73-7.67 (m, 2H), 7.56 (s, 1H), 7.46-7.42 (m, 3H), 7.38-7.25 (m, 5H), 7.17 (s, 1H), 7.02 (s, 1H), 5.51 (dd, 1H), 4.70 (dd, 2H), 3.93 (s, 3H), 3.36-3.02 (m, 2H); 13C NMR (CDCl$_3$, 75 MHz) δ 191.3, 142.1, 138.2, 135.7, 133.3, 133.0, 129.9, 129.7, 128.4, 128.1, 127.7, 127.3, 126.6, 126.0, 126, 125.9, 81.6, 72.7, 39.7, 36.1; HRMS found 370.1681 M$^+$, calcd 370.1681 for C$_{24}$H$_{22}$N$_2$O$_2$; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, 1.0 mL/min, 23 °C, $\lambda = 254$ nm, retention times: S 21.2 min, R 47.2 min, 50.7 : 49.2 er).

7.3.5. General Procedure for Asymmetric Alkylations

![Image](attachment:image.png)

(S)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)-3-phenylpropan-1-one (Table 3.4, entry 6). To a flame-dried round bottom flask was added 58 (50 mg, 0.178 mmol), catalyst 61 (17 mg, 0.017 mmol) and CH$_2$Cl$_2$ (1.8 mL). The solution was cooled to -40 °C and then CsOH-H$_2$O (0.120 g, 0.712 mmol) was added in one portion. The mixture stirred at -40 °C for 10 min, at which time benzyl bromide (0.106 mL, 0.89 mmol) was added. The mixture then stirred at -40 °C for 5 h (monitored by TLC for consumption of starting material), at which time the reaction was diluted with Et$_2$O (30 mL) and H$_2$O (10 mL). The layers were mixed and then separated and the organic layer was washed with a saturated aqueous solution of aqueous NaCl.
(1 x 10 mL) and then dried over MgSO\(_4\). The mixture was filtered and concentrated, and the crude residue was purified by column chromatography (40% EtOAc/hexanes) to afford 0.057 g (85%) of product as an off-white solid. Data are: TLC R\(_f\) = 0.45 (50% EtOAc/hexanes); \(^1\)H NMR (CDCl\(_3\), 300 MHz) \(\delta\) 7.81-7.79 (m, 1H), 7.73-7.67 (m, 2H), 7.56 (s, 1H), 7.46-7.42 (m, 3H), 7.38-7.25 (m, 5H), 7.17 (s, 1H), 7.02 (s, 1H), 5.51 (dd, \(J = 2.7\) Hz, 1H), 4.70 (dd, 2H), 3.93 (s, 3H), 3.36-3.02 (m, 2H); \(^{13}\)C NMR (CDCl\(_3\), 75 MHz) \(\delta\) 191.3, 142.1, 138.2, 135.7, 133.3, 133.0, 129.9, 129.7, 128.4, 128.1, 128.0, 127.7, 127.3, 126.6, 126.0, 126, 125.9, 81.6, 72.7, 39.7, 36.1; HRMS found 370.1681 M\(^+\), calcd 370.1681 for C\(_{24}\)H\(_{22}\)N\(_2\)O\(_2\); the enantiomers’ retention times were determined by chiral HPLC and compared to the racemic samples listed above (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, 1.0 mL/min, 23 °C, \(\lambda = 254\) nm, retention times: S (major) 20.9 min, R (minor) 46.7 min, 91.5 : 8.5 er).

7.3.6. Selected Alkylation Data

\[\text{BnBr, } n\text{-Bu}_4\text{N}^+\text{Br}^- \]

(±)-1-(1-methyl-1H-benzo[d]imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)-3-phenylpropan-1-one (Table 3.3, entry 4). Following the general procedure for racemic alkylations above on 50 mg scale, 0.029 g (38%) of product were isolated as an off-white solid. Data are: TLC R\(_f\) = 0.44 (30% EtOAc/hexanes); \(^1\)H NMR (CDCl\(_3\), 300 MHz) \(\delta\) 7.94 (d, \(J = 3.75\) Hz, 1H), 7.81 (d, \(J = 3.75\) Hz, 1H), 7.73 (d, \(J = 4.2\) Hz, 1H), 7.66 (d, \(J = 3.6\) Hz, 1H), 7.6 (s, 1H), 7.49-7.30 (m, 11H), 5.74 (dd, \(J_1 = 2.56\) Hz, \(J_2 = 1.8\) Hz, 1H), 4.89 (d, \(J = 6.2\) Hz, 1H), 4.66 (d, \(J = 6\) Hz, 1H), 4.03 (s, 3H), 3.46-3.11 (m, 2H); \(^{13}\)C NMR (CDCl\(_3\), 75 MHz) \(\delta\) 197.6, 130.0, 128.5, 128.2, 127.8,
126.9, 126.8, 126.4, 126.2, 126.0, 124.1, 122.4, 110.8, 82.3, 73.0, 39.6, 32.2; HRMS found 420.1838 (M⁺), calcd 420.1838 for C₂₈H₂₄N₂O₂; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, 1.0 mL/min, 23 °C, λ = 254 nm, retention times: S 18.4 min, R 58.1 min, 53.9 : 46.1 er).

(S)-1-(1-methyl-1H-benzo[d]imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)-3-phenylpropan-1-one (Table 3.3, entry 4). Following the general procedure for asymmetric alkylations above on 50 mg scale, 0.048 g (76%) of product were isolated as an off-white solid. Data are: TLC Rf = 0.44 (30% EtOAc/hexanes); ¹H NMR (CDCl₃, 300 MHz) δ 7.94 (d, J = 3.75 Hz, 1H), 7.81 (d, J = 3.75 Hz, 1H), 7.73 (d, J = 4.2 Hz, 1H), 7.66 (d, J = 3.6 Hz, 1H), 7.6 (s, 1H), 7.49-7.30 (m, 11H), 5.74 (dd, J1 = 2.56 Hz, J2 = 1.8 Hz, 1H), 4.89 (d, J = 6.2 Hz, 1H), 4.66 (d, J = 6 Hz, 1H), 4.03 (s, 3H), 3.46-3.11 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 197.6, 130.0, 128.5, 128.2, 127.8, 126.9, 126.8, 126.4, 126.2, 126.0, 124.1, 122.4, 110.8, 82.3, 73.0, 39.6, 32.2; HRMS found 420.1838 (M⁺), calcd 420.1838 for C₂₈H₂₄N₂O₂; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, 1.0 mL/min, 23 °C, λ = 254 nm, retention times: S 18.4 min, R 58.1 min, 96.4 : 3.6 er).
(±)-1-(1-methyl-1H-benzo[d]imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)pent-4-en-1-one.

Following the general procedure for racemic alkylations above on 50 mg scale, where allyl bromide was substituted for benzyl bromide, 0.024g (43%) of the desired compound were isolated as an off-white solid. Data are: TLC R_f = 0.53 (30% EtOAc/hexanes); ¹H NMR (CDCl₃, 300 MHz) δ 7.96-7.30 (m, 11H), 5.63-5.59 (m, 1H), 5.15-5.09 (m, 1H), 4.94-4.90 (m, 2H), 4.79 (d, <i>J</i> = 6Hz, 1H), 4.65 (d, <i>J</i> = 5.5 Hz, 1H), 4.0 (s, 3H), 2.90-2.68 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 197.6, 133.7, 128.5, 128.3, 128.2, 127.8, 127.3, 126.4, 126.2, 124.1, 122.3, 118.1, 110.8, 80.6, 73.0, 39.5, 37.8, 32.2; HRMS found 370.1681 (M⁺), calcld 370.1681 for C₂₄H₂₂N₂O₂; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, 1.0 mL/min, 23 °C, λ = 254 nm, retention times: <i>S</i> 13.4 min, <i>R</i> 27.5 min, 51 : 49 er).

(S)-1-(1-methyl-1H-benzo[d]imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)pent-4-en-1-one.

Following the general procedure for asymmetric alkylations above on 50 mg scale, where allyl bromide was substituted for benzyl bromide, 0.024g (54%) of the desired compound were isolated as an off-white solid. Data are: TLC R_f = 0.53 (30% EtOAc/hexanes); ¹H NMR (CDCl₃, 300 MHz) δ 7.96-7.30 (m, 11H), 5.63-5.59 (m, 1H), 5.15-5.09 (m, 1H), 4.94-4.90 (m, 2H), 4.79
(d, $J = 6$ Hz, 1H), 4.65 (d, $J = 5.5$ Hz, 1H), 4.0 (s, 3H), 2.90-2.68 (m, 2H); 13C NMR (CDCl$_3$, 75 MHz) δ 197.6, 133.7, 128.5, 128.3, 128.2, 127.8, 127.3, 126.4, 126.2, 124.1, 122.3, 118.1, 110.8, 80.6, 73.0, 39.5, 37.8, 32.2; HRMS found 370.1681 (M$^+$), calcd 370.1681 for C$_{24}$H$_{22}$N$_2$O$_2$; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, 1.0 mL/min, 23 °C, $\lambda = 254$ nm, retention times: S 13.4 min, R 27.5 min, 86.2 : 13.8 er).

![Chemical Structure](image)

(±)-Tert-butyl 3-(3-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)-3-oxopropyl)-1H-indole-1-carboxylate (Table 3.4, entry 1). Following the general procedure for racemic alkylation above on 50 mg scale, where electrophile 44 (described in section 7.4.1 below) was substituted for benzyl bromide, 0.055 g (61%) of product were isolated as an off-white solid. Data are: TLC R_f = 0.5 (40% EtOAc/hexanes); 1H NMR (CDCl$_3$, 500 MHz) δ 8.13 (bs, 1H), 7.77-7.76 (m, 1H), 7.65-7.64 (m, 4H), 7.45-7.42 (m, 3H), 7.32-7.27 (m, 3H), 7.21 (d, $J = 2.25$ Hz, 1H), 7.16 (t, $J = 7.5$ Hz, 1H), 7.03 (s, 1H), 5.58 (dd, $J_1 = 2.25$ Hz, $J_2 = 1.5$ Hz, 1H), 4.83 (d, $J = 5.75$ Hz, 1H), 4.60 (d, $J = 6$ Hz, 1H), 3.88 (s, 3H), 3.43-3.17 (m, 2H), 1.66 (s, 9H); 13C NMR (CDCl$_3$, 125 MHz) δ 191.2, 150.0, 142.2, 135.6, 133.4, 133.1, 131.0, 129.8, 128.2, 128.1, 127.8, 127.5, 126.9, 126.2, 126.1, 126.0, 124.8, 124.4, 122.6, 119.8, 116.7, 115.3, 83.5, 80.2, 72.8, 36.1, 29.4, 28.5; HRMS found 509.2315 (M$^+$), calcd 509.2315 for C$_{31}$H$_{31}$N$_3$O$_4$; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 10% EtOH/hexane, 1.0 mL/min, 23 °C, $\lambda = 254$ nm, retention times: S 12.7 min, R 118.3 min, 50.1 : 49.8 er).
(S)-Tert-butyl 3-(3-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)-3-oxopropyl)-1H-indole-1-carboxylate (Table 3.4, entry 1). Following the general procedure for asymmetric alkylation above on 2.33 g scale, where electrophile 44 was substituted for benzyl bromide, 3.85 g (91%) of product were isolated as an off-white solid. Data are: TLC Rf = 0.5 (40% EtOAc/hexanes); 1H NMR (CDCl3, 500 MHz) δ 8.13 (bs, 1H), 7.77-7.76 (m, 1H), 7.68-7.54 (m, 4H), 7.45-7.42 (m, 3H), 7.32-7.27 (m, 3H), 7.21 (d, J = 2.25 Hz, 1H), 7.16 (t, J = 7.5 Hz, 1H), 7.03 (s, 1H), 5.58 (dd, J1 = 2.25 Hz, J2 = 1.5 Hz, 1H), 4.83 (d, J = 5.75 Hz, 1H), 4.60 (d, J = 6 Hz, 1H), 3.88 (s, 3H), 3.43-3.17 (m, 2H), 1.66 (s, 9H); 13C NMR (CDCl3, 125 MHz) δ 191.2, 150.0, 142.2, 135.6, 133.4, 133.1, 131.0, 129.8, 128.2, 128.1, 127.8, 127.5, 126.9, 126.2, 126.1, 126.0, 124.8, 124.4, 122.6, 119.8, 116.7, 115.3, 83.5, 80.2, 72.8, 72.6, 36.1, 29.4, 28.5; HRMS found 509.2315 (M+), calcd 509.2315 for C31H31N3O4; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 10% EtOH/hexane, 1.0 mL/min, 23 °C, λ = 254 nm, retention times: S 12.7 min, R 118.3 min, >99.0 : <1.0 er).

(±)-3-(biphenyl-2-yl)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) propan-1-one (Table 3.4, entry 2). Following the general procedure for racemic alkylation above on 50
mg scale, where 2-phenylbenzyl bromide was substituted for benzyl bromide, 41 mg of product (52%) were isolated as an off-white solid. Data are: TLC Rf = 0.76 (50% EtOAc/hexanes); 1H NMR (CDCl3, 300 MHz) δ 7.82 (bs, 2H), 7.75 (d, J = 4 Hz, 2H), 7.59 (s, 2H), 7.48 (q, J = 1.5 Hz, 2H), 7.37-7.26 (m, 8H), 7.09 (s, 1H), 5.50 (dd, J = 6.5 Hz, 1H), 4.66 (dd, 2H), 3.90 (s, 3H), 3.35-3.15 (m, 2H); 13C NMR (CDCl3, 75 MHz) δ 191.5, 143.0, 141.8, 135.8, 135.5, 133.4, 133.2, 130.7, 130.4, 129.9, 129.7, 128.3, 128.1, 127.8, 127.4, 127.3, 126.9, 126.7, 126.6, 126.1, 126.1, 126.0, 81.2, 72.7, 36.1; HRMS found 446.1994 M+, calcd 446.1994 for C30H26N2O2; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, 1.0 mL/min, 23 °C, λ = 254 nm, retention times: S 22.84 min, R 38.9 min, 50.4 : 49.6 er).

(S)-3-(biphenyl-2-yl)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) propan-1-one (Table 3.4, entry 2). Following the general procedure for racemic alkylations above on 50 mg scale, where 2-phenylbenzyl bromide was substituted for benzyl bromide, 73 mg of product (92%) were isolated as an off-white solid. Data are: TLC Rf = 0.5 (40% EtOAc/hexanes); 1H NMR (CDCl3, 300 MHz) δ 7.82 (bs, 2H), 7.75 (d, J = 4 Hz, 2H), 7.59 (s, 2H), 7.48 (q, J = 1.5 Hz, 2H), 7.37-7.26 (m, 8H), 7.09 (s, 1H), 6.97 (s, 1H), 5.50 (q, J = 6.5 Hz, 1H), 4.66 (dd, 2H), 3.90 (s, 3H), 3.35-3.15 (m, 2H); 13C NMR (CDCl3, 75 MHz) δ 191.5, 143.0, 141.8, 135.8, 135.5, 133.4, 133.2, 130.7, 130.4, 129.9, 129.7, 128.3, 128.1, 127.8, 127.4, 127.3, 126.9, 126.7, 126.6, 126.1, 126.1, 126.0, 81.2, 72.7, 36.1; HRMS found 446.1994 M+, calcd 446.1994 for
C\textsubscript{30}H\textsubscript{26}N\textsubscript{2}O\textsubscript{2}; the enantiomers’ retention times were determined by chiral HPLC and compared to the racemic samples listed above (DAICEL Chiralpack AD-H column, 5\% EtOH/hexane, 1.0 mL/min, 23 °C, λ = 254 nm, retention times: S (major) 22.5 min, R (minor) 37.4 min, > 99 : < 1 er).

![Chemical structure](image)

(±)-1-(1-methyl-1\textit{H}-imidazol-2-yl)-3-(naphthalen-2-yl)-2-(naphthalen-2-ylmethoxy)propan-1-one (Table 3.4, entry 3). Following the general procedure for racemic alkylations above on 50 mg scale, where 2-bromomethylnaphthalene was substituted for benzyl bromide, 33 mg of product (44\%) were isolated as an off-white solid. Data are: TLC R\textsubscript{f} = 0.35 (40\% EtOAc/hexane); ¹\textit{H} NMR (CDCl\textsubscript{3}, 300 MHz) δ 7.90-7.87 (m 2H), 7.82-7.76 (m, 4H), 7.64-7.39 (m, 8H), 7.72 (s, 1H), 7.02 (s, 1H), 5.62 (dd, 1H), 4.72 (dd, 2H), 3.94 (s, 3H), 3.56-3.20 (m, 2H); ¹³\textit{C} NMR (CDCl\textsubscript{3}, 300 MHz) δ 191.4, 135.9, 135.6, 133.8, 133.4, 133.1, 132.7, 129.9, 128.6, 128.5, 128.2, 128.0, 127.9, 127.8, 127.5, 126.8, 126.1, 126.0, 125.6, 81.7, 72.8, 40.0, 36.2; HRMS found 420.1838 [M⁺], calcd 420.1838 for C\textsubscript{28}H\textsubscript{24}N\textsubscript{2}O\textsubscript{2}; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 10\% EtOH/hexane, 1.0 mL/min, 23 °C, λ = 254 nm, retention times: S 25 min, R 56.3 min, 48.8 : 51.2 er).
(S)-1-(1-methyl-1H-imidazol-2-yl)-3-(naphthalen-2-yl)-2-(naphthalen-2-ylmethoxy) propan-1-one (Table 3.4, entry 3). Following the general procedure for asymmetric alkylations above on 50 mg scale, where 2-bromomethylnaphthalene was substituted for benzyl bromide, 66 mg of product (88%) were isolated as an off-white solid. Data are: TLC Rf = 0.38 (40% EtOAc/hexanes); ¹H NMR (CDCl₃, 300 MHz) δ 7.90-7.87 (m 2H), 7.82-7.76 (m, 4H), 7.64-7.39 (m, 8H), 7.72 (s, 1H), 7.02 (s, 1H), 5.62 (dd, 1H), 4.72 (dd, 2H), 3.94 (s, 3H), 3.56-3.20 (m, 2H); ¹³C NMR (CDCl₃, 300 MHz) δ 191.4, 135.9, 135.6, 133.8, 133.4, 133.1, 132.7, 129.9, 128.6, 128.5, 128.2, 128.0, 128.0, 127.9, 127.8, 127.5, 126.8, 126.1, 126.0, 126.0, 125.6, 81.7, 72.8, 40.0, 36.2; HRMS found 420.1838 [M⁺], calcd 420.1838 for C₂₈H₂₄N₂O₂; the enantiomers’ retention times were determined by chiral HPLC and compared to the racemic samples listed above (DAICEL Chiralpack AD-H column, 10% EtOH/hexane, 1.0 mL/min, 23 °C, λ = 254 nm, retention times: S (major) 24.6 min, R (minor) no measurable signal, > 99 : < 1 er).

(±)-3-(4-tert-butylphenyl)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) propan-1-one (Table 3.4, entry 4). Following the general procedure for racemic alkylations above on 50 mg scale, where 4-tertbutylbenzyl bromide was substituted for benzyl bromide, 23 mg of product (30%) were isolated as an off-white solid. Data are: TLC Rf = 0.45 (40%
EtOAc/hexanes); 1H NMR (CDCl$_3$, 300 MHz) δ 7.81-7.78 (m, 2H), 7.72-7.69 (m, 2H), 7.56 (bs, 2H), 7.44 (t, $J = 4.5$ Hz, 2H), 7.35-7.25 (m, 3H), 7.17 (s, 1H), 7.02 (s, 1H), 5.50 (dd, $J = 4.8$ Hz, 1H), 4.72 (dd, 2H), 3.93 (s, 3H), 3.31-3.01 (m, 2H), 1.36 (s, 9H); 13C NMR (CDCl$_3$, 75 MHz) δ 191.6, 149.4, 142.3, 135.8, 135.1, 133.1, 129.8, 129.6, 128.2, 128.0, 127.8, 127.3, 126.7, 126.1, 126.0, 125.9, 125.4, 81.7, 75.4, 72.6, 39.2, 36.2, 34.7, 31.7; HRMS found 426.2307 M$^+$, calcd 426.2307 for C$_{28}$H$_{30}$N$_2$O$_2$; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, 1.0 mL/min, 23 °C, $\lambda = 254$ nm, retention times: S 10.1 min, R 40.5 min, 49.9 : 50.1 er).

(S)-3-(4-tert-butylphenyl)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) propan-1-one (Table 3.4, entry 4). Following the general procedure for asymmetric alkylations above on 50 mg scale, where 4-tertbutylbenzyl bromide was substituted for benzyl bromide, 67 mg of product (88%) were isolated as an off-white solid. Data are: TLC R_f = 0.5 (40% EtOAc/hexanes); 1H NMR (CDCl$_3$, 300 MHz) δ 7.81-7.78 (m, 2H), 7.72-7.69 (m, 2H), 7.56 (bs, 2H), 7.44 (t, $J = 4.5$ Hz, 2H), 7.35-7.25 (m, 3H), 7.17 (s, 1H), 7.02 (s, 1H), 5.50 (dd, $J = 4.8$ Hz, 1H), 4.72 (dd, 2H), 3.93 (s, 3H), 3.31-3.01 (m, 2H), 1.36 (s, 9H); 13C NMR (CDCl$_3$, 75 MHz) δ 191.6, 149.4, 142.3, 135.8, 135.1, 133.1, 129.8, 129.6, 128.2, 128.0, 127.8, 127.3, 126.7, 126.1, 126.0, 125.9, 125.4, 81.7, 75.4, 72.6, 39.2, 36.2, 34.7, 34.7, 31.7; HRMS found 426.2307 M$^+$, calcd 426.2307 for C$_{28}$H$_{30}$N$_2$O$_2$; the enantiomers’ retention times were determined by chiral HPLC and compared to the racemic samples listed above (DAICEL Chiralpack AD-H column, 5%
EtOH/hexane, 1.0 mL/min, 23 °C, $\lambda = 254$ nm, retention times: S (major) 11.7 min, R (minor) 40.7 min, >99 : < 1 er).

(±)-4-methyl-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) pent-4-en-1-one (Table 3.4, entry 5). Following the general procedure for racemic alkylations above on 50 mg scale, where 3-bromo-2-methylpropene was substituted for benzyl bromide, 16 mg of product (27%) were isolated as an off-white solid. Data are: TLC $R_f = 0.75$ (50% EtOAc/hexanes); 1H NMR (CDCl$_3$, 300 MHz) δ 7.89-7.79 (m, 4H), 7.54-7.46 (m, 3H), 7.17, (d, $J = 2.5$ Hz, 1H), 7.02 (d, $J = 2.5$ Hz, 1H) 5.50 (dd, $J = 2$ Hz, 1H), 4.90-4.69 (m, 4H), 3.92 (s, 3H), 2.72-2.53 (m, 2H), 1.85 (s, 3H); 13C NMR (CDCl$_3$, 75 MHz) δ 173.5, 131.0, 130.8, 129.2, 128.9, 128.7, 128.6, 128.4, 128.3, 128.1, 127.7, 127.6, 127.0, 127.7, 66.7, 54.0, 42.0, 41.5, 40.1; HRMS found 334.1681 M$^+$, calcd 334.1681 for C$_{21}$H$_{22}$N$_2$O$_2$; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, 1.0 mL/min, 23 °C, $\lambda = 254$ nm, retention times: S 11.9 min, R 16.9 min, 50.5 : 40.5 er).

(S)-4-methyl-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) pent-4-en-1-one (Table 3.4, entry 5). Following the general procedure for asymmetric alkylations above on 50 mg scale, where 3-bromo-2-methylpropene was substituted for benzyl bromide, 49 mg of
product (82%) were isolated as an off-white solid. Data are: TLC $R_f = 0.44$ (50% EtOAc/hexanes); 1H NMR (CDCl$_3$, 300 MHz) δ 7.89-7.79 (m, 4H), 7.54-7.46 (m, 3H), 7.17, (d, $J = 2.5$ Hz, 1H), 7.02 (d, $J = 2.5$ Hz, 1H) 5.50 (dd, $J = 2$ Hz, 1H), 4.90-4.69 (m, 4H), 3.92 (s, 3H), 2.72-2.53 (m, 2H), 1.85 (s, 3H); 13C NMR (CDCl$_3$, 75 MHz) δ 173.5, 131.0, 130.8, 129.2, 128.9, 128.7, 128.6, 128.4, 128.3, 128.1, 127.7, 127.6, 127.0, 127.7, 66.7, 54.0, 42.0, 41.5, 40.1; HRMS found 334.1681 M^+, calcd 334.1681 for C$_{21}$H$_{22}$N$_2$O$_2$; the enantiomers’ retention times were determined by chiral HPLC and compared to the racemic samples listed above (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, 1.0 mL/min, 23 °C, $\lambda = 254$ nm, retention times: S (major) 12.6 min, R (minor) 18.3 min, 92.7 : 7.3 er).

(±)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)pent-4-en-1-one (Table 3.4, entry 7). Following the general procedure for racemic alkylations above on 50 mg scale, where allyl bromide was substituted for benzyl bromide, 34 mg of product (68%) were isolated as an off-white solid. Data are: TLC $R_f = 0.63$ (50% EtOAc/hexanes); 1H NMR (CDCl$_3$, 300 MHz) δ 7.85-7.79 (m, 4H), 7.55-7.46 (m, 3H), 7.18 (s, 1H), 7.04 (s 1H), 6.03-5.90 (m, 1H), 5.40-5.34 (m, 1H), 5.15-5.08 (m, 2H), 4.78 (dd, 2H), 3.94 (s, 3H), 2.81-2.60, (m, 2H); 13C NMR (CDCl$_3$, 75 MHz) δ 173.46, 131.0, 130.8, 129.2, 128.9, 128.7, 128.6, 128.4, 128.3, 128.1, 128.1, 127.7, 127.6, 127.0, 126.7, 66.7, 54.0, 42.0, 41.5, 40.1; HRMS found 320.1525 M^+, calcd 320.1525 for C$_{20}$H$_{20}$N$_2$O$_2$; the enantiomers’ retention times were determined by chiral HPLC (DAICEL
Chiralpack AD-H column, 5% EtOH/hexane, 1.0 mL/min, 23 °C, λ = 254 nm, retention times: S 20.5 min, R 32.8 min, 51 : 49 er).

(S)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) pent-4-en-1-one (Table 3.6, entry 8). Following the general procedure for racemic alkylations above on 50 mg scale, where allyl bromide was substituted for benzyl bromide, 51 mg of product (90%) were isolated as an off-white solid. Data are: TLC Rf = 0.50 (50% EtOAc/hexanes); 1H NMR (CDCl3, 300 MHz) δ 7.85-7.79 (m, 4H), 7.55-7.46 (m, 3H), 7.18 (s, 1H), 7.04 (s 1H), 6.03-5.90 (m, 1H), 5.40-5.34 (m, 1H), 5.15-5.08 (m, 2H), 4.78 (dd, 2H), 3.94 (s, 3H), 2.81-2.60 (m, 2H); 13C NMR (CDCl3, 75 MHz) δ 173.46, 131.0, 130.8, 129.2, 128.9, 128.7, 128.6, 128.4, 128.3, 128.1, 128.1, 127.7, 127.6, 127.0, 126.7, 66.7, 54.0, 42.0, 41.5, 40.1; HRMS found 320.1525 M+, calcd 320.1525 for C20H20N2O2; the enantiomers’ retention times were determined by chiral HPLC and compared to the racemic samples listed above (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, 0.75 mL/min, 23 °C, λ = 254 nm, retention times: S (major) 25 min, R (minor) 35 min, 94 : 6 er).

(±)-(E)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) hept-4-en-1-one (Table 3.4, entry 9). Following the general procedure for racemic alkylations above on 50 mg scale, where (E)-1-bromo-2-pentene was substituted for benzyl bromide, 17 mg of product (27%) were
isolated as an off-white solid. Data are: TLC R_f = 0.27 (30% EtOAc/hexanes); ^1H NMR (CDCl_3, 300 MHz) δ 7.83-7.79 (m, 4H), 7.52-7.44 (m, 3H), 7.15 (s, 1H), 7.01 (s, 1H), 5.54-5.51 (m, 2H), 5.33-5.29 (m, 1H), 4.76 (dd, 2H), 3.92 (s, 3H), 2.76-2.53 (m, 2H), 1.99 (q, J = 2 Hz, 2H), 0.92 (t, J = 7.5 Hz, 3 H); ^13C NMR (CDCl_3, 75 MHz) δ 191.8, 135.9, 135.5, 133.4, 133.2, 129.5, 128.1, 127.8, 127.2, 126.9, 126.3, 126.1, 126.0, 124.1, 100.2, 80.5, 72.6, 36.7, 36.1, 29.9, 25.8, 13.9; HRMS found 348.1838 M^+ calcd 348.1838 for C_{22}H_{24}N_{2}O_{2}; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, 1.0 mL/min, 23 °C, λ = 254 nm, retention times: S 15.3 min, R 32.9 min, 53.8 : 46.2 er).

![Chemical structure](image)

(S)-(E)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) hept-4-en-1-one (Table 3.4, entry 9). Following the general procedure for racemic alkylations above on 50 mg scale, where (E)-1-bromo-2-pentene was substituted for benzyl bromide, 50 mg of product (80%) were isolated as an off-white solid. Data are: TLC R_f = 0.34 (30% EtOAc/hexanes); ^1H NMR (CDCl_3, 300 MHz) δ 7.83-7.79 (m, 4H), 7.52-7.44 (m, 3H), 7.15 (s, 1H), 7.01 (s, 1H), 5.54-5.51 (m, 2H), 5.33-5.29 (m, 1H), 4.76 (dd, 2H), 3.92 (s, 3H), 2.76-2.53 (m, 2H), 1.99 (q, J = 2 Hz, 2H), 0.92 (t, J = 7.5 Hz, 3 H); ^13C NMR (CDCl_3, 75 MHz) δ 191.8, 135.9, 135.5, 133.4, 133.2, 129.5, 128.1, 127.8, 127.2, 126.9, 126.3, 126.1, 126.0, 124.1, 100.2, 80.5, 72.6, 36.7, 36.1, 29.9, 25.8, 13.9; HRMS found 348.1838 M^+ calcd 348.1838 for C_{22}H_{24}N_{2}O_{2}; the enantiomers’ retention times were determined by chiral HPLC and compared to the racemic samples listed above (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, 1.0 mL/min, 23 °C, λ = 254 nm, retention times: S (major) 17.6 min, R (minor) 34.2 min, 95.8 : 4.2 er).
(±)-(Z)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) dec-4-en-1-one (Table 3.4, entry 10). Following the general procedure for racemic alkylations above on 50 mg scale, where (Z)-1-bromo-2-octene (described in chapter 5’s experimental section) was substituted for benzyl bromide, 14 mg of product (20%) were isolated as an off-white solid. Data are: TLC $R_f = 0.27$ (30% EtOAc/hexanes); 1H NMR (CDCl$_3$, 300 MHz) δ 7.85-7.79 (m, 4H), 7.3-7.44 (m, 3H), 7.15 (s, 1H), 7.01 (s, 1H), 5.54-5.45 (m, 2H), 5.32 (t, $J = 5.4$ Hz, 1H), 4.76 (dd, 2H), 3.92 (s, 3H), 2.74-2.68 (m, 2H), 1.95-1.91 (m, 2H), 1.76-1.67 (m, 2H), 0.85 (s, $J = 7.8$ Hz, 3H); 13C NMR (CDCl$_3$, 75 MHz) δ 191.6, 135.9, 133.5, 133.2, 133.0, 129.6, 128.5, 128.1, 127.8, 127.2, 126.9, 126.3, 126.1, 125.9, 125.6, 125.4, 124.2, 80.5, 72.7, 36.1, 31.5, 29.4, 27.5, 22.7, 14.2; HRMS found 390.2307 M$^+$, calcd 390.2307 for C$_{25}$H$_{30}$N$_2$O$_2$; the enantiomers’ retention times were determined by chiral HPLC (DAICEl Chiralpack AD-H column, 5% EtOH/hexane, 1.0 mL/min, 23 °C, $\lambda = 254$ nm, retention times: S 12.1 min, R 16.6 min, 51.3 : 48.7 er).

(S)-(Z)-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) dec-4-en-1-one (Table 3.4, entry 10). Following the general procedure for racemic alkylations above on 50 mg scale, where (Z)-1-bromo-2-octene (described in chapter 5’s experimental section) was substituted for benzyl bromide, 53.5 mg of product (77%) were isolated as an off-white solid. Data are: TLC R_f
\(= 0.27 \text{ (30\% EtOAc/hexanes); }^1\text{H NMR (CDCl}_3, 300 \text{ MHz) } \delta 7.85-7.79 \text{ (m, 4H), 7.3-7.44 (m, 3H), 7.15 (s, 1H), 7.01 (s, 1H), 5.54-5.45 (m, 2H), 5.32 (t, } J = 5.4 \text{ Hz, 1H), 4.76 (dd, 2H), 3.92 (s, 3H), 2.74-2.68 (m, 2H), 1.95-1.91 (m, 2H), 1.27-1.22 (m, 6H), 0.85 (s, } J = 7.8 \text{ Hz, 3H); }^{13}\text{C NMR (CDCl}_3, 75 \text{ MHz) } \delta 191.6, 135.9, 133.5, 133.2, 133.0, 129.6, 128.5, 128.1, 127.8, 127.2, 126.9, 126.3, 126.1, 125.9, 125.6, 125.4, 124.2, 80.5, 72.7, 36.1, 31.5, 29.4, 27.5, 22.7, 14.2; \text{ HRMS found 390.2307 M}^+, \text{ calcd 390.2307 for } C_{25}H_{30}N_2O_2; \text{ the enantiomers’ retention times were determined by chiral HPLC and compared to the racemic samples listed above (DAICEL Chiralpack AD-H column, 5\% EtOH/hexane, 1.0 mL/min, } 23 \text{ °C, } \lambda = 254 \text{ nm, retention times: } S 11.2 \text{ min, } R 13.5 \text{ min, 89.5 : 10.5 er).}

\[
\text{(±)-(E)-5,9-dimethyl-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) deca-4,8-dien-1-one (Table 3.4, entry 11). Following the general procedure for racemic alkylations above on 50 mg scale, where geranyl bromide was substituted for benzyl bromide, 34.8 mg of product (47\%) were isolated as an off-white solid. Data are: TLC } R_f = 0.64 \text{ (50\% EtOAc/hexanes); }^1\text{H NMR (CDCl}_3, 300 \text{ MHz) } \delta 7.85-7.77 \text{ (m, 4H), 7.55-7.44 (m, 3H), 7.16 (s, 1H), 7.02 (s, 1H), 5.35-5.29 (m, 2H), 5.19-5.05 (m, 1H), 4.78 (dd, 2H), 3.93 (s, 3H), 2.73-2.51 (m, 2H), 2.0 (bs, 2H), 1.68 (s, 3H), 1.60 (s, 3H), 1.56 (s, 3H), 1.29-1.23 (m, 2H); }^{13}\text{C NMR (CDCl}_3, 75 \text{ MHz) } \delta 191.9, 142.3, 138.2, 135.9, 131.6, 130.7, 129.9, 128.2, 127.8, 127.4, 126.9, 126.5, 126.4, 126.1, 126.0, 125.1, 124.5, 119.2, 80.6, 72.7, 40.0, 32.3 30.0, 26.9, 25.6, 18.7, 16.5; \text{ HRMS found 416.2464 M}^+, \text{ calcd 416.2464 for } C_{27}H_{32}N_2O_2; \text{ the enantiomers’ retention}
\]
times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 10% EtOH/hexane, 1.0 mL/min, 23 °C, λ = 254 nm, retention times: S 7.9 min, R 12.1 min, 50.5 : 48.5 er).

(S)-(E)-5,9-dimethyl-1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy) deca-4,8-dien-1-one (Table 3.4, entry 11). Following the general procedure for racemic alkylations above on 50 mg scale, where geranyl bromide was substituted for benzyl bromide, 74 mg of product (75%) were isolated as an off-white solid. Data are: TLC Rf = 0.64 (50% EtOAc/hexanes); 1H NMR (CDCl3, 300 MHz) δ 7.85-7.77 (m, 4H), 7.55-7.44 (m, 3H), 7.16 (s, 1H), 7.02 (s, 1H), 5.35-5.29 (m, 2H), 5.19-5.05 (m, 1H), 4.78 (dd, 2H), 3.93 (s, 3H), 2.73-2.51, (m, 2H), 2.0 (bs, 2H), 1.68 (s, 3H), 1.60 (s, 3H), 1.56 (s, 3H), 1.29-1.23 (m, 2H); 13C NMR (CDCl3, 75 MHz) δ 12341234; HRMS found 416.2464 M+ calcd 416.2464 for C27H32N2O2; the enantiomers’ retention times were determined by chiral HPLC and compared to the racemic samples listed above (DAICEL Chiralpack AD-H column, 10% EtOH/hexane, 1.0 mL/min, 23 °C, λ = 254 nm, retention times: S (major) 7.9 min, R (minor) 12.1 min, 87.5 : 12.5 er).

7.3.7. General Procedure for Converting Imidazole Products to Methyl Esters

(S)-Methyl 2-(naphthalen-2-ylmethoxy)-3-phenylpropanoate (74). To a flame-dried 10 mL round bottom flask was added 1-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)-3-
phenylpropan-1-one 73 (0.058 g, 0.156 mmol), powdered 4 Å molecular sieves (0.039 g), and CH₂Cl₂ (3.12 mL). These were stirred vigorously at room temperature for 5 minutes. Methyl triflate (0.177 mL, 1.56 mmol) was then added in one portion. This mixture was stirred at room temperature for 72 hours, monitored by TLC for the consumption of starting material (R_f = 0.33, 30% EtOAc/Hexanes). Anhydrous methanol (3.12 mL) was then added, followed by dry sodium methoxide (0.064 g, 1.19 mmol). The mixture was then stirred for 4 hours at room temperature. It was afterward diluted with H₂O (10 mL) and CH₂Cl₂ (20 mL). The layers were mixed and then separated, and the aqueous layer was extracted with CH₂Cl₂ (3 x 15 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated by rotary evaporator. The crude residue was purified by column chromatography (10% EtOAc/hexanes) to afford 0.050 g (quant.) of the desired compound as an off-white solid. Data are: TLC R_f = 0.75 (30% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 7.82-7.80 (m, 1H), 7.74-7.72 (m, 2H), 7.56 (s, 1H), 7.48-7.46 (m, 3H), 7.33-7.23 (m, 5H), 4.70 (dd, 2H), 4.20 (q, J = 2 Hz, 1H), 3.75 (s, 3H), 3.14-3.04 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 173.0, 137.3, 135.0, 133.4, 133.2, 129.8, 128.6, 128.3, 128.2, 127.8, 127.0, 126.8, 126.3, 126.1, 125.9, 79.3, 72.7, 52.2, 39.8; HRMS found 338.1751 [M+NH₄]+, calcd 338.1751 for [C₂₁H₂₀O₃·NH₄]+. The enantiomers’ retention times were determined by chiral HPLC and compared to samples prepared from racemic 74. The data revealed that no racemization had occurred. (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, 0.75 mL/min, 23 °C, λ = 254 nm, retention times: S (major) 15.2 min, R (minor) 18.8 min, 95.5 : 4.5 er). Racemic 74 HPLC data (same column/conditions): S (major) 17.6, R (minor) 20.9 min, 54 : 46 er.
(S)-methyl 3-(4-tert-butylphenyl)-2-(naphthalen-2-ylmethoxy)propanoate. Following the general procedure for converting imidazole products to methyl esters above, the product was obtained in quantitative yield as an off-white solid. Data are: TLC R_f = 0.72 (30% EtOAc/hexanes); 1H NMR (CDCl_3, 300 MHz) δ 7.85-7.82 (m, 2H), 7.76-7.74 (m, 2H), 7.61 (s, 2H), 7.51-7.46 (m, 2H), 7.38-7.20 (m, 3H), 4.74 (dd, 2H), 4.23 (dd, J = 1.5 Hz, 1H), 3.78 (s, 3H), 3.11-3.07 (m, 2H), 1.38 (s, 9 H), 13C NMR (CDCl_3, 75 MHz) δ 173.1, 135.1, 134.3, 133.2, 129.5, 128.3, 128.2, 127.9, 126.8, 126.2, 126.1, 125.9, 125.5, 79.4, 72.6, 52.2, 39.2, 34.7, 31.7; HRMS found 376.2039 [M]+, calcd 376.2039 for C_{25}H_{28}O_3^+. The data revealed that no racemization had occurred. (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, 0.75 mL/min, 23 °C, λ = 254 nm, retention times: S (major) 9.0 min, R (minor) 10.0 min, 96 : 4 er.)
Racemic data (same column/conditions): S (major) 5.9 min, R (minor) 6.5 min, 54 : 46 er.

(S)-methyl 3-(biphenyl-2-yl)-2-(naphthalen-2-ylmethoxy)propanoate. Following the general procedure for converting imidazole products to methyl esters above, the product was obtained in quantitative yield as an off-white solid. Data are: TLC R_f = 0.63 (30% EtOAc/hexanes); 1H NMR (CDCl_3, 300 MHz) δ 7.87-7.85 (m, 2H), 7.83-7.73 (m, 2H), 7.53-7.50 (m, 2H), 7.41-7.29 (m, 2H), 7.25-7.15 (m, 8H), 4.60 (dd, 2H), 3.99 (dd, J = 1.6 Hz, 1H), 3.67 (s, 3H), 3.24-3.08 (m,
\(^{13} \text{C NMR (CDCl}_3, 75 \text{ MHz)} \delta 172.9, 142.8, 141.5, 135.0, 134.6, 133.4, 133.3, 130.9, 130.5, 129.5, 128.4, 128.3, 128.2, 127.9, 127.6, 127.2, 127.0, 126.9, 126.3, 126.1, 126.0, 78.4, 72.6, 52.1, 36.4; \) HRMS found 396.1725 [M\(^+\)], calcd 396.1725 for \(C_{27}H_{24}O_3\). The data revealed that no racemization had occurred. (DAICEL Chiralpack AD-H column, 1% EtOH/hexane, 0.75 mL/min, 23 °C, \(\lambda = 254 \text{ nm, retention times: } S \text{ (major) 20.3 min, } R \text{ (minor) 22.1 min, 90 : 10 er.} \))

Racemic data (same column/conditions): \(S \text{ (major) 20.05 min, } R \text{ (minor) 21.72 min, 53 : 47 er.} \)

7.3.8. 2-NPM Removal with DDQ

![Chemical Structure](image)

\((S)-\text{methyl 2-hydroxy-3-phenylpropanoate (75).} \) To a flame-dried 10 mL round bottom flask was added \((S)-\text{methyl 2-(naphthalen-2-ylmethoxy)-3-phenylpropanoate (0.075 g, 0.234 mmol), CH}_2\text{Cl}_2 \text{ (9.36 mL), and H}_2\text{O (1.87 mL), and the mixture was stirred for 5 minutes a room temperature. DDQ (0.106 g, 0.468 mmol) was then added, turning the solution a black-brown color, and the reaction was stirred at room temperature for 4 hours. It was quenched by the addition of a saturated aqueous solution of sodium thiosulfate (30 mL) and was then diluted with EtOAc (50 mL) and saturated aqueous sodium bicarbonate (20 mL). The layers were mixed and then separated, and the aqueous layer was extracted with CH\(_2\)Cl\(_2 \) (3 x 30 mL). The combined organic layers were dried over MgSO\(_4 \), filtered, and concentrated by rotary evaporator. The crude residue was purified by column chromatography (10% EtOAc/hexanes) to afford 0.030 g (70%) of the desired compound as an off-white solid. (Note: when dilute, this product is only
faintly UV-visible, but stains well if spotted heavily on the TLC plate.) Data are: TLC $R_f = 0.18$ (20% EtOAc/hexanes); $[\alpha]_D^{26} = -6.25^\circ$ (c 0.48, CHCl$_3$), lit. $[\alpha]_D^{24} = -6.8^\circ$ (c 1.39, CHCl$_3$); 1H NMR (CDCl$_3$, 300 MHz) δ 7.36-7.24 (m, 5H), 4.51-4.47 (m, 1H), 3.81 (s, 3H), 3.20-2.97 (m, 2H), 2.78-2.76 (m, 1H); 13C NMR (CDCl$_3$, 125 MHz) δ 174.8, 136.5, 129.7, 128.7, 127.2, 71.5, 52.7, 40.8; HRMS found 180.0786 [M$^+$], calcd 180.0786 for [C$_{10}$H$_{12}$O$_3$]$^+$. Product verification and absolute configuration were obtained by optical rotation comparison with Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1999, 121, 4168-4178.

7.4. Procedures from Chapter 4

7.4.1. Synthesis of Electrophile 44

\[
\begin{align*}
\text{NaOH, } n\text{-Bu}_4\text{N}^+\text{HSO}_4^- & \quad \overset{\text{CH}_2\text{Cl}_2, \text{di-} \text{t} \text{-b} \text{u} \text{t} \text{yldicarbonate}}{\rightleftharpoons} \quad \text{0°C, 2 h, quant.} \\
87 & \quad \overset{\text{(tert-butoxycarbonyl)-3-formyl indole (88).}}{\longrightarrow} \quad 88
\end{align*}
\]

N-(tert-butoxycarbonyl)-3-formyl indole (88). To a flame-dried 250 mL round bottom flask with a stir bar were added powdered NaOH (7.58 g, 189.44 mmol, 2.75 equiv) and tetra-n-butylammonium hydrogensulfate (470 mg, 1.378 mmol, 0.02 equiv). These were dissolved in anhydrous CH$_2$Cl$_2$ (92 mL, 0.75 M with respect to the indole), and the resulting suspension was cooled, under N$_2$ atmosphere, to 0°C. Indole-3-carboxyaldehyde (87) was then added in one portion (10 g, 68.889 mmol, 1 equiv), and the resulting suspension was stirred at 0°C for 10 minutes. At this stage, a solution of di-tertbutyldicarbonate (16.54 g, 75.78 mmol, 1.1 equiv) in CH$_2$Cl$_2$ (pre-chilled to 0 °C, 46 mL, 1.5 M) was added. This suspension was stirred at 0°C for 20 minutes, after which time more CH$_2$Cl$_2$ (46 mL, 1.5 M) was added. The combined mixture was
then stirred at 0°C for 2 h. The reaction was quenched by adding a saturated solution of aqueous NaHCO$_3$ (50 mL). The layers were mixed and then separated, and the aqueous layer was extracted with CH$_2$Cl$_2$ (3 x 150 mL). The combined organic layers were dried over MgSO$_4$, filtered, concentrated by rotary evaporation, and left under high vacuum for 1 h to give 16.9 g (quant. yield) of 88 as an off-white, crystalline solid, used without further purification. Data are: TLC R$_f$ = 0.85 (40% EtOAc/hexanes); 1H NMR (CDCl$_3$, 300 MHz) δ 10.12 (d, $J = 1.4$ Hz, 1 H), 8.32 (d, $J = 3.6$ Hz, 1H), 8.25 (d, $J = 1.2$ Hz, 1H), 8.18 (d, $J = 3.9$ Hz, 1H), 7.45 – 7.40 (m, 2H), 1.75 (s, 9H); 13C NMR (CDCl$_3$, 75 MHz) δ 186.0, 136.8, 126.3, 124.8, 122.3, 121.7, 115.4, 85.9, 28.3.

Tert-butyl 3-(hydroxymethyl)-1H-indole-1-carboxylate (89). To a flame-dried 250 mL round bottom flask with a stir bar, N-((tert-butoxycarbonyl)-3-formyl indole 88 (16.9 g, 69.28 mmol, 1 equiv) was dissolved in anhydrous EtOH (92 mL, 0.75 M) and was cooled under N$_2$ to 0 °C. NaBH$_4$ was then added (5.241 g, 138.56 mmol, 2 equiv). The resulting suspension was stirred for 30 minutes at 0 °C and then allowed to warm to RT and stir for 2.5 h, monitored for consumption of the starting material by TLC. The EtOH was then evaporated off using a rotary evaporator, and the crude product was diluted in 1.0 N aqueous NaOH (50 mL). The aqueous layer was extracted with Et$_2$O (3 x 150 mL). The combined organic layers were dried over MgSO$_4$, filtered, and concentrated by rotary evaporator to give a yellow, viscous oil, which was left under high vacuum for 46 h to remove the triethoxy borane byproduct. This gave 15.08 g
(88%) of the final product as a viscous, clear, colorless oil, which eventually crystallized as an off-white solid after refrigeration. Data are: TLC Rf = 0.48 (30% EtOAc/hexanes); 1H NMR (CDCl$_3$, 500 MHz) δ 8.14 (bs, 1 H), 7.62 (d, J = 4 Hz, 1H), 7.56 (s, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.25 (t, J = 7.5 Hz, 1H), 4.79 (s, 2H), 1.67 (s, 9H); 13C NMR (CDCl$_3$, 125 MHz) δ 150.0, 135.9, 129.4, 124.8, 123.9, 122.9, 120.8, 119.6, 115.5, 84.0, 57.2, 28.4.

Tert-butyl 3-(bromomethyl)-1H-indole-1-carboxylate (44). Phosphorous tribromide (0.683 mL, 7.27 mmol, 0.4 equiv) was carefully dissolved in Et$_2$O (11.4 mL, 1.6 M with respect to the indole) in a flame-dried 100 mL round bottom flask (flask A) with a stir bar. This solution was then cooled under N$_2$ to -40 °C. In a separate flame-dried, 25 mL pear-bottomed flask with a spin vane (flask B), _tert_-butyl 3-(hydroxymethyl)-1H-indole-1-carboxylate 83 (4.5 g, 18.197 mmol, 1.0 equiv) was dissolved in Et$_2$O (11.4 mL, 1.6 M). This solution was also cooled under N$_2$ to -40 °C. Once both flasks were cooled and stirring homogeneously, the contents of flask B were transferred dropwise, via syringe, to flask A. Flask B was then rinsed twice with 11.4 mL of Et$_2$O at ambient temperature, with each rinse being transferred into flask B, bringing the total Et$_2$O volume to 45.6 mL. This reaction suspension was then raised to -10 °C and became a yellow-pink solution. It was afterward stirred at -10 °C for 25 h, until the starting material had been consumed (as visualized by TLC). The reaction was quenched by adding ice water (100 mL) and Et$_2$O (150 mL). The layers were mixed and then separated, and the aqueous layer was extracted with Et$_2$O (3 x 75 mL). The combined organic layers were washed with brine (50 mL),
dried over MgSO₄, filtered, concentrated by rotary evaporator, and left under high vacuum for 1 h to give 5.15 g (92% yield) of as an off-white crystalline solid, used without further purification. Data are: TLC Rᵢ = 0.82 (20% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 8.15 (bs, 1 H), 7.7 (q, J = 3.5 Hz, 2H), 7.39 – 7.31 (m, 2H), 4.70 (s, 2H), 1.68 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 149.6, 135.9, 128.9, 125.3, 125.2, 123.1, 119.6, 117.4, 115.7, 84.4, 28.4, 24.8. Note: this compound should be stored at -20 °C under argon or nitrogen. This compound gradually decomposes within about two to three weeks –even when properly stored—to form a dark purple, crystalline solid. Once it has this appearance, it will no longer give good asymmetric results as an alkylation electrophile.

7.4.2. Alkylating Substrate 58 with Indole Electrophile 44

(S)-Tert-butyl 3-(3-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-ylmethoxy)-3-oxopropyl)-1H-indole-1-carboxylate (80). Preparation of this compound is detailed above under section 7.3.6.

(S)-methyl 3-(1H-indol-3-yl)-2-(naphthalen-2-ylmethoxy)propanoate (82). To a flame-dried 50 mL round bottom flask was added 80 (0.5 g, 0.98 mmol), powdered 4 Å molecular sieves
(0.098 g), and CH₃CN (5.8 mL). These were stirred vigorously at room temperature for 5 minutes. Methyl triflate (0.245 mL, 2.16 mmol) was then added in one portion. This mixture was stirred at room temperature for 24 hours, monitored by TLC for the consumption of starting material (R_f = 0.78, 50% EtOAc/Hexanes). Anhydrous methanol (5.8 mL) was then added, followed by DBU (1.4 mL). The mixture was then stirred for 1 hour at room temperature. It was afterward diluted with H₂O (50 mL) and CH₂Cl₂ (100 mL). The layers were mixed and then separated, and the aqueous layer was extracted with CH₂Cl₂ (3 x 75 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated. The crude residue was purified by column chromatography (20% EtOAc/hexanes) to afford 0.264 g (75%) of the desired compound as an off-white solid. Data are: TLC R_f = 0.75 (30% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 8.13 (bs, 1H), 7.79 (d, J=2.5 Hz, 1H), 7.71-7.68 (m, 2H), 7.60 (s, 1H), 7.50-7.46 (m, 4H), 7.30-7.27 (m, 4H), 7.16 (t, J=7.5 Hz, 1H), 4.87 (d, J = 6 Hz, 1H), 4.58 (d, J = 5.75 Hz, 1H), 4.29-4.28 (m, 1H), 3.74 (s, 3H), 3.23-3.14 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 173.3, 136.3, 135.1, 133.4, 128.3, 128.2, 127.9, 126.9, 126.2, 126.1, 126.0, 123.4, 122.2, 120.0, 119.1, 111.3, 78.9, 72.8, 52.2, 30.0, 29.3; HRMS found 359.1521 [M]⁺, calcd 359.1521 for [C₂₃H₂₁NO₃]⁺. The enantiomers’ retention times were determined by chiral HPLC and compared to samples prepared from racemic 75. The data revealed slight racemization, with 75 being obtained in 84% ee. (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, 0.75 mL/min, 23 °C, λ = 254 nm, retention times: S (major) 30.4 min, R (minor) 43.7 min, 92 : 8.0 er). Racemic 67 HPLC data (same column/conditions): S (major) 31.2, R (minor) 44.1 min, 52 : 48 er.
7.4.3. Total Synthesis of (+)-Kurasoin B

(±)-Tert-butyl 3-(2-(benzylxy)-3-(1-methyl-1H-imidazol-2-yl)-3-oxopropyl)-1H-indole-1-carboxylate (90). Following the general procedure for racemic alkylations (section 7.3.4 above) on 50 mg scale, where electrophile 44 (section 7.4.1 above) was substituted for benzyl bromide, 0.085 g (85%) of 90 were isolated as an off-white solid. Data are: TLC $R_f = 0.74$ (40% EtOAc/hexanes); 1H NMR (CDCl$_3$, 500 MHz) δ 8.13 (bs, 1H), 7.55 (d, $J = 3.75$ Hz, 1H), 7.50 (s, 1H), 7.29 (t, $J = 9.5$ Hz, 2H), 7.22 – 7.17 (m, 6 H), 7.06 (s, 1H), 5.52 (dd, $J = 2$ Hz, 1H), 4.67 (d, $J = 6$ Hz, 1H), 4.43 (d, $J = 5.75$ Hz, 1H), 3.91 (s, 3H), 3.40-3.37 (m, 1H), 3.20-3.15 (m, 1H), 1.67 (s, 9H); 13C NMR (CDCl$_3$, 125 MHz) δ 191.14, 142.21, 138.1, 129.8, 128.4, 128.1, 127.8, 127.4, 124.8, 124.3, 122.5, 119.6, 116.5, 115.2, 83.5, 80.1, 72.7, 36.2, 29.3, 28.5; HRMS found 459.2153 M$^+$, calcld 459.2158 for C$_{27}$H$_{29}$N$_3$O$_4$; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column): 10% EtOH/hexane, 0.75 mL/min, 23 °C, $\lambda = 254$ nm, retention times: S 7.11 min, R 93.10 min, 50.8 : 49.2 er).
(S)-tert-butyl 3-(2-(benzyloxy)-3-(1-methyl-1H-imidazol-2-yl)-3-oxopropyl)-1H-indole-1-carboxylate (84). Following the general procedure for asymmetric alkylations (section 7.3.5 above) on 4.66 g scale, where electrophile 44 (section 7.4.1 above) was substituted for benzyl bromide, 9.12 g (98%) of 90 were isolated as an off-white solid. Data are: TLC Rf = 0.56 (30% EtOAc/hexanes); 1H NMR (CDCl3, 500 MHz) δ 8.14 (bs, 1H), 7.55 (d, J = 3.75 Hz, 1H), 7.50 (s, 1H), 7.29 (t, J = 9.5 Hz, 2H), 7.22 – 7.17 (m, 6 H), 7.06 (s, 1H), 5.52 (dd, J = 2 Hz, 1H), 4.67 (d, J = 6 Hz, 1H), 4.43 (d, J = 5.75 Hz, 1H), 3.91 (s, 3H), 3.40-3.37 (m, 1H), 3.20-3.15 (m, 1H), 1.67 (s, 9H); 13C NMR (CDCl3, 125 MHz) δ 191.14, 149.9, 142.2, 138.1, 131.0, 129.8, 128.4, 128.1, 127.8, 127.4, 124.9, 124.3, 122.5, 119.6, 116.5, 115.2, 83.5, 80.1, 72.7, 36.2, 29.3, 28.5; HRMS found 459.2153 M+ calcd 459.2158 for C27H29N3O4; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column): 10% EtOH/hexane, 0.75 mL/min, 23 °C, λ = 254 nm, retention times: S (major) 9.99 min, R (minor) >99 : <1 er). [α]D 24 = +16.75° (c 5.55, CHCl3).
(±)-Methyl-2-(benzyloxy)-3-(1H-indol-3-yl) propanoate (91). Following the general procedure for compound 74 (section 7.3.7 above) on 84 mg scale, 0.027 g (48%) of 91 were isolated as a yellow oil. TLC showed formation of two products: 91 (Rf = 0.75 in 30% EtOAc/hexanes) and Boc-deprotected 90 (Rf = 0.31 in 30% EtOAc/hexanes). 1H NMR (CDCl3, 300 MHz) δ 8.057 (bs, 1H), 7.61 (d, J = 3.9 Hz, 1H), 7.38 (d, J = 4 Hz, 1H), 7.28 – 7.10 (m, 8H), 4.73 (d, J = 5.75 Hz, 1H), 4.48 (d, J = 5.75 Hz, 1H), 4.28 (dd, J1 = 1 Hz, J2 = 5 Hz, 1H), 3.72 (s, 3 H), 3.35 – 3.26 (m, 2H); 13C NMR (CDCl3, 75 MHz) δ 128.5, 128.2, 127.9, 123.4, 122.2, 119.6, 119.1, 111.3, 78.9, 72.7, 52.1, 29.2; HRMS found 310.1434 [M+H]+, calcd 310.1438 for [C19H20NO3]+; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column): 10% EtOH/hexane, 0.75 mL/min, 23 °C, λ = 254 nm, retention times: S (major) 17.05 min, R (minor) 21.38 min, 50.2 : 49.8 er).

(S)-methyl 2-(benzyloxy)-3-(1H-indol-3-yl)propanoate (91). To a flame-dried 100 mL round bottom flask was added (S)-tert-butyl 3-(2-(benzyloxy)-3-(1-methyl-1H-imidazol-2-yl)-3-oxopropyl)-1H-indole-1-carboxylate 90 (5.5 g, 11.976 mmol, 1 equiv), powdered 4 Å molecular sieves (1.2 g), and CH3CN (70 mL, 0.17 M). These were stirred vigorously at room temperature for 5 minutes. Methyl triflate (6.78 mL, 59.88 mmol, 5.0 equiv) was then added in one portion,
and the mixture was stirred at room temperature for 2 hours, after which time the starting material was completely consumed, giving only methylated baseline intermediate (TLC). Anhydrous methanol (70 mL, 0.17 M) was then added, followed by DBU (4.48 mL, 29.94 mmol, 2.5 equiv), and the mixture was stirred for 6 hours at room temperature. The reaction was then quenched by adding H$_2$O (60 mL) and CH$_2$Cl$_2$ (125 mL) and was transferred to a separatory funnel. The layers were mixed and then separated, and the aqueous layer was extracted with CH$_2$Cl$_2$ (3 x 70 mL). The combined organic layers were dried over MgSO$_4$, filtered, and concentrated by rotary evaporator. TLC showed that two products were formed: the desired product (R_f= 0.69 in 30% EtOAc/hexanes) and deprotected starting material (R_f = 0.33 in 30% EtOAc/hexanes). The crude residue was purified by column chromatography (20% EtOAc/hexanes) to afford 3.48 g (94%) of the target compound as a yellow oil. Data are: TLC R_f= 0.69 (30% EtOAc/hexanes); 1H NMR (CDCl$_3$, 500 MHz) δ 8.305 (d, J = 4.5 Hz, 1H), 7.62 (d, J = 4 Hz, 1H), 7.33 – 7.18 (m, 7H), 7.14 (t, J = 7.5 Hz, 1H), 7.00 (s, 1H), 4.73 (d, J = 5.75 Hz, 1H), 4.48 (d, J = 5.75 Hz, 1H), 4.32 (dd, J_1 = 1 Hz, J_2 = 5 Hz, 1H), 3.72 (s, 3 H), 3.35 – 3.26 (m, 2H); 13C NMR (CDCl$_3$, 125 MHz) δ 173.4, 137.7, 136.3, 128.6, 128.5, 128.2, 127.7, 123.7, 122.1, 119.5, 119.0, 111.5, 110.7, 79.0, 72.8, 52.2, 29.3; HRMS found 310.1434 [M+H]$^+$, calcd 310.1438 for [C$_{19}$H$_{20}$NO$_3$]$^+$; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column): 10% EtOH/hexane, 0.75 mL/min, 23 °C, λ = 254 nm, retention times: S (major) 16.99 min, R (minor) 21.69 min, 94.1 : 5.9 er. [α]$_D^{24}$ = +34.68° (c 2.508, CHCl$_3$).
(S)-methyl 2-hydroxy-3-(1H-indol-3-yl)propanoate (83). (S)-methyl 2-(benzyloxy)-3-(1H-indol-3-yl)propanoate 91 (2.5 g, 8.087 mmol, 1 equiv) was dissolved in CH$_2$Cl$_2$ (45 mL, 0.18 M) in a flame-dried 100 mL round bottom flask and was cooled, while stirring under N$_2$, to -78 °C. A solution of BCl$_3$ (1.0 M in CH$_2$Cl$_2$, 20.22 mL, 20.22 mmol, 2.5 equiv) was then added slowly over 45 minutes, and the entire reaction was stirred for 1 h at -78 °C under N$_2$. The reaction mixture was then warmed to -20 °C and was kept stirring at -20 °C for 18 h. Once the starting material had been consumed (as observed by TLC), the reaction was diluted with 50 mL of a 1:1 MeOH : CH$_2$Cl$_2$ solution that had been pre-chilled to -40 °C prior to its addition. The resulting mixture was then warmed to RT, and the solvent was removed under reduced pressure using a rotary evaporator. More 1:1 MeOH : CH$_2$Cl$_2$ (50 mL at ambient temperature) was added and was subsequently removed using the rotary evaporator. Then an additional amount of 1:1 MeOH/CH$_2$Cl$_2$ (50 mL at ambient temperature) was added, and was also removed using the rotary evaporator. The crude material was afterward diluted using a saturated solution of aqueous sodium bicarbonate (20 mL) and was transferred to a separatory funnel. The aqueous suspension was extracted with CH$_2$Cl$_2$ (3 x 75 mL), and the combined organic layers were dried over MgSO$_4$, filtered, and concentrated by rotary evaporator. The crude material was purified by column chromatography (20% EtOAc/hexanes) to afford 1.77 g (quant.) of the target compound as a brown, crystalline solid. Data are: TLC R_f = 0.49 (40% EtOAc/hexanes); 1H NMR (CDCl$_3$, 500 MHz) δ 8.17 (bs, 1H), 7.62 (d, J = 4 Hz, 1H), 7.34 (d, J = 3.75, 1H), 7.20 (t, J = 8 Hz, 1H), 7.14 (t, J = 7 Hz, 1H), 7.06 (bs, 1H), 4.55 (q, J = 2.5 Hz, 1H), 3.73 (s, 3H), 3.32-3.28 (m, 1H),
3.22-3.17 (m, 1H), 2.86 (d, J = 3.25 Hz, 1H); 13C NMR (CDCl$_3$, 125 MHz) δ 175.0, 136.4, 127.8, 123.5, 122.3, 119.7, 119.1, 111.5, 110.2, 71.0, 52.7, 30.5; HRMS found 220.0968 [M+H]$^+$, calcld 220.0968 for [C$_{12}$H$_{14}$N$_{3}$O$_{3}$]; $\alpha$$_D^{24}$ = +17.72° (c 1.69, CHCl$_3$).

(S)-2-hydroxy-3-(1H-indol-3-yl)-N-methoxy-N-methylpropanamide (84). N,O-dimethylhydroxylamine·HCl (0.111 g, 1.141 mmol, 5 equiv) was dissolved in THF (4.6 mL, 0.05 M with respect to ester substrate) in a flame-dried 10 mL round bottom flask with a stir bar. This was cooled, while stirring under N$_2$, to 0 °C. A solution of AlMe$_3$ (2.0 M in toluene, 0.57 mL, 1.14 mmol, 5.0 equiv) was then added, and the resulting suspension was warmed to RT and stirred for 30 minutes. This mixture was then transferred by cannula to a 25 mL round bottom flask (with stir bar) containing a solution of (S)-methyl 2-hydroxy-3-(1H-indol-3-yl)propanoate (83) (50 mg, 0.228 mmol, 1 equiv) in THF (2.28 mL, 0.1 M). At this stage the resulting suspension was warmed and stirred at reflux for 18 h. Once the starting material had been consumed (as observed by TLC), the reaction was cooled to RT and the crude material was transferred to a 100 mL round bottom flask containing Rochelle salts (23 mL) and CH$_2$Cl$_2$ (23 mL). The original reaction flask was then rinsed several times with additional CH$_2$Cl$_2$, and each rinse was added to the flask containing the Rochelle salts (this was to ensure complete transfer of the crude product). When it had been completely transferred to the 100 mL RB flask with the Rochelle salts, the mixture was stirred at RT for 1 hour, until clean separation of layers was observed. Once this occurred, the solution was transferred to a separatory funnel, and the layers were separated. The aqueous layer was then extracted with CH$_2$Cl$_2$ (3 x 30 mL). The combined
organic layers were washed with 1 N HCl (30 mL), and were also washed with a saturated solution of aqueous sodium bicarbonate (30 mL). The combined organic layers were then dried over MgSO$_4$, filtered, and concentrated by rotary evaporator. The crude material was purified by column chromatography (40% EtOAc/hexanes), with the aliquots coming off the column being tested by TLC and HRMS for the presence of product. 52 mg (92%) of the target compound were isolated as a yellow, crystalline solid. Data are: TLC $R_f = 0.41$ (100% EtOAc); 1H NMR (CDCl$_3$, 500 MHz) δ 8.12 (bs, 1H), 7.60 (d, $J = 4$ Hz, 1H), 7.35 (d, $J = 3.5$, 1H), 7.19 (t, $J = 10$ Hz, 1H), 7.13 – 7.10 (m, 2H), 4.70 (bs, 1H), 3.75 (s, 3H), 3.39 (d, $J = 3.75$ Hz, 1H), 3.28 – 3.05 (m, 2H), 3.22 (s, 3H); 13C NMR (CDCl$_3$, 125 MHz) δ 174.5, 136.3, 127.9, 123.4, 122.1, 119.6, 118.8, 111.4, 111.3, 69.2, 61.7, 32.7, 30.8, 30.0; HRMS found 249.1234 [M+H]$^+$, calcd 249.1234 for [C$_{13}$H$_{17}$N$_2$O$_3$]; $\left[\alpha\right]_D^{24} = -2.4995^\circ$ (c 0.52, CHCl$_3$).

(S)-3-(1H-indol-3-yl)-N-methoxy-N-methyl-2-(triethylsilyloxy)propanamide (79). (S)-2-hydroxy-3-(1H-indol-3-yl)-N-methoxy-N-methylpropanamide 84 (49 mg, 0.197 mmol, 1 equiv) was dissolved in DMF (1.97 mL, 0.1 M) in a flame-dried 10 mL round bottom flask with a stir bar. Imidazole (54 mg, 0.79 mmol, 4 equiv) was then added, followed by chlorotriethylsilane (0.067 mL, 0.395 mmol, 2 equiv). This mixture was then stirred at RT for 2 hours. Once the starting material had been consumed (as observed by TLC), the reaction was diluted with distilled water (5 mL) and EtOAc (20 mL) and was transferred to a separatory funnel. The layers were separated, and the aqueous layer was extracted with EtOAc (3 x 20 mL). The combined organic layers were dried over Na$_2$SO$_4$, filtered, and concentrated by rotary evaporator. The
crude material was purified by column chromatography (30% EtOAc/hexanes), with the aliquots coming off the column being tested by TLC and HRMS for the presence of product. 49 mg (70%) of the target compound were isolated as a yellow, crystalline solid. Data are: TLC Rf = 0.56 (40% EtOAc/hexanes); \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta\) 8.18 (bs, 1H), 7.63 (d, \(J = 3.75\) Hz, 1H), 7.36 (d, \(J = 4\) Hz, 1H), 7.18 (t, \(J = 7\) Hz, 1H), 7.15 – 7.08 (m, 2H), 4.85 (bs, 1H), 3.30-3.27 (m, 1H), 3.16 (s, 3H), 3.08 – 3.04 (m, 1H), 0.85 (t, \(J = 7.5\) Hz, 9H), 0.50 (q, \(J = 2\) Hz, 6H); \(^{13}\)C NMR (CDCl\(_3\), 125 MHz) \(\delta\) 136.4, 127.9, 123.8, 122.0, 119.5, 118.8, 111.6, 111.4, 69.4, 61.4, 32.6, 31.2, 30.0, 6.8, 4.8; HRMS found 363.2099 [M+H]\(^+\), calcd 363.2098 for [C\(_{19}\)H\(_{31}\)N\(_2\)O\(_3\)Si]; [\(\alpha\)]\(_D\)\(^{24}\) = +8.16° (c 0.49, CHCl\(_3\)).

\(\text{(S)-4-}\left(1\text{-indol-3-yl}\right)-1\text{-phenyl-3-}(\text{triethylsilyloxy})\text{butan-2-one (85)}\). \(\text{(S)-3-}\left(1\text{-indol-3-yl}\right)-\text{N-methoxy-N-methyl-2-}(\text{triethylsilyloxy})\text{propanamide 79}\) (91 mg, 0.357 mmol, 1 equiv) was dissolved in THF (4.25 mL, 0.059 M) in a flame-dried 10 mL round bottom flask with a stir bar. This solution was then cooled, while stirring under \(N_2\), to 0 °C. A solution of benzylmagnesium chloride (2.0 M in THF, 0.628 mL, 1.255 mmol, 5.0 equiv) was then added slowly over 5 minutes, and the mixture was warmed to RT. It was then stirred at RT for 5 h, until the starting material had been consumed (as observed by TLC). The reaction was afterward diluted with distilled water (7 mL) and CH\(_2\)Cl\(_2\) (20 mL) and was transferred to a separatory funnel. The layers were separated, and the aqueous layer was extracted with CH\(_2\)Cl\(_2\) (3 x 20 mL). The combined organic layers were dried over MgSO\(_4\), filtered, and concentrated by rotary evaporator.
The crude material was purified by column chromatography (15% EtOAc/hexanes), with the aliquots coming off the column being tested by TLC and HRMS for the presence of product. 98 mg (99%) of the target compound were isolated as a clear, colorless oil. Data are: TLC R\textsubscript{f} = 0.43 (20% EtOAc/hexanes); 1H NMR (CDCl\textsubscript{3}, 500 MHz) \(\delta \) 8.00 (bs, 1H), 7.60 (d, \(J = 3.75 \) Hz, 1H), 7.35 (d, \(J = 4.25 \) Hz, 1H), 7.26 – 7.18 (m, 4H), 7.12 (t, \(J = 7.5 \) Hz, 1H), 6.99 (bs, 1H), 6.94 (d, \(J = 3.5 \) Hz, 2H), 4.49 (t, \(J = 5.5 \) Hz, 1H), 3.75 (d, \(J = 8.25 \) Hz, 1H), 3.61 (d, \(J = 8.25 \) Hz, 1H), 3.13 (d, \(J = 2.75 \) Hz, 2H), 0.90 (t, \(J = 8 \) Hz, 9H), 0.52 (q, \(J = 4 \) Hz, 6H); 13C NMR (CDCl\textsubscript{3}, 125 MHz) \(\delta \) 210.7, 136.0, 134.0, 129.7, 128.3, 127.7, 126.6, 123.2, 122.0, 119.5, 119.2, 111.0, 110.8, 78.6, 44.9, 31.4, 6.7, 4.7; HRMS found 394.2197 [M+H]+, calcd 394.2197 for \([\text{C}_{24}\text{H}_{32}\text{NO}_2\text{Si}]\); \([\alpha]_D^{24} = -13.79^\circ \) (c 0.29, CHCl\textsubscript{3}).

\((+)-\text{Kurasoin B (2).}\) \((\mathcal{S})\)-4-(1H-indol-3-yl)-1-phenyl-3-(triethylsilyloxy)butan-2-one 85 (86 mg, 0.2187 mmol, 1 equiv) was dissolved in THF (1.57 mL, 0.042 M) in a flame-dried 10 mL round bottom flask with a stir bar. This solution was then cooled, while stirring under \textsubscripts{N}2, to 0 °C. A solution of tetra-\textit{n}-butyl ammonium fluoride (1.0 M in THF, 0.235 mL, 0.23424 mmol, 1.071 equiv) was then added, and the reaction was stirred at 0 °C for 1 h, until the starting material had been consumed (as observed by TLC). The reaction was afterward diluted with a saturated solution of aqueous NH\textsubscript{4}Cl (10 mL) and CH\textsubscript{2}Cl\textsubscript{2} (30 mL) and was transferred to a separatory funnel. The layers were separated, and the aqueous layer was extracted with CH\textsubscript{2}Cl\textsubscript{2} (3 x 20 mL). The combined organic layers were dried over MgSO\textsubscript{4}, filtered, and concentrated by rotary
evaporator. The crude material was purified by column chromatography (30% EtOAc/hexanes), with the aliquots coming off the column being tested by TLC and HRMS for the presence of product. 53 mg (87%) of (+)-kurasin B (2) were thereby isolated as an off-white crystalline solid. Synthetic data matched those of the natural product. Data are: TLC $R_f = 0.38$ (30% EtOAc/hexanes); 1H NMR (CD$_3$OD, 500 MHz) δ 7.54 (d, $J = 3.75$ Hz, 1H), 7.35 (d, $J = 4$ Hz, 1H), 7.23 – 7.18 (m, 3H), 7.12 – 7.09 (m, 2H), 7.01 (t, $J = 7$ Hz, 2H), 6.96 (d, $J = 3.75$ Hz, 2H), 4.52 (t, $J = 5.5$ Hz, 1H), 3.70 (q, $J = 7.25$ Hz, 2H), 3.62-3.32 (m, 1H), 3.20-3.16 (m, 1H); ^{13}C NMR (CD$_3$OD, 125 MHz) δ 211.3, 136.6, 134.0, 129.4, 127.9, 127.4, 126.3, 123.3, 121.0, 118.4, 118.2, 110.8, 109.5, 76.4, 45.4, 29.7; HRMS found 280.1332 [M+H]$^+$, calcd 280.1332 for [C$_{18}$H$_{18}$NO$_2$]; $[\alpha]_D^{24} = +45^\circ$ (c 0.83, CHCl$_3$).

7.4.4. First-Generation Analogs

(S)-4-((1H-indol-3-yl)-1-(2-methoxyphenyl)-3-(triethylsilyloxy)butan-2-one. Following the procedure for compound 85 above on 95 mg scale, where reagent 93 (0.25 M in THF, 5.0 equiv.) was substituted for benzylmagnesium chloride, 0.082 g (74%) of the target compound were isolated. Data are: TLC $R_f = 0.73$ (20% EtOAc/hexanes x 2); 1H NMR (CDCl$_3$, 500 MHz) δ 8.0 (bs, 1H), 7.61 (d, $J = 4$ Hz, 1H), 7.36 (d, $J = 4$ Hz, 1H), 7.27-7.18 (m, 2 H), 7.12 (t, $J = 7.5$ Hz, 1H), 7.04 (d, $J = 1$ Hz, 1H), 6.90-6.84 (m, 3 H), 4.517 (dd, $J1 = 1$ Hz, $J2 = 2.5$ Hz, 1H), 3.85 (d, $J = 8.75$ Hz, 1H), 3.71 (d, $J = 9$ Hz, 1H), 3.72 (s, 3H), 0.88 (t, $J = 7.5$ Hz, 9H), 0.52-0.47 (m, 6H); ^{13}C
NMR (CDCl$_3$, 125 MHz) δ 210.7, 157.6, 136.3, 131.7, 128.5, 128.0, 123.6, 123.5, 122.1, 120.7, 119.6, 119.4, 111.4, 111.3, 110.5, 78.8, 55.4, 40.5, 31.4, 7.0, 4.8; HRMS found 423.2230 (M$^+$), calc 423.2230 for [C$_{25}$H$_{33}$NO$_3$Si]; $[\alpha]_{D}^{23} = -21^{\circ}$ (c 0.23, CHCl$_3$).

(S)-3-hydroxy-4-(1H-indol-3-yl)-1-(2-methoxyphenyl)butan-2-one (96). Following the procedure for compound 2 above on 58 mg scale provided 34 g (80%) of the target compound. Data are: TLC R_f = 0.22 (30% EtOAc/hexanes x 2); 1H NMR (CDCl$_3$, 500 MHz) δ 8.10 (bs, 1H), 7.58 (d, $J=4$ Hz, 1H), 7.37 (d, $J=4$ Hz, 1H), 7.31-7.27 (m, 2H), 7.22 (t, $J=8$ Hz, 1H), 7.15-7.08 (m, 2H), 6.94 (t, $J=7.5$ Hz, 1H), 6.88 (d, $J=4$ Hz, 1H), 4.64 (m, 1H), 3.87 (d, $J = 8$ Hz, 1H), 3.74 (d, $J = 8$ Hz, 1H), 3.77 (s, 3H), 3.48 (d, $J=2.75$ Hz, 1H), 3.38 (dd, $J_1=5.25$ Hz, $J_2=2$ Hz, 1H), 3.13 (dd, $J_1=4.25$ Hz, $J_2=3.5$ Hz, 1H); 13C NMR (CDCl$_3$, 125 MHz) 210.0, 157.1, 136.1, 131.4, 128.8, 127.5, 123.0, 122.5, 122.1, 120.8, 119.5, 118.8, 111.2, 110.8, 110.5, 76.2, 55.3, 40.6, 29.7; HRMS found 309.1365 (M$^+$), calc 309.1365 for [C$_{19}$H$_{19}$NO$_3$].

(S)-1-(4-tert-butylphenyl)-4-(1H-indol-3-yl)-3-(triethylsilyloxy)butan-2-one. Following the procedure for compound 85 above on 96 mg scale, where reagent 94 (0.25 M in THF, 5.0 equiv.) was substituted for benzylmagnesium chloride, 0.060 g (50%) of the target compound were
isolated. Data are: TLC R_f = 0.67 (30% EtOAc/hexanes); ^1^H NMR (CDCl_3, 500 MHz) δ 8.0 (bs, 1H), 7.61 (d, J=4 Hz, 1H), 7.36 (d, J=4 Hz, 1H), 7.28 (t, J=7.5 Hz, 1H), 7.20 (t, J=7.5 Hz, 2H), 7.13 (t, J=7.5 Hz, 1H), 6.99 (s, 1H), 6.92 (d, J=4 Hz, 2H), 4.50 (t, J=6 Hz, 1H), 3.75 (d, J = 8.5 Hz, 1H), 3.6 (d, J = 8.5 Hz, 1H), 3.72 (d, J=2.75 Hz, 2H), 1.30 (s, 9H), 0.89 (t, J=8 Hz, 9H), 0.51 (q, J1=4 Hz, J2=4 Hz, 6H); ^13^C NMR (CDCl_3, 125 MHz) δ 210.9, 149.5, 136.1, 130.9, 129.4, 127.7, 125.3, 123.4, 122.0, 119.5, 119.1, 111.0, 110.8, 78.5, 44.6, 34.4, 31.3, 6.7, 4.6; HRMS found 449.2750 (M^+), calcd 449.2750 for [C_{28}H_{39}NO_2Si]; [α]_D^{23} = -8.42° (c 0.95, CHCl_3).

(S)-1-(4-tert-butyphenyl)-3-hydroxy-4-(1H-indol-3-yl)butan-2-one (97). Following the procedure for compound 2 above on 0.057 mg scale provided 0.054 g (99%) of the target compound as a yellow solid. Data are: TLC R_f = 0.29 (30% EtOAc/hexanes); ^1^H NMR (CDCl_3, 500 MHz) δ 8.08 (bs, 1H), 7.59 (d, J=4 Hz, 1H), 7.37-7.32 (m, 3 H), 7.22 (t, J=7.5 Hz, 1H), 7.14 (t, J=7 Hz, 1H), 7.06-7.04 (m, 3H), 4.61 (d, J=2.25 Hz, 1H), 3.76 (d, J=5.5 Hz, 2H), 3.32 (bs, 2H), 3.17-3.13 (m, 1H), 1.32 (s, 9H); ^13^C NMR (CDCl_3, 125 MHz) 209.9, 150.1, 136.1, 130.0, 129.2, 127.4, 125.7, 123.0, 122.3, 119.7, 118.7, 111.3, 110.4, 76.0, 45.2, 34.5, 31.3, 29.9, 29.7; HRMS found 355.1885 (M^+), calcd 335.1885 for [C_{22}H_{25}NO_2]; [α]_D^{23} = +33.3° (c 0.9, CHCl_3).
(S)-1-(3-bromophenyl)-4-(1H-indol-3-yl)-3-(triethysilyloxy)butan-2-one. Following the procedure for compound 85 above on 92 mg scale, where reagent 95 (0.25 M in Et₂O, 5.0 equiv.) was substituted for benzylmagnesium chloride, 0.097 g (81%) of the target compound were isolated. Data are: TLC R_f = 0.63 (30% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 8.1 (bs, 1H), 7.61 (d, J=4 Hz, 1H), 7.38-6.94 (m, 7H), 6.79 (d, J=3.75 Hz, 1H), 4.50 (t, J=5.5 Hz, 1H), 3.66 (d, J = 8.75 Hz, 1H), 3.49 (d, J = 8.5 Hz, 1H), 3.22-3.09 (m, 2H), 0.89 (t, J=8 Hz, 9H), 0.59 (q, J1=4 Hz, J2=4 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 210.5, 136.2, 136.0, 132.7, 129.7, 129.7, 128.4, 127.6, 123.3, 122.2, 122.2, 119.6, 119.2, 111.1, 110.4, 78.5, 44.6, 31.5, 14.2, 6.6, 4.7; HRMS was negative; [α]_D²³ = -11.6° (c 1.47, CHCl₃).

(S)-1-(3-bromophenyl)-3-hydroxy-4-(1H-indol-3-yl)butan-2-one (98). Following the procedure for compound 2 above on 0.088 mg scale provided 0.036 g (54%) of the target compound as a yellow solid. Data are: TLC R_f = 0.18 (30% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 8.11 (bs, 1H), 7.62 (d, J=4 Hz, 1H), 7.38 (d, J=4 Hz, 2H), 7.26-7.22 (m, 1H), 7.18-7.12 (m, 3H), 7.06 (s, 1H), 6.97 (d, J=3.75 Hz, 1H), 4.59 (d, J=2.75 Hz, 1H), 3.70 (dd, J1=12.25 Hz, J2=8 Hz, 2H), 3.32-3.17 (m, 2 H), 3.21 (d, J=2.75 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) 209.1, 136.2, 1335.3, 132.6, 130.3, 130.0, 128.2, 127.3, 123.1, 122.6, 122.5, 119.9, 118.7, 111.4,
110.1, 76.4, 45.0, 30.0, 29.7; HRMS found 357.0364 (M⁺), calcd 357.0364 for [C₁₈H₁₆BrNO₂];
[α]D²³ = +33.3° (c 0.9, CHCl₃).

7.5. Procedures from Chapter 5
7.5.1. Synthesizing Electrophile 136

(Z)-oct-2-en-1-ol (141). Ni(OAc)₂·H₂O (0.87 g, 3.49 mmol) was dissolved in anhydrous MeOH (18 mL) in a two-neck flask and stirred under N₂ at room temperature, forming a blue-green solution. This was cooled to 0 °C, and sodium borohydride (132 mg, 3.49 mmol) was added in one portion, causing gaseous evolution and turning the solution black. This suspension was warmed to room temperature and stirred 5 min. Ethylenediamine (0.437 mL, 6.98 mmol) was then added; the solution stirred 5 min longer. A solution of oct-2-yn-1-ol (2.0 mL, 13.96 mmol) in anhydrous MeOH (6 mL) was then added. An H₂ balloon was attached, and the flask was purged 3x with H₂. It was then stirred under H₂ atmosphere at RT for 22 hours (a lesser time of 5 hours has also been successful). A small aliquot was removed from the mixture and subjected to a mini workup, concentrated, and analyzed by NMR to ensure consumption of starting material and formation of product. Once complete, the reaction mixture was filtered through celite with copious amounts of CH₂Cl₂, being careful to keep the pyrophoric Nickel (II) immersed in solution. The purple mother liqueur was then carefully concentrated, re-diluted in Et₂O, and transferred to a separatory funnel. It was washed 1x with water (which removed the dark color), and the organic layer was then dried (MgSO₄), filtered through a short silica pad.
with copious amounts of Et₂O, and carefully concentrated under low vacuum to afford 1.51 g (85%) of 141 as a clear, yellow oil. Data are: TLC Rf = 0.52 (20% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 5.60-5.56 (m, 2H), 4.20 (d, J=3 Hz, 2H), 2.07 (q, J₁=3.5 Hz, J₂=3.75 Hz, 2H), 1.38-1.26 (m, 7H), 0.89 (t, J=7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) 133.3, 128.3, 58.6, 31.4, 29.3, 27.4, 22.5, 14.0; HRMS found 128.1201 (M⁺), calcd 128.1201 for [C₈H₁₆O].

\[\text{(Z)-1-bromooct-2-ene (136).} \]

(Z)-oct-2-en-1-ol 141 (1.63 g, 12.7 mmol) was dissolved in Et₂O (32 mL) and cooled to 0 °C under N₂. PBr₃ (1M in CH₂Cl₂, 5.232 mL, 5.23 mmol) was then added dropwise, and the solution stirred at 0 °C for three hours. A small aliquot was removed from the mixture and subjected to a mini workup, concentrated, and analyzed by NMR to ensure consumption of 141 and formation of 136. Once complete, the reaction was carefully diluted with ice water and extracted with Et₂O (5 x 30 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), filtered, and carefully concentrated under low vacuum to afford 2.36 g (97%) of 146 as a clear, off-white oil. Data are: TLC Rf = 0.90 (15% EtOAc/hexanes); ¹H NMR (CDCl₃, 300 MHz) δ 5.77-5.56 (m, 2H), 4.00 (d, J=4.2 Hz, 2H), 2.17-2.09 (m, 2H), 1.45-1.19 (m, 6H), 0.90 (t, J=2.1 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) 136.4, 125.4, 31.7, 29.1, 27.7, 27.2, 22.8, 14.3; HRMS was negative.
7.5.2. PTC Alkylation

(±)-(Z)-2-(benzyloxy)-1-(1-methyl-1H-imidazol-2-yl)dec-4-en-1-one (135). Substrate 63 (52 mg, 0.225 mmol), n-Bu4N+Br− (8.2 mg, 0.027 mmol), and electrophile 136 (0.086 g, 0.45 mmol) were diluted in CH2Cl2 (2.25 mL) and cooled to 0 °C. After 10 minutes, CsOH·H2O (0.151 g, 0.9 mmol) was added in one portion. The mixture then stirred at 0 °C, warming to room temperature overnight, for 18 h, at which time the reaction was diluted with Et2O (30 mL) and H2O (10 mL). The layers were mixed and separated, and the organic layer was washed with a saturated aqueous solution of aqueous NaCl (1 x 10 mL) and then dried over MgSO4. The crude product was then purified by column chromatography (20% EtOAc/hexanes) to afford 0.065 g (85%) of the desired compound as a clear yellow oil. Data are: TLC Rf = 0.69 (40% EtOAc/hexanes); 1H NMR (CDCl3, 300 MHz) δ 7.36 (d, J=3.5 Hz, 2H), 7.3 (t, J=7. Hz, 2H), 7.26-7.23 (m, 1H), 7.15 (s, 1H), 7.03 (s, 1H), 5.52-5.43 (m, 2H), 5.26 (dd, J1=0.75 Hz, J2=5Hz, 1H), 4.68 (d, J = 6 Hz, 1H), 4.49 (d, J = 5.75 Hz, 1H), 3.98 (s, 3H), 2.73-2.62 (m, 2H), 1.93-1.90 (m, 2H), 1.30-1.15 (6H), 0.85 (t, J=7 Hz, 3H); 13C NMR (CDCl3, 75 MHz) δ 191.4, 142.0, 138.2, 132.7, 129.3, 128.2, 127.9, 127.5, 127.0, 123.9, 80.2, 72.2, 36.0, 31.4, 31.2, 29.2, 27.2, 22.5, 14.0; HRMS found 340.2151 (M+), calcd 340.2151 for [C21H28N2O2]; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, 0.75 mL/min, 23 °C, λ = 254 nm, retention times: S 10.16 min, R 13.46 min, 51.4 : 48.6 er).
(S,Z)-2-(benzyloxy)-1-(1-methyl-1H-imidazol-2-yl)dec-4-en-1-one (135). Substrate 63 (1.88 g, 8.18 mmol), catalyst 148 (0.5 g, 0.82 mmol), and electrophile 136 (4.334 g, 22.68 mmol) were diluted in CH$_2$Cl$_2$ (55 mL) and n-hexanes (27 mL) and cooled to -60 °C. After 10 minutes, CsOH·H$_2$O (5.49 g, 32.70 mmol) was added in one portion. The reaction then stirred at -60 °C for 23 h, at which time it was found completed done (TLC). It was subsequently diluted with Et$_2$O (250 mL) and H$_2$O (100 mL). The layers were mixed and separated, and the organic layer was washed with a saturated aqueous solution of aqueous NaCl (1 x 100 mL) and then dried over MgSO$_4$. The crude product was then flushed through a short silica pad using copious amounts of Et$_2$O. It was concentrated to furnish 4.95 g of a clear yellow oil (178% crude yield) and was analyzed, in crude form, by chiral HPLC. Data are: TLC R$_f$ = 0.69 (40% EtOAc/hexanes); HRMS found 340.2151 (M$^+$), calcld 340.2151 for [C$_{21}$H$_{28}$N$_2$O$_2$]; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack AD-H column, 5% EtOH/hexane, 0.75 mL/min, 23 °C, λ = 254 nm, retention times: S 9.7 min, R 12.9 min, 94.2 : 5.8 er). A small amount was purified to provide optical rotation data: [\(\alpha\)]$_D^{23}$ = -17.14° (c 0.7, CHCl$_3$).

7.5.3. To Aldehyde 133

(±)-(Z)-methyl 2-(benzyloxy)dec-4-enoate (137). To a flame-dried 10 mL round bottom flask was added (±)-135 (0.061 g, 0.179 mmol), powdered 4 Å molecular sieves (0.045 g), and CH$_2$Cl$_2$
These were stirred vigorously at room temperature for 5 minutes. Methyl triflate (0.102 mL, 0.896 mmol) was then added in one portion. This mixture was stirred at room temperature for 24 hours, monitored by TLC for the consumption of starting material ($R_f = 0.67$, 40% EtOAc/Hexanes). Anhydrous methanol (1.05 mL) was then added, followed by dry sodium methoxide (0.074 g, 1.36 mmol). The mixture was then stirred for 4.5 hours at room temperature. It was afterward diluted with H$_2$O (10 mL) and CH$_2$Cl$_2$ (20 mL). The layers were mixed and then separated, and the aqueous layer was extracted with CH$_2$Cl$_2$ (3 x 15 mL). The combined organic layers were dried over MgSO$_4$, filtered, and concentrated. The crude residue was purified by column chromatography (10% EtOAc/hexanes) to afford 8 mg (15%) of the desired compound as clear yellow oil. Data are: TLC R_f = 0.53 (100% hexanes \rightarrow 5% EtOAc/hexanes); 1H NMR (CDCl$_3$, 500 MHz) δ 7.37-7.27 (58.75, J_2=5.75 Hz, 2H), 3.99 (t, J=6.5 Hz, 1H), 3.75 (s, 3H), 2.55 (t, J=6.5 Hz, 2H), 2.02 (q, J_1=3.75 Hz, J_2=3.5 Hz, 2H), 1.35-1.25 (m, 6H), 0.89 (t, J=7.5 Hz, 3H); 13C NMR (CDCl$_3$, 125 MHz) δ 172.8, 137.5, 133.3, 128.4, 127.9, 127.8, 123.3, 78.1, 72.3, 51.8, 31.5, 31.0, 29.2, 27.3, 22.5, 14.0; HRMS found 290.1882 [M]$^+$, calcd 290.1882 for [C$_{18}$H$_{26}$O$_3$]$^+$. The enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack OD-H column, 1.5 iPrOH/heptane, 0.5 mL/min, 23 °C, λ = 254 nm, retention times: S (major) 14.91 min, R (minor) 21.02 min, 50.04 : 49.96 er).

(S,Z)-methyl 2-(benzyloxy)dec-4-enoate (137). To a flame-dried 10 mL round bottom flask was added crude 135 (3.04 g, 8.92 mmol), powdered 4 Å molecular sieves (2.23 g), and CH$_2$Cl$_2$
These were stirred vigorously at room temperature for 5 minutes. Methyl triflate (5.05 mL, 44.59 mmol) was then added in one portion. This mixture was stirred at room temperature for 20 hours, monitored by TLC for the consumption of starting material (R_f = 0.28, 30% EtOAc/Hexanes). Anhydrous methanol (178 mL) was then added, followed by dry sodium methoxide (3.66 g, 67.78 mmol). The mixture was then stirred for 3.5 hours at room temperature. It was afterward diluted with H_2O (75 mL) and CH_2Cl_2 (200 mL). The layers were mixed and then separated, and the aqueous layer was extracted with CH_2Cl_2 (3 x 150 mL). The combined organic layers were dried over MgSO_4, filtered, and concentrated. The crude residue was purified by column chromatography (100% hexanes → 5% EtOAc/hexanes) to afford 1.09 g (42%, 75% from 63) of 137 as clear yellow oil. Data are: TLC R_f = 0.53 (10% EtOAc/hexanes); ^1H NMR (CDCl_3, 500 MHz) δ 7.37-7.27 58.75, J2=5.75 Hz, 2H), 3.99 (t, J=6.5 Hz, 1H), 3.75 (s, 3H), 2.55 (t, J=6.5 Hz, 2H), 2.02 (q, Jf=3.75 Hz, J2=3.5 Hz, 2H), 1.35-1.25 (m, 6H), 0.89 (t, J=7.5 Hz, 3H); ^13C NMR (CDCl_3, 125 MHz) δ 172.8, 137.5, 133.3, 128.4, 127.9, 127.8, 123.3, 78.1, 72.3, 51.8, 31.5, 31.0, 29.2, 27.3, 22.5, 14.0; HRMS found 290.1882 [M]^+; calc 290.1882 for [C_{18}H_{26}O_3]^+. The enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpack OD-H column, 1.5 iPrOH/heptane, 0.5 mL/min, 23 °C, λ = 254 nm, retention times: S (major) 14.90 min, R (minor) 21.41 min, 91.8 : 8.2 er). [α]_D^{26} = -35.03° (c 2.85, CHCl_3). Optical rotation data: [α]_D^{23} = -17.14° (c 0.7, CHCl_3).

(S,Z)-2-(benzyloxy)dec-4-enal (134). Compound 137 (299 mg, 1.03 mmol) was dispensed into a dry, empty flask and purged for 10 minutes with N_2. Dry toluene (21 mL) was then added, and
The solution was cooled to −78 °C. DIBAL-H (1M in toluene, 2.06 mL, 2.06 mmol) was then added slowly, and the reaction stirred 1.5 hours. The reaction was then diluted with MeOH (26 mL, pre-chilled to −78 °C), warmed gradually to room temperature, and stirred for 1 hour. It was quenched with Rochelle salts and extracted 3 x with CH₂Cl₂. The combined organic layers were washed with brine, dried (MgSO₄), filtered, concentrated, and purified by column (10% EtOAc/hexanes) to afford 220 mg (84%) of 134 as a clear, yellow oil. Data are: TLC Rₜ = 0.45 (10% EtOAc/hexanes x 2); ¹H NMR (CDCl₃, 500 MHz) δ 9.65 (d, J=1 Hz, 1H), 7.36-7.26 (m, 5H), 5.55-5.38 (m, 2H), 4.67 (d, J = 6 Hz, 1H), 4.59 (d, J = 6 Hz, 1H), 3.79 (t, J=7.5 Hz, 1H), 2.50 (t, J=6 Hz, 1H), 2.02 (dd, J₁=3.5 Hz, J₂=7Hz), 1.37-1.22 (m, 6H), 0.86 (t, J=2.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 203.3, 137.3, 133.7, 128.5, 128.1, 127.9, 122.6, 83.2, 72.5, 31.5, 20.7, 20.1, 28.3, 27.4, 22.6, 14.0; HRMS found 260.1814 [M⁺], calcd 260.1776 for [C₁₇H₂₄O₂]⁺. [α]D²³ = -33.7° (c 0.24, CHCl₃). Optical rotation data: [α]D²³ = -33.7° (c 4.0, CHCl₃).

(S,2E,6Z)-4-(benzyloxy)dodeca-2,6-dienal (133). Aldehyde 134 (630 mg, 2.42 mmol) was dissolved in dry benzene (36 mL). Triphenylphosphorilidene acetaldehyde 121 was then added, and the reaction was warmed and stirred at 60 °C for 4 hours. Once 134 was consumed (TLC), the reaction was concentrated and purified by column chromatography (5% EtOAc/hexanes) to afford 685 mg of 133 (99%) as a clear yellow oil. Data are: TLC Rₜ = 0.26 (10% EtOAc/hexanes x 1, then 5% EtOAc/hexanes x 1); ¹H NMR (CDCl₃, 500 MHz) δ 9.58 (d, J=1 Hz, 1H), 7.37-7.26 (m, 5H), 6.75 (dd, J₁=5 Hz, J₂=2.75 Hz, 1H), 6.32-6.27 (m, 1H), 5.55-5.34 (m, 2H), 4.59 (d, J = 5.75 Hz, 1H), 4.47 (d, J = 5.75 Hz, 1H), 4.13-4.09 (m, 1H), 2.51-2.40 (m, 2H), 2.00 (dd,
$J_1 = 3.5$ Hz, $J_2 = 3.75$ Hz, 2H), 1.36=1.22 (m, 6H), 0.88 (t, $J = 7$ Hz, 3H); 13C NMR (CDCl$_3$, 125 MHz) δ 193.4, 156.7, 137.8, 13.4, 132.5, 128.5, 127.8127.7, 123.2, 77.8, 71.3, 32.6, 31.5, 29.1, 27.4, 22.5, 14.0; HRMS found 286.1932 [M$^+$], calcd 286.1933 for [C$_{18}$H$_{26}$O$_2$]$^+$. [α]$_D^{23} = -33.7^\circ$ (c 0.24, CHCl$_3$). Optical rotation data: [α]$_D^{23} = -11.37^\circ$ (c 4.48, CHCl$_3$).

7.5.4. To Wittig Salt 158

Benzyl 5-hydroxypentanoate (160). Following the procedure detailed in Weber, A. E.; Halgren, T. A.; Doyle, J. J.; Lynch, R. J.; Siegl, P. K. S.; Parsons, W. H.; Greenlee, W. J.; Patchett, A. A. J. Med. Chem. 1991, 34, 2692-2701, 5.0 grams (49.94 mmol) of δ-valerolactone (156) were converted to crude 160, which was purified by column chromatography (20% EtOAc) to provide 10.06 g (97%) of product as a clear, colorless oil. This compound was concentrated carefully at low vacuum due to its volatility. Data are: TLC $R_f = 0.09$ (10% EtOAc/hexanes x 1, then 20% EtOAc/hexanes x 1); 1H NMR (CDCl$_3$, 500 MHz) δ 7.37 (m, 5H), 5.12 (s, 2H), 3.63 (dd, $J_1 = 1.5$ Hz, $J_2 = 3.25$ Hz, 2H), 2.4 (q, $J_1 = 2.5$ Hz, $J_2 = 1.25$ Hz, 2H), 1.85 (bs, 1H), 1.77-1.71 (m, 2H), 1.62-1.56 (m, 2H); 13C NMR (CDCl$_3$, 125 MHz) δ 173.8, 136.2, 128.8, 128.4, 66.5, 62.4, 34.1, 32.6, 21.3; HRMS found 208.1099 [M$^+$], calcd 208.1099 for [C$_{12}$H$_{16}$O$_3$]$^+$.
Benzyl 5-oxopentanoate (157). Following the procedure detailed in Gannett, P. M.; Nagel, D. L.; Reilly, P. J.; Lawson, T.; Sharpe, J.; Toth, B. *J. Org. Chem.* 1987, 53, 1064-1071, 1.32 grams (6.34 mmol) of 160 were oxidized to crude 157, which was purified by column chromatography (10% EtOAc) to afford 1.23 g (94%) of product as a clear, colorless oil. This compound was concentrated carefully at low vacuum due to its volatility. Data are: TLC Rf = 0.63 (30% EtOAc/hexanes); 1H NMR (CDCl$_3$, 500 MHz) δ 9.75 (s, 1H), 7.38-7.31 (m, 5H), 5.11 (s, 2H), 2.51 (t, J=7.5 Hz, 2H), 2.42 (t, J=7.5 Hz, 2H), 1.99-1.93 (m, 2H); 13C NMR (CDCl$_3$, 125 MHz) δ 201.5, 172.7, 135.8, 128.6, 128.5, 128.3, 128.2, 66.3, 42.9, 33.1, 17.3; HRMS found 206.0943 [M$^+$], calc 206.0943 for [C$_{12}$H$_{14}$O$_3$]$^+$.

TBS-(3-bromopropoxy)(tert-butyl)dimethylsilane. Following the procedure detailed in Boutellier, M.; Wallach, D.; Tamm, C. *Helv. Chim. Acta.* 1993, 76, 2515-2527, 3.52 grams (25.34 mmol) of 3-bromopropanol were converted crude product, which was flushed through a short silica pad with copious amounts of Et$_2$O to afford 6.4 g (quant.) of (3-bromopropoxy)-(tert-butyl) dimethylsilane as a dark yellow oil. Data are: 1H NMR (CDCl$_3$, 300 MHz) δ 3.77 (t, J=5.7 Hz, 2H), 3.55 (t, J=6.3 Hz, 2H), 2.11-1.96 (m, 2H), 0.93 (s, 9H), 0.1 (s, 6H); 13C NMR (CDCl$_3$, 75 MHz) δ 60.7, 35.8, 31.0, 26.2, 18.6, -5.1.
(3-(tert-butyldimethylsilyloxy)propyl)triphenylphosphonium bromide (154). (3-bromopropoxy)(tert-butyl)dimethylsilane (6.23 g, 24.59 mmol) was diluted in dry benzene (17.6 mL). Triphenylphosphine (7.09 g, 27.05 mmol) was then added. The reaction was fitted with a water condenser and brought to reflux for 72 hours. It was then concentrated to give a hygroscopic foam, which was dried under high vacuum for three days using the apparatus shown (fig. 7.1). This cleanly provided 12.6 g (quant.) of 154 as a white solid. Data are: 1H NMR (CDCl$_3$, 500 MHz) δ 7.82-7.79 (m, 9H), 7.72-7.69 (m, 6H), 3.83 (bs, 2H), 3.76-3.71 (m, 2H), 1.89 (d, J=2.5 Hz, 2H), 0.83 (s, 9H), 0.01 (s, 6H); 13C NMR (CDCl$_3$, 125 MHz) δ 135.0, 133.4, 133.3, 130.4, 130.3, 118.4, 117.7, 61.6 (d, J=8.31 Hz), 25.7, 18.97 (d, J=26.25 Hz), 17.9, -5.5. HRMS found 435.2273 [M]$^+$, calcd 435.2268 for [C$_{27}$H$_{36}$OPSi]$^+$.

![Figure 7.1.](image)
(Z)-benzyl 8-(tert-butyldimethylsilyloxy)oct-5-enoate (161). Phosphonium salt 154 (8.56 g, 16.61 mmol) was dissolved in dry THF (166 mL) and cooled under N₂ to –30 °C. n-Butyllithium (1.6 M/hexanes, 11.42 mL, 18.27 mmol) was then added, turning the solution bright orange. This was warmed and stirred at room temperature for 10 minutes. Then a solution of aldehyde 157 (4.11 g, 19.93 mmol) in THF (33 mL) was added by cannula. The reaction mixture was next cooled down to –30 °C and stirred for three hours. It was then quenched by addition of water (100 mL) and dichloromethane (200 mL). The layers were mixed and separated, and the aqueous layer was extracted with CH₂Cl₂ (3 x 200 mL). The combined organic layers were dried (MgSO₄), filtered, concentrated, and purified by column chromatography (5% EtOAc/hexanes) to afford 5.85 g (97%) of clean 161 as a clear yellow oil. This compound was concentrated carefully at low vacuum due to its volatility. Data are: TLC Rₓ = 0.1 (5% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz) 7.35-7.25 (m, 5H), 5.41 (t, J = 5.5 Hz, 2H), 5.11 (s, 2H), 3.59 (q, J₁ = 4 Hz, J₂ = 3.5 Hz, 2H), 2.37 (t, J = 8 Hz, 2H), 2.26=2.24 (m, 2H), 2.10-2.09 (m, 2H), 1.74-1.71 (m, 2H), 0.9 (s, 9H), 0.06 (s, 6H); δ ¹³C NMR (CDCl₃, 125 MHz) δ 173.6, 130.5, 128.8, 128.4, 127.2, 66.3, 63.1, 53.6, 33.9, 31.3, 26.9, 26.2, 25.1, 18.6, -5.0. HRMS found 362.2277 [M]⁺, calcd 362.2277 for [C₂₁H₃₄O₃Si]⁺.

(Z)-benzyl 8-hydroxyoct-5-enoate (162). Ester 161 (1.36 g, 3.75 mmol) was dissolved in dry THF (89 mL) and cooled under N₂ to 0 °C. Tetra-n-butylammonium fluoride (1.0 M/THF, 4.5
mL, 4.5 mmol) was then added, and the solution stirred at 0 °C for 3 hours. Once starting material was consumed (TLC), the reaction was quenched with saturated aqueous NH₄Cl (90 mL) and transferred to a separatory funnel. It was sequentially extracted with CH₂Cl₂ (2 x 50 mL) and EtOAc (3 x 75 mL). The combined organic layers were dried (MgSO₄), filtered, concentrated, and purified by column (20% EtOAc/hexanes → 50% EtOAc/hexanes) to afford 0.795 g (85%) of 162 as a yellow oil. This compound was concentrated carefully at low vacuum due to its volatility. Data are: TLC Rᵢ = 0.08 (15% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 7.36-7.27 (m, 5H), 5.51-5.40 (m, 2H), 5.30 (s, 2H), 3.62 (t, J=6.5 Hz, 2H), 2.37 (t, J=7.5 Hz, 2H), 2.27 (q, J₁=3.25 Hz, J₂=3.5 Hz, 2H), 2.13-2.09 (m, 2H), 1.76-1.70 (m, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 173.5, 136.0, 131.6, 128.5, 128.2, 126.5, 66.1, 62.2, 33.5, 30.7, 26.5, 24.7, 14.1. HRMS found 248.1436 [M]+, calcd 248.1436 for [C₁₅H₂₀O₃]+.

(Z)-benzyl 8-iodooct-5-enoate (163). Alcohol 162 (370 mg, 1.49 mmol) was dissolved in dry THF (22 mL) and cooled to 0 °C. Triphenylphosphine (586 mg, 2.23 mmol), imidazole (304 mg, 4.47 mmol), and iodine (567 mg, 2.23 mmol) were then added, and the reaction stirred at 0 °C for 1 hour. Once the starting material was consumed (TLC), the reaction was diluted with saturated aqueous sodium bisulfate (25 mL) and Et₂O (75 mL). The layers were mixed and separated, and the aqueous layer was extracted with Et₂O (2 x 75 mL). The combined organic layers were then washed with brine (25 mL), dried (MgSO₄), filtered, and concentrated. The crude product was then purified by chromatography (2.5 % EtOAc/hexanes) to afford 526 mg (98%) of 163 as a clear yellow oil. This compound was concentrated carefully at low vacuum due to its volatility. It was also concentrated and handled in darkness to prevent potential
decomposition. Data are: TLC R\text{f} = 0.13 (2.5\% EtOAc/hexanes); 1H NMR (CDCl$_3$, 500 MHz) δ 7.36 (bs, 5H), 5.51-5.34 (m, 2H), 5.13 (s, 2H), 3.11 (t, J=6.5 Hz, 2H), 2.59 (q, J=3.5 Hz, J_2=4.75 Hz, 2H), 2.38 (t, J=7.5 Hz, 2H), 2.81-2.06 (m, 2H), 1.76-1.72 (m, 3H); 13C NMR (CDCl$_3$, 125 MHz) δ 173.5, 136.3, 129.0, 128.8, 128.7, 128.5, 128.4, 66.4, 33.9, 31.6, 27.0, 24.9, 5.6.

\[
\text{Ph}_3\text{P}, \text{CH}_3\text{CN, refl.} \quad 17 \text{~h, quant.} \quad \xrightarrow{\text{Ph}_3\text{P}} \quad \text{158}
\]

(Z)-(8-(benzyloxy)-8-oxooct-3-enyl)triphenylphosphonium iodide (158). Iodide 163 (509 mg, 1.42 mmol) was dissolved in acetonitrile (21 mL). Triphenylphosphine (745 mg, 2.84 mmol) was then added, and the solution was brought and stirred at reflux for 20 hours. Once 163 had been consumed (TLC), the crude material was cooled and diluted further with 150 mL of acetonitrile. This material was then extracted with hexanes (12 x 25 mL), transferred to a tared flask, and concentrated to produce 878 mg (quant.) of 158 as a deep yellow syrup. To react adequately with coupling aldehydes, 158 must also be dried overnight using the apparatus shown in Figure 7.1 above. Even when stored under argon atmosphere at low temperature, this salt decomposes slowly to unidentified products over two to three weeks. This material can also be purified chromatographically (10\% MeOH/CH$_2$Cl$_2$), though it still remains unclear whether doing so inhibits later coupling reactivity. Data are: TLC R\text{f} = 0.73 (10\% MeOH/CH$_2$Cl$_2$); 1H NMR (CDCl$_3$, 500 MHz) δ 7.85-7.79 (m, 9H), 7.73-7.65 (m, 6H), 7.36-7.28 (m, 5H), 5.67-5.62 (m, 1H), 5.41-5.36 (m, 1H), 5.05 (s, 2H), 3.77-3.72 (m, 2H), 2.46-2.39 (m, 2H), 2.26 (t, J=7.5 Hz, 2H), 1.90-1.86 (m, 2H), 1.62-1.58 (m, 2H); 13C NMR (CDCl$_3$, 125 MHz) δ 173.2, 135.3,
135.6, 130.7, 128.6, 128.5, 128.1, 126.8, 126.7, 118.0, 117.4, 66.0, 33.4, 26.7, 24.3, 22.9, 20.2, 14.2. HRMS was negative.

7.5.5. Coupling with Trans-Cinnamaldehyde

\[
\begin{align*}
\text{(5Z,8Z,10E)-benzyl 11-phenylundeca-5,10-trienoate (165).} & \quad \text{Prior to reaction, Wittig salt 158} \\
& \quad \text{was thoroughly dried by repeated dilution/re-concentration in dry 1:1 THF: toluene, followed by} \\
& \quad \text{overnight subjection to the apparatus depicted in figure 7.1 above. 158 (189 mg, 0.30 mmol)} \\
& \quad \text{was then dissolved in dry THF (2.03 mL) and cooled under N\textsubscript{2} to –78 °C. Methyllithium was} \\
& \quad \text{them added, which turned the solution dark yellow. The reaction was stirred 5 minutes at –78 °C, then} \\
& \quad \text{warmed and stirred at –25 °C for 30 minutes. Toluene (2.03 mL) was then added, and} \\
& \quad \text{the solution was re-cooled to –78 °C. Trans-cinnamaldehyde 164 (0.025 mL, 0.203 mmol) was} \\
& \quad \text{then added, and the solution stirred at –78 °C for 5 minutes. It was then warmed to –40 °C and} \\
& \quad \text{stirred for 1 minute, at which time HMPA (0.331 mL) was added. The reaction continued} \\
& \quad \text{stirring, warming gradually to –10 °C over two hours, until cinnamaldehyde consumption was} \\
& \quad \text{observed (TLC). The reaction was subsequently quenched by addition of 25% aqueous} \\
& \quad \text{ammonium acetate (10 mL), followed by water (10 mL). The suspension was transferred to a} \\
& \quad \text{separatory funnel, and Et\textsubscript{2}O (30 mL) was added. The layers were mixed and separated, and the} \\
& \quad \text{aqueous layer was extracted with Et\textsubscript{2}O (3 x 30 mL). The combined organic layers were washed}
\end{align*}
\]

151
with brine (10 mL), dried (MgSO$_4$), filtered, concentrated, and then purified by chromatography (20% EtOAc/hexanes). This afforded 59 mg of clean 165 (84%) as a yellow oil. Data are: TLC R_f = 0.6 (20% EtOAc/hexanes); 1H NMR (CDCl$_3$, 500 MHz) δ 7.42 (d, J= 4 Hz 2H), 7.37-7.28 (m, 6H), 7.26 (s, 1H), 7.22 (t, J=7 Hz, 1 H), 7.09-7.04 (m, 1H), 6.54 (d, J=7.75 Hz, 1H), 6.16 (t, J=11 Hz, 1H), 5.48-5.38 (m, 3H), 5.12 (s, 2H), 3.00 (t, J=7 Hz, 2H), 2.39 (t, J=7 Hz, 2H), 2.16 (dd, J_1=3.75 Hz, J_2=3.5 Hz, 2H), 1.78-1.71 (m, 2H); 13C NMR (CDCl$_3$, 125 MHz) δ 170.8, 134.9, 133.5, 130.0, 128.0, 126.8, 126.4, 126.0, 125.9, 125.6, 124.9, 123.8, 121.5, 63.6, 31.1, 24.0, 23.9, 23.7, 22.2. HRMS found 346.1932 [M$^+$], calcd 346.1932 for [C$_{24}$H$_{26}$O$_2$]$^+$. 7.5.6. Completing the Synthesis

(S,5Z,8Z,10E,14Z)-benzyl 12-(benzyloxy)icosa-5,8,10,14-tetraenoate (159). Prior to reaction, Wittig salt 158 was thoroughly dried by azeotropic distillation with 1:1 THF/toluene (3x) and then overnight subjection to the apparatus depicted in Figure 7.1 above. 158 (684 mg, 1.10 mmol) was then dissolved in dry THF (4.9 mL) and cooled under N$_2$ to -78 °C. Methyllithium (1.6 M/Et$_2$O, 0.92 mL, 1.47 mmol) was then added, which turned the solution dark yellow. The reaction was stirred 5 minutes at -78 °C, then warmed to -40 °C and stirred 30 minutes. Dry toluene (4.9 mL) was then added, and then stirring solution was cooled back down to -78 °C. At this stage, a solution of aldehyde 133 (210 mg, 0.735 mmol, 1.0 equiv) in dry THF (4.9 mL) was
added by cannula. The resulting mixture was then stirred at -78 °C for 5 minutes, then warmed to -40 °C and stirred 1 minute. HMPA was then added, and the entire solution was stirred at -40 °C, warming gradually to -10 °C over two hours. Complete consumption of 133 did not occur (TLC); nevertheless, the reaction was quenched by adding 25% aqueous ammonium acetate (15 mL) and water (10 mL). The suspension was then extracted with dichlormethane (3 x 50 mL). The combined organic layers were dried (MgSO₄), filtered, concentrated, and purified by column (100% hexanes → 2.5% EtOAc/hexanes). This afforded 123 mg of 159 (33%) as a yellow oil.

Data are: TLC R_f = 0.38 (5% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 7.37-7.32 (m, 6H), 7.26-7.25 (m, 4H), 6.50-6.44 (m, 1H), 6.03-5.98 (m, 1H), 5.60 (dd, J₁=3.75 Hz, J₂=4 Hz, 1H), 5.48-5.37 (m, 5H), 5.10 (s, 2H), 4.59 (d, J = 6 Hz, 1H), 4.38 (d, J = 5.75 Hz), 3.84 (q, J₁=3.75 Hz, J₂=3 Hz, 1H), 2.93-2.88 (m, 2H), 2.47-2.41 (m, 1H), 2.38-2.29 (m, 3H), 2.11 (q, J₁=3.25 Hz, J₂=3.75 Hz, J₂=3.75 Hz, J₂=3.75 Hz, J₂=3.75 Hz, 2H), 2.03-1.99 (m, 2H), 1.76-1.67 (m, 2H), 1.35-1.26 (m, 6H), 0.89 (t, J=6.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 173.4, 138.8, 136.1, 134.1, 134.0, 132.1, 130.3, 130.1, 130.0, 129.3, 129.9, 128.7, 128.6, 128.4, 128.3, 128.2, 128.2, 128.0, 124.8, 79.7, 70.1, 66.1, 33.7, 33.6, 31.9, 30.9, 29.2, 27.5, 26.6, 24.7, 24.6, 22.6, 14.1. HRMS found 500.3291 [M]+, calcd 500.3290 for [C₃₄H₄₄O₅]⁺. Optical rotation data: [α]D₂₃ = -17.54° (c 2.17, CHCl₃).

![Chemical structure](image)

Optical rotation data: [α]D₂₃ = -17.54° (c 2.17, CHCl₃).

(S,5Z,8Z,10E,14Z)-benzyl 12-hydroxyicosa-5,8,10,14-tetraenoate (166). Compound 159 (57 mg, 0.114 mmol, 1 equiv) was dissolved in dry dichloromethane (1.14 mL) and cooled under N₂ to -78 °C. Boron trichloride (1 M/toluene, 0.137 mL, 0.137 mmol, 1.2 equiv) was then added
dropwise, and the solution stirred at -78 °C for 1 hour. It was then warmed to -20 °C and stirred for an additional hour. The reaction never completely consumed 159 (TLC); nevertheless, it was quenched by adding brine (2 mL) and dichloromethane (10 mL). The layers were mixed and separated, and the aqueous layer was then extracted with dichloromethane (3 x 10 mL). The combined organic layers were dried (MgSO₄), filtered, concentrated, and purified by column (100% hexanes → 2.5% EtOAc/hexanes). This afforded 15 mg of 166 (32%) as a yellow oil.

Data are: TLC R_f = 0.22 (10% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 7.38-7.32 (m, 3H), 7.32-7.26 (m, 2H), 6.16-6.11 (m, 1H), 6.06-6.01 (m, 1H), 5.67-5.61 (m, 1H), 5.48-5.33 (m, 4H), 5.12 (s, 2H), 3.56 (q, J₁=3.75 Hz, J₂=7 Hz, 1H), 2.79 (t, J=6 Hz, 2H), 2.38-2.34 (m, 2H), 2.27-2.21 (m, 1H), 2.10 (q, J₁=3.75 Hz, J₂=2.75 Hz, 2H), 2.03-1.99 (m, 3H), 1.75-1.69 (m, 2H), 1.36-1.26 (m, 8H), 0.88 (t, J=7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 173.4, 136.1, 133.0, 132.1, 128.6, 128.2, 127.7, 124.8, 82.0, 33.7, 33.5, 31.9, 29.7, 27.4, 24.7, 24.7, 22.5, 14.1; HRMS found 410.2821 [M]^+, calcd 410.2821 for [C₂₇H₃₈O₃]^+. Optical rotation data: [α]_D^23 = -1.33° (c 0.75, CHCl₃).

12-(S)-HETE (11). Compound 166 (15 mg, 0.037 mmol, 1 equiv) was dissolved in dry THF (2.6 mL) and cooled under N₂ to 0 °C. 1 N LiOH (0.73 mL, 0.73 mmol, 20 equiv) was then added, followed by methanol (0.313 mL, 0.117 M). The solution was stirred 2.5 hours. It was then quenched with dry ice, concentrated, and diluted with EtOAc (10 mL) and a pH 5.0 buffer solution. The layers were mixed and separated. The aqueous layer was then extracted with
EtOAc (3 x 20 mL). The combined organic layers were dried (Na$_2$SO$_4$), filtered, and concentrated. Efforts to purify by column chromatography were unsuccessful. However, the crude material did test positive by HRMS: found 320.2351 [M$^+$], calcd 320.2351 for [C$_{20}$H$_{32}$O$_3$]$^+$.

7.6. Procedures from Chapter 6

7.6.1. Selected Substrate Preparations

Phenethyl 2-(napthalen-2-yl)acetate (177). 2-napthaleneacetic acid (2.0 g, 10.74 mmol, 1.2 equiv) was dissolved in CH$_2$Cl$_2$ (26.85 mL, 0.4M) and was cooled, stirring under N$_2$, to 0 °C. Once the acid had dissolved, phenethanol (1.07 mL, 8.95 mmol, 1.0 equiv), diisopropylethylamine (2.34 mL, 13.43 mmol, 1.5 equiv), and N,N-dimethylaminopyridine (164 mg, 1.34 mmol, 0.15 equiv) were added. This suspension was stirred five minutes, at which time was added 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDCI, 2.57 g, 13.43 mmol, 1.5 equiv). The reaction stirred 22.5 hours, warming from 0 °C to RT. Once the phenethanol was consumed (TLC), the reaction crude was diluted with water (20 mL) and CHCl$_3$ (120 mL). The layers were mixed and separated, and the aqueous layer was extracted with CHCl$_3$ (3 x 10mL). The organic layers were combined and were washed sequentially with 3M H$_3$PO$_4$ (30 mL), saturated aqueous NaHCO$_3$ (30 mL), and saturated aqueous NaCl (30 mL). The organic layers were then dried (MgSO$_4$), filtered, and concentrated. The crude material was purified by column chromatography (7% EtOAc/hexanes) to afford 2.26 g (87%) of product 177 as a white solid. Data are: TLC R_f = 0.8 (30% EtOAc/hexanes); 1H NMR (CDCl$_3$, 300 MHz) δ 7.85 – 7.80 (m, 3H), 7.71 (s, 1H), 7.50
– 7.48 (m, 2H), 7.40 – 7.37 (m, 1H), 7.24 – 7.22 (m, 3H), 7.15 – 7.13 (m, 2H), 4.34 (t, J = 7.0 Hz, 2H), 3.78 (s, 2H), 2.93 (t, J = 7.0 Hz, 2H); \(^{13}\)C NMR (CDCl\(_3\), 75 MHz) δ 171.5, 137.7, 133.5, 132.5, 131.5, 128.9, 128.4, 128.2, 128.0, 127.7, 127.7, 127.4, 126.5, 126.1, 125.8, 65.4, 41.7, 35.0; HRMS found 291.1318 [M+H]\(^+\), calcd 291.1307 for [C\(_{20}\)H\(_{19}\)O\(_2\)]\(^+\).

\[
\text{CH}_2\text{Cl}_2, (i\text{-Pr})_2\text{EtN}, \text{DMAP} \quad 0 \degree \text{C}, \text{EDCI}, 22 \text{H}, 56\%
\]

\(2\text{-}(\text{naphthalen-1-yl})\text{ethyl 2-}(\text{naphthalen-2-yl})\text{acetate (Table 6.1, entry 11).}\) Following the above procedure for 177, substituting \(2\text{-}(\text{naphthalen-1-yl})\text{ethanol (obtained by reducing 1-}
\text{naphthylacetic acid with DIBAL-H) for phenethanol, the crude material was}
\text{purified by column chromatography (10\% EtOAc/hexanes) to give the product with a 56\% yield. Data are: TLC } R_f = 0.8 (30\% \text{EtOAc/hexanes}); \text{ }^{1}\text{H NMR (CDCl}_3, 500 MHz) } \delta 8.13 (d, J = 4 \text{ Hz}, 1\text{H}), 7.90 – 7.78 \text{(m, 6H), 7.76 – 7.30 (m, 7H), 4.52 (t, J = 7.5 Hz, 2H), 3.83 (s, 2H), 3.45 (t, J = 7.5 Hz, 2H); }^{13}\text{C NMR (CDCl}_3, 125 MHz) } \delta 171.9, 134.2, 133.9, 133.8, 132.9, 132.4, 131.8, 129.2, 128.6, 128.4, 128.1, 128.0, 127.8, 127.4, 126.5, 126.2, 126.0, 125.8, 123.9, 65.3, 41.9, 32.5.

\[
\text{CH}_2\text{Cl}_2, (i\text{-Pr})_2\text{EtN}, \text{DMAP} \quad 0 \degree \text{C}, \text{EDCI}, 22 \text{H}, 85\%
\]

\(2,2\text{-diphenylethyl 2-}(\text{naphthalen-2-yl})\text{acetate (Table 6.1, entry 12).}\) Following the above procedure for 177, substituting \(2,2\text{-diphenylethanol for phenethanol, the crude material was}
\text{purified by column chromatography (10\% EtOAc/hexanes) to give the product with an 85\% yield. Data are: TLC } R_f = 0.68 (30\% \text{EtOAc/hexanes}); \text{ }^{1}\text{H NMR (CDCl}_3, 500 MHz) } \delta 7.93 – 7.91
(±)-**Phenethyl 2-(naphthalen-2-yl)pent-4-enoate (Table 6.1, entry 10).** Phenethyl 2-(naphthalen-2-yl)acetate 177 (50 mg, 0.172 mmol, 1.0 equiv) and tetra-**n**-butylammonium bromide (6.5 mg, 0.02 mmol, 0.12 equiv) were dissolved in CH₂Cl₂ (1.75 mL, 0.1 M). This solution was cooled, while stirring under N₂, to 0 °C. Allyl bromide (73µL, 0.86 mmol, 5.0 equiv) was then added, and the solution continued stirring for an additional 10 minutes, whereupon CsOH·H₂O (116 mg, 0.689 mmol, 4.0 equiv) was added. The reaction vessel was sealed under N₂ and continued stirring for 16 hours, warming from 0 °C to RT. Once compound 177 was consumed (TLC), the reaction crude was diluted with water (10 mL) and diethyl ether (30 mL). The layers were mixed and then separated, and the organic layer was washed with saturated aqueous NaCl (1x10 mL). The combined organic layers were dried (MgSO₄), filtered, concentrated, and purified by column chromatography (5% EtOAc/hexanes) to afford 58 mg (97%) of the product as a yellow oil. Data are: TLC Rᵣ = 0.42 (10% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 7.82 – 7.78 (m, 3H), 7.73 (s, 1H), 7.49 – 7.42 (m, 3H), 7.16 – 7.15 (m, 3H), 7.07 – 7.06 (m, 2H), 4.70 (d, J = 9.5 Hz, 2H), 4.28 (t, J = 6.5 Hz, 2H), 3.95 (t, J = 7.5 Hz, 1H), 2.93 – 2.84 (m, 3H), 2.52 (dd, J₁ =
4 Hz, $J_2 = 11$ Hz, 1H), 1.72 (s, 3H); 13C NMR (CDCl$_3$, 125 MHz) δ 173.5, 142.6, 137.7, 136.2, 133.1, 132.7, 128.8, 128.4, 128.3, 127.9, 126.8, 126.4, 126.1, 125.9, 125.9, 112.3, 65.3, 50.2, 41.1, 35.0, 22.7; HRMS found 345.1864 [M+H]$^+$, calcd 345.1849 for [C$_{24}$H$_{24}$O$_2$]$^+$; enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): 5% EtOH/hexane, 0.5 mL/min, 23 °C, λ = 254 nm, retention times: S 12.16 min, R 12.78 min, 48.96 : 51.04 er.

7.6.3. General Procedure for Asymmetric Aryl Acetate Alkylations

(R)-phenethyl 2-(naphthalen-2-yl)pent-4-enoate (Table 6.1, entry 10). Phenethyl 2-(naphthalen-2-yl)acetate 177 (50 mg, 0.172 mmol, 1.0 equiv) and catalyst 61 (17 mg, 0.0172 mmol, 0.1 equiv) were dissolved in CH$_2$Cl$_2$ (pre-chilled to -40 °C, 1.75 mL, 0.1 M). This solution was then stirred at -40 °C under N$_2$. Allyl bromide (73µL, 0.86 mmol, 5.0 equiv) was added, and the solution continued stirring for an additional 10 minutes, whereupon CsOH·H$_2$O (116 mg, 0.689 mmol, 4.0 equiv) was added. The reaction vessel was then sealed with a rubber stopper under N$_2$, and the mixture continued stirring for 23 hours at -40 °C. When compound 177 was consumed (TLC), the reaction crude was diluted with water (10 mL) and diethyl ether (30 mL). The layers were mixed and separated, and the organic layer was washed with saturated aqueous NaCl (10 mL). The combined organic layers were dried (MgSO$_4$) and then passed through 20 mL of silica gel packed into a 30M filter cup that was fitted onto an evacuated filter flask (eluent: Et$_2$O, 250 mL). The filtrate was transferred to a pre-weighed RB flask, concentrated, and then left under high vacuum for 3 h, giving 56 mg (99%) of product as a yellow oil. Data are: TLC R_f = 0.53 (2 x 5%
EtOAc/hexanes); 1H NMR (CDCl$_3$, 500 MHz) δ 7.85 – 7.78 (m, 3H), 7.73 (s, 1H), 7.52 – 7.47 (m, 2H), 7.43 (dd, $J_1 = 3.5$ Hz, $J_2 = 1.5$ Hz, 1H), 7.18 – 7.16 (m, 2H), 7.08 – 7.06 (m, 2H), 5.77 – 5.69 (m, 1H), 5.10 – 4.99 (m, 2H), 4.34 – 4.27 (m, 2H), 3.80 (t, $J = 8.0$ Hz, 1H), 2.94 – 2.82 (m, 3H), 2.65 – 2.59 (m, 1H); 13C NMR (CDCl$_3$, 125 MHz) δ 173.3, 137.7, 135.9, 135.2, 133.4, 132.7, 128.9, 128.4, 127.9, 127.6, 126.9, 126.4, 126.2, 125.9, 117.1, 65.3, 51.6, 27.3, 35.0; HRMS found 331.1692 [M+H]$^+$, calcd 331.1620 for [C$_{23}$H$_{23}$O$_2$]$^+$; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): 5% EtOH/hexane, 0.5 mL/min, 23 °C, $\lambda = 254$ nm, retention times: S (minor) 12.89 min, R (major) 13.41 min, 22.23 : 77.78 er, 56% ee.

7.6.4. Selected Alkyations

![Chemical structure](image)

(±)-2-(naphthalen-1-yl)ethyl 2-(naphthalen-2-yl)pent-4-enolate (Table 6.1, entry 11).

Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), the crude material was purified by column chromatography (20% EtOAc/hexanes) to give the product as a white solid. Data are: TLC $R_f = 0.77$ (20% EtOAc/hexanes); 1H NMR (CDCl$_3$, 500 MHz) δ 8.03 (d, $J = 4.5$ Hz, 1H), 7.83 – 7.78 (m, 4H), 7.71 – 7.68 (m, 2H), 7.51 – 7.40 (m, 5H), 7.23 (d, $J = 1$ Hz, 1H), 7.16 (d, $J = 3$ Hz, 1H), 5.75 – 5.67 (m, 1H), 5.08 – 4.96 (m, 2H), 4.44 – 4.39 (m, 2H), 3.78 (t, $J = 3.75$ Hz, 1H), 3.36 – 3.29 (m, 2H), 2.92 – 3.29 (m, 2H), 2.63 – 2.57 (m, 1H); 13C NMR (CDCl$_3$, 125 MHz) δ 173.4, 135.9, 135.2, 133.8, 133.5, 133.4, 132.7, 132.0, 128.8, 128.4, 127.9, 127.7, 127.4, 127.1, 127.0, 126.2, 126.2, 125.9, 125.6, 125.4, 123.6, 117.1,
64.8, 51.7, 37.4, 32.1; HRMS found 381.1701 [M+H]^+, calcd 381.1849 for [C_{27}H_{24}O_2]^+; enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): 5% EtOH/hexane, 0.5 mL/min, 23 °C, λ = 254 nm, retention times: S 15.53 min, R 16.19 min, 48.76 : 51.24 er.

(R)-2-(naphthalen-1-yl)ethyl 2-(naphthalen-2-yl)pent-4-enoate (Table 6.1, entry 11).

Following general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), the crude material was purified by column chromatography (5% EtOAc/hexanes) to give the product as a white solid with a 78% yield. Data are: TLC R_f = 0.78 (20% EtOAc/hexanes); \(^1\)H NMR (CDCl_3, 500 MHz) δ 8.03 (d, J = 4.5 Hz, 1H), 7.83 – 7.78 (m, 4H), 7.71 – 7.68 (m, 2H), 7.51 – 7.40 (m, 5H), 7.23 (d, J = 1 Hz, 1H), 7.16 (d, J = 3 Hz, 1H), 5.75 – 5.67 (m, 1H), 5.08 – 4.96 (m, 2H), 4.44 – 4.39 (m, 2H), 3.78 (t, J = 3.75 Hz, 1H), 3.36 – 3.29 (m, 2H), 2.92 – 3.29 (m, 1H), 2.63 – 2.57 (m, 1H); \(^{13}\)C NMR (CDCl_3, 125 MHz) δ 173.4, 135.9, 135.2, 133.8, 133.5, 133.4, 132.7, 132.0, 128.8, 128.4, 127.9, 127.7, 127.4, 127.1, 127.0, 126.2, 126.2, 125.9, 125.6, 125.4, 123.6, 117.1, 64.8, 51.7, 37.4, 32.1; HRMS found 381.1701 [M+H]^+, calcd 381.1849 for [C_{27}H_{24}O_2]^+; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): 5% EtOH/hexane, 0.5 mL/min, 23 °C, λ = 254 nm, retention times: S (minor) 13.79 min, R (major) 14.47 min, 20.05 : 79.05, 59% ee.
(±)-2,2-diphenylethyl 2-(naphthalen-2-yl)pent-4-enoate (table 6.1, entry 12). Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), the crude material was purified by column chromatography (20% EtOAc/hexanes) to give the product as a white solid. Data are: TLC R_f 0.82 (20% EtOAc/hexanes); enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): 5% EtOH/hexane, 0.5 mL/min, 23 °C, λ = 254 nm, retention times: S 20.79 min, R 21.52 min, 42.98 : 57.02 er.

(R)-2,2-diphenylethyl 2-(naphthalen-2-yl)pent-4-enoate (Table 6.1, entry 12). Following the general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), the crude material was purified by column chromatography (5% EtOAc/hexanes) to give the product as a white solid with a 78% yield. Data are: TLC R_f 0.78 (20% EtOAc/hexanes); retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): 2.5% EtOH/hexane, 0.5 mL/min, 23 °C, λ = 254 nm, retention times: S (minor) 20.65 min, R (major) 21.31 min, 23.2 : 76.8, 54% ee.
7.6.5. Racemic Alkylation Products From Table 6.3

(±)-phenethyl 4-methyl-2-(naphthalen-2-yl)pent-4-enoate (Table 6.3, entry 2). Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), substituting 3-bromo-2-methyl propene for allyl bromide, the crude material was purified by column chromatography (10% EtOAc/hexanes) to give the product as a white solid with an 89% yield. Data are: TLC $R_f = 0.45$ (10% EtOAc/hexanes); 1H NMR (CDCl$_3$, 500 MHz) δ 7.83 – 7.78 (m, 3H), 7.73 (s, 1H), 7.49 – 7.42 (m, 3H), 7.16 – 7.15 (m, 3H), 7.07 – 7.06 (m, 2H), 4.70 (d, $J = 9.5$ Hz, 2H), 4.28 (t, $J = 6.5$ Hz, 2H), 3.95 (t, $J = 7.5$ Hz, 1H), 2.93 – 2.84 (m, 3H), 2.52 (dd, $J_1 = 4$ Hz, $J_2 = 11$ Hz, 1H), 1.72 (s, 3H); 13C NMR (CDCl$_3$, 125 MHz) δ 173.5, 142.6, 137.7, 136.2, 133.1, 132.7, 128.8, 128.4, 128.3, 127.9, 127.6, 126.8, 126.4, 126.1, 125.9, 125.9, 112.3, 65.3, 50.2, 41.1, 35.0, 22.7; HRMS found 345.1864 [M+H]$^+$, calcd 345.1849 for [C$_{24}$H$_{24}$O$_2$]$^+$; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): 5% EtOH/hexane, 0.5 mL/min, 23 °C, $\lambda = 254$ nm, retention times: S 13.89 min, R 14.83 min, 48.89 : 51.11 er.
(±)-(E)-phenethyl 5,9-dimethyl-2-(naphthalen-2-yl)deca-4,8-dienoate (Table 6.3, entry 3).

Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), substituting geranylbromide for allyl bromide, the crude material was purified by column chromatography (5% EtOAc/hexanes) to give the target compound as a clear colorless oil with a 71% yield. Data are: TLC R\textsubscript{f} = 0.54 (10% EtOAc/hexanes); 1H NMR (CDCl\textsubscript{3}, 500 MHz) \(\delta\) 7.83 – 7.77 (m, 3H), 7.71 (s, 1H), 7.49 – 7.40 (m, 3H), 7.16 – 7.14 (m, 3H), 7.06 – 7.05 (m, 2H), 5.05 (t, \(J = 6.5\) Hz, 1H), 5.00 (t, \(J = 5.5\) Hz, 1H), 4.32 – 4.24 (m, 2H), 3.70 (t, \(J = 8\) Hz, 1H), 2.89 – 2.81 (m, 3H), 2.58 – 2.52 (m, 1H), 2.04 – 1.90 (m, 4H), 1.63 (s, 3H), 1.57 (s, 3H), 1.55 (s, 3H); 13C NMR (CDCl\textsubscript{3}, 125 MHz) \(\delta\) 173.9, 137.9, 137.9, 136.6, 133.6, 132.8, 131.6, 129.1, 128.6, 128.4, 128.5, 127.8, 127.9, 126.6, 126.3, 126.0, 124.3, 121.0, 65.4, 52.3, 35.2, 32.1, 26.8, 25.9, 17.9, 16.4; HRMS found 427.2636 [M+H]+, calc'd 427.2631 for \(\text{[C}_{30}\text{H}_{34}\text{O}_{2}]+\); the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): 2.5% EtOH/hexane, 0.5 mL/min, 23 °C, \(\lambda = 254\) nm, retention times: \(S\) 9.38 min, \(R\) 9.68 min, 49.58 : 50.42 er.

(±)-phenethyl 3-(4-bromophenyl)-2-(naphthalen-2-yl)propanoate (Table 6.3, entry 4).

Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above),
substituting 4-bromobenzyl bromide for allyl bromide, the crude material was purified by column chromatography (5% EtOAc/hexanes) to give the target compound as a white solid with a 91% yield. Data are: TLC \(R_f = 0.46 \) (10% EtOAc/hexanes); \(^1\)H NMR (CDCl\(_3\), 500 MHz) 7.81 – 7.78 (m, 3H), 7.68 (s, 1H), 7.48 – 7.48 (m, 2H), 7.39 (d, \(J = 4 \) Hz, 1H), 7.32 (d, \(J = 3.75 \) Hz, 2H), 7.14 (bs, 3H), 6.98 (m, 4H), 4.24 (t, \(J = 6.5 \) Hz, 2H), 3.93 (t, \(J = 7.5 \) Hz, 1H), 3.42 (t, \(J = 11 \) Hz, 1H), 3.05 (dd, \(J1 = 3.5 \) Hz, \(J2 = 9.5 \) Hz, 1H), 2.79 (t, \(J = 6 \) Hz, 2H); \(^{13}\)C NMR (CDCl\(_3\), 125 MHz) \(\delta \) 173.2, 138.2, 137.8, 135.8, 133.6, 132.9, 131.6, 130.9, 129.0, 128.7, 128.6, 128.1, 127.8, 127.2, 126.7, 126.5, 126.2, 126.0, 120.6, 96.4, 65.6, 53.8, 39.1, 35.1; HRMS found 459.0905 [M+H]\(^+\), calcd 459.0954 for \([\text{C}_{27}\text{H}_{23}\text{BrO}_2]\)\(^+\); the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): 2.5% EtOH/hexane, 0.5 mL/min, 23 °C, \(\lambda = 254 \) nm, retention times: S 26.5 min, R 27.3 min, 51.81:48.19 er.

![Chemical structure](attachment:image.png)

\((\pm)-\text{phenethyl 3-}(4-\text{tert-butylphenyl})\)-2-(naphthalen-2-yl)propanoate (Table 6.3, entry 5).

Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), substituting \(p \)-tertbutylbenzyl bromide for allyl bromide, the crude material was purified by column chromatography (5% EtOAc/hexanes) to give the target compound as a white solid with a 97% yield. Data are: TLC \(R_f = 0.49 \) (10% EtOAc/hexanes); \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta \) 7.83 – 7.78 (m, 3H), 7.73 (s, 1H), 7.48 – 7.45 (m, 3H), 7.25 (d, \(J = 3.75 \) Hz, 2H), 7.13 – 7.07 (m, 5H), 6.98 (d, \(J = 1.75 \) Hz, 2H), 4.28 – 4.18 (m, 2H), 4.00 (t, \(J = 7.5 \) Hz, 2H), 3.47 (dd, \(J1 = 2 \) Hz, \(J2 = 11.5 \) Hz, 1H), 3.08 (dd, \(J1 = 3.5 \) Hz, \(J2 = 10 \) Hz, 1H), 2.76 (t, \(J = 6.5 \) Hz, 2H), 1.27 (s, 9H);
Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), substituting o-phenyl benzyl bromide for allyl bromide, the crude material was purified by column chromatography (5% EtOAc/hexanes) to give the target compound as a white solid with an 88% yield. Data are: TLC \(R_f = 0.46 \) (10% EtOAc/hexanes); \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta \) 7.76 – 7.74 (m, 1H), 7.67 – 7.63 (m, 2H), 7.45 – 7.34 (m, 6H), 7.22 – 7.12 (m, 9H) 7.02 (d, \(J = 4 \) Hz, 1H), 6.93 – 6.92 (m, 2H), 4.20 – 4.13 (m, 2H), 3.71 (t, \(J = 7.75 \) Hz, 1H), 3.40 (dd, \(JJ = 2.5 \) Hz, \(JJ = 11.5 \) Hz, 1H), 3.20 (dd, \(JJ = 1 \) Hz, \(JJ = 7.5 \) Hz, 1H), 2.72 (t, \(J = 7 \) Hz, 2H); \(^{13}\)C NMR (CDCl\(_3\), 125 MHz) \(\delta \) 173.3, 142.6, 141.7, 137.9, 136.5, 136.3, 133.5, 132.7, 130.4, 130.2, 129.4, 129.2, 129.0, 128.5, 128.5, 128.3, 128.0, 127.7, 127.6, 127.2, 126.7, 126.6, 126.2, 126.0, 125.9, 65.4, 52.7, 37.5, 35.1; HRMS found 457.2188 [M+H]\(^+\), calcd 457.2162 for [C\(_{33}\)H\(_{28}\)O\(_2\)]\(^+\); the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): 5% EtOH/hexane, 0.5 mL/min, 23 °C, \(\lambda = 254 \) nm, retention times: \(S \) 14.85 min, \(R \) 15.65 min, 47.17 : 52.83 er.
column): 5% EtOH/hexane, 0.5 mL/min, 23 °C, λ = 254 nm, retention times: S 13.03 min, R 14.17 min, 50.1 : 49.9 er.

![Reaction Scheme]

(±)-phenethyl 2,3-di(naphthalen-2-yl)propanoate (Table 6.3, entry 7). Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), substituting 2-bromomethyl naphthalene for allyl bromide, the crude material was purified by column chromatography (10% EtOAc/hexanes) to give the target compound as a white solid with a 96% yield. Data are: TLC Rf = 0.77 (4 x 5% EtOAc/hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.83 – 7.76 (m, 5H), 7.73 – 7.70 (m, 2H), 7.61 (s, 1H), 7.48 – 7.40 (m, 5H), 7.27 (d, J = 4.5 Hz, 1H), 7.12 – 7.05 (m, 3H), 6.92 (d, J = 3.5 Hz, 2H), 4.21 (t, J = 7 Hz, 2H), 4.11 (t, J = 7.5 Hz, 1H), 3.66 (dd, J1 = 2.25 Hz, J2 = 11.75 Hz, 1H), 3.27 (dd, J1 = 3.5 Hz, J2 = 10 Hz, 2H), 2.75 (t, J = 2.75 Hz, 2H); 13C NMR (CDCl3, 125 MHz) δ 172.7, 137.1, 136.1, 135.5, 132.9, 132.9, 132.2, 131.7, 128.2, 127.9, 127.8, 127.4, 127.3, 127.1, 127.1, 126.9, 126.9, 126.4, 125.8, 125.6, 125.4, 124.9, 64.8, 53.3, 39.2, 34.4; HRMS found 431.2005 [M+H]+, calcd 431.2005 for [C31H26O2]⁺; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): 5% EtOH/hexane, 0.5 mL/min, 23 °C, λ = 254 nm, retention times: S 26.575 min, R 29.543 min, 50.4 : 49.6 er.
(±)-phenethyl 2-(naphthalen-2-yl)propanoate (Table 6.3, entry 8). Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), substituting iodomethane for allyl bromide, the crude material was purified by column chromatography (10% EtOAc/hexanes) to give the target compound as a white solid with an 85% yield. Data are: TLC R_f = 0.46 (10% EtOAc/hexanes); ^1H NMR (CDCl_3, 500 MHz) δ 7.85 – 7.80 (m, 3H), 7.73 (s, 1H), 7.51 – 7.47 (m, 2H), 7.41 (dd, J_1 = 3.5 Hz, J_2 = 5 Hz, 1H), 7.17 – 7.16 (m, 3H), 7.07 – 7.05 (m, 2H), 4.36 – 4.27 (m, 2H), 3.88 (q, J = 3.5 Hz, 1H), 2.89 – 2.86 (m, 2H), 1.59 (d, J = 3.5 Hz, 3H); ^13C NMR (CDCl_3, 125 MHz) δ 174.6, 138.1, 137.9, 133.7, 132.8, 129.1, 128.6, 128.5, 128.0, 127.8, 126.6, 126.4, 126.3, 126.0, 126.0, 65.5, 45.9, 35.2, 18.6; HRMS found 305.1559 [M+H]^+, calcd 305.1536 for [C_{21}H_{20}O_2]^+; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): 5% EtOH/hexane, 0.5 mL/min, 23 °C, λ = 254 nm, retention times: S 16.74 min, R 19.09 min, 50.39 : 49.67 er.

7.6.6. Recrystallization Data from Table 6.3

(R)-phenethyl 2-(naphthalen-2-yl)pent-4-enoate (Table 6.3, entry 1). Following the general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), the product was isolated after filtration and was analyzed (without further purification) by chiral HPLC (DAICEL
Chiralpak AD-H column, 5% EtOH/hexanes, 0.5 mL/min, 23 °C, λ = 254 nm), giving the following retention times: S 12.64 min, R 13.20 min, 26.98 : 73.02 er, 46% ee. The product was then reconcentrated in vacuo and dissolved in a minimal amount of warm 1:1 Et₂O/hexanes. It was capped under argon and cooled in solution overnight in the freezer, giving precipitated product by the next day. This was filtered to afford 36 mg (63%) of the title compound as a white, crystalline solid. The material was deemed pure by NMR and was reanalyzed by chiral HPLC. Data are: TLC Rᵣf = 0.53 (5% EtOAc/hexanes 2x); ¹H NMR (CDCl₃, 500 MHz) δ 7.85 – 7.78 (m, 3H), 7.73 (s, 1H), 7.52 – 7.47 (m, 2H), 7.43 (dd, J1 = 3.5 Hz, J2 = 1.5 Hz, 1H), 7.18 – 7.16 (m, 2H), 7.08 – 7.06 (m, 2H), 5.77 – 5.69 (m, 1H), 5.10 – 4.99 (m, 2H), 4.34 – 4.27 (m, 2H), 3.80 (t, J = 8.0 Hz, 1H), 2.94 – 2.82 (m, 3H), 2.65 – 2.59 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 173.3, 137.7, 135.9, 135.2, 133.4, 132.7, 128.9, 128.4, 128.4, 128.4, 127.9, 127.6, 126.9, 126.4, 126.2, 125.9, 125.9, 117.1, 65.3, 51.6, 27.3, 35.0; HRMS found 331.1692 [M+H]+, calcd 331.1620 for [C₂₃H₂₃O₂]⁺; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): 5% EtOH/hexane, 0.5 mL/min, 23 °C, λ = 254 nm, retention times: S 12.10 min, R 12.59 min, 3.77 : 96.23 er, 93% ee. [α]D²⁵ = -41° (c 0.267, CHCl₃). The absolute configuration of the major enantiomer was deduced as R based on evidences presented below.

(R)-phenethyl 4-methyl-2-(naphthalen-2-yl)pent-4-enoate (Table 6.3, entry 2). Following the general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), substituting
3-methyl-2-bromo propene for allyl bromide, the crude product was obtained as a yellow oil (86%) with the following chiral HPLC data (DAICEL Chiralpak AD-H column, 5%EtOH/hexanes, 0.5 mL/min, 23 °C, λ = 254 nm): S (minor) 12.80 min, R (major) 13.64 min, 21.49 : 78.51 er, 57% ee. After recrystallization in 1:1 Et₂O/hexanes, as described above, the product was obtained as a white, crystalline solid (68%) giving the following chiral HPLC data (same column/conditions): S (minor) 11.27 min, R (major) 12.01 min, 7.22 : 92.78, 85.6% ee. Data are: TLC Rf = 0.45 (10% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 7.83 – 7.78 (m, 3H), 7.73 (s, 1H), 7.49 – 7.42 (m, 3H), 7.16 – 7.15 (m, 3H), 7.07 – 7.06 (m, 2H), 4.70 (d, J = 9.5 Hz, 2H), 4.28 (t, J = 6.5 Hz, 2H), 3.95 (t, J = 7.5 Hz, 1H), 2.93 – 2.84 (m, 3H), 2.52 (dd, J1 = 4 Hz, J2 = 11 Hz, 1H), 1.72 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 173.5, 142.6, 137.7, 136.2, 133.1, 132.7, 128.8, 128.4, 128.3, 127.9, 127.6, 126.8, 126.4, 126.1, 125.9, 125.9, 112.3, 65.3, 50.2, 41.0, 35.0, 22.7; HRMS found 345.1864 [M+H]+, calcd 345.1849 for [C$_{24}$H$_{24}$O$_2$]+; [α]$_D^{24}$ = -38° (c 0.183, CHCl₃).

(R,E)-phenethyl 5,9-dimethyl-2-(naphthalen-2-yl)deca-4,8-dienoate (Table 6.3, entry 3).

Following the general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), substituting geranyl bromide for allyl bromide, the crude product was obtained as a yellow oil (90%) with the following chiral HPLC data (DAICEL Chiralpak AD-H column, 2.5% EtOH/hexanes, 0.5 mL/min, 23 °C, λ = 254 nm): S (minor) 10.52 min, R (major) 11.08 min, 20.55 : 79.45 er, 59% ee. After recrystallization in pure hexanes at -78 °C, the product was obtained as
a white, crystalline solid (68%) and gave the following chiral HPLC data (same column/conditions): S (minor) 11.4 min, R (major) 11.95 min, 15.16 : 84.84, 70% ee. Data are:

TLC Rf = 0.54 (10% EtOAc/hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.83 – 7.77 (m, 3H), 7.71 (s, 1H), 7.49 – 7.40 (m, 3H), 7.16 – 7.14 (m, 3H), 7.06 – 7.05 (m, 2H), 5.05 (t, J = 6.5 Hz, 1H), 5.00 (t, J = 5.5 Hz, 1H), 4.32 – 4.24 (m, 2H), 3.70 (t, J = 8 Hz, 1H), 2.89 – 2.81 (m, 3H), 2.58 – 2.52 (m, 1H), 2.04 – 1.90 (m, 4H), 1.63 (s, 3H), 1.57 (s, 3H), 1.55 (s, 3H); 13C NMR (CDCl3, 125 MHz) δ 173.9, 137.9, 137.9, 136.6, 133.6, 132.8, 131.6, 129.1, 128.6, 128.4, 128.5, 127.8, 127.9, 126.6, 126.3, 126.0, 124.3, 121.0, 65.4, 52.3, 39.9, 35.2, 32.1, 26.8, 25.9, 17.9, 16.4; HRMS found 427.2636 [M+H]+, calcd 427.2631 for [C30H34O2]+; [α]D24 = -54° (c 0.167, CHCl3).

(R)-phenethyl 3-(4-bromophenyl)-2-(naphthalen-2-yl)propanoate (Table 6.3, entry 4).

Following the general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), substituting 4-bromobenzyl bromide for allyl bromide, the crude product was obtained as a yellow oil (94%) with the following chiral HPLC data (DAICEL Chiralpak AD-H column, 2.5% EtOH/hexanes, 0.5 mL/min, 23 °C, λ = 254 nm): S (minor) 26.39 min, R (major) 27.12 min, 26.27 : 73.73 er, 47.5% ee. After recrystallization in 1:1 Et2O/hexanes, as described above, the product was obtained as a white, crystalline solid (67%) giving the following chiral HPLC data (same column/conditions): S (minor) 28.84 min, R (major) 29.65 min, 1.32 : 98.68, 97% ee. Data are:

TLC Rf = 0.46 (10% EtOAc/hexanes); 1H NMR (CDCl3, 500 MHz) 7.81 – 7.78 (m, 3H), 7.68 (s, 1H), 7.48 – 7.48 (m, 2H), 7.39 (d, J = 4 Hz, 1H), 7.32 (d, J = 3.75 Hz, 2H), 7.14 (bs, 3H), 6.98
(m, 4H), 4.24 (t, J = 6.5 Hz, 2H), 3.93 (t, J = 7.5 Hz, 1H), 3.42 (t, J = 11 Hz, 1H), 3.05 (dd, J1 = 3.5 Hz, J2 = 9.5 Hz, 1H), 2.79 (t, J = 6 Hz, 2H); 1H NMR (CDCl3, 125 MHz) δ 173.3, 138.2, 137.8, 135.8, 133.6, 132.9, 131.6, 130.9, 129.0, 128.7, 128.6, 128.1, 127.8, 127.2, 126.7, 126.5, 126.2, 126.0, 120.5, 96.3, 65.4, 53.8, 39.1, 35.1; HRMS found 459.0905 [M+H]+, calcd 459.0954 for [C27H23BrO2]+; [α]D24 = −71° (c 0.65, CHCl3).

(R)-phenethyl 3-(4-tert-butylphenyl)-2-(naphthalen-2-yl)propanoate (Table 6.3, entry 5).

Following the general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), substituting p-tertbutylbenzyl bromide for allyl bromide, the crude product was obtained as a yellow oil (96.5%) with the following chiral HPLC data (DAICEL Chiralpak AD-H column, 5% EtOH/hexanes, 0.5 mL/min, 23 °C, λ = 254 nm): S (major) 14.83 min, R (minor) 15.57 min, 14.73 : 85.27 er, 71% ee. After recrystallization in 1:1 Et2O/hexanes, as described above, the product was obtained as a white, crystalline solid (72%) giving the following chiral HPLC data (same column/conditions): S (minor) 15.29 min, R (major) 16.10 min, 0.08 er : 99.02, 99% ee. Data are: TLC Rf = 0.49 (10% EtOAc/hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.83 - 7.78 (m, 3H), 7.73 (s, 1H), 7.48 - 7.45 (m, 3H), 7.25 (d, J = 3.75 Hz, 2H), 7.13 - 7.07 (m, 5H), 6.98 (d, J = 1.75 Hz, 2H), 4.28 - 4.18 (m, 2H), 4.00 (t, J = 7.5 Hz, 2H), 3.47 (dd, JJ = 2 Hz, J2 = 11.5 Hz, 1H), 3.08 (dd, JJ = 3.5 Hz, J2 = 10 Hz, 1H), 2.76 (t, J = 6.5 Hz, 2H), 1.27 (s, 9H); 13C NMR (CDCl3, 125 MHz) δ 173.3, 149.2, 137.7, 136.3, 136.0, 133.4, 132.7, 128.8, 128.6, 128.4, 128.4, 127.9, 127.6, 126.9, 126.4, 126.1, 126.0, 125.9, 125.3, 65.3, 53.8, 39.0, 35.0, 34.4, 31.4; HRMS found 437.2471 [M+H]+, calcd 437.2475 for [C31H32O2]+; [α]D24 = −61° (c 0.0983, CHCl3).
(R)-phenethyl 3-(biphenyl-2-yl)-2-(naphthalen-2-yl)propanoate (Table 6.3, entry 6).

Following the general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), substituting o-phenylbenzyl bromide for allyl bromide, the crude product was obtained as a yellow oil (94%) with the following chiral HPLC data (DAICEL Chiralpak AD-H column, 5% EtOH/hexanes, 0.5 mL/min, 23 °C, λ = 254 nm): S (minor) 12.81 min, R (major) 13.87 min, 5.62 : 94.38 er, 89% ee. After recrystallization in 1:1 Et2O/hexanes, as described above, the product was obtained as a white, crystalline solid (81%) giving the following chiral HPLC data (same column/conditions): S (minor) 12.34 min, R (major) 13.72 min, 3.87 : 96.13, 92% ee. Data are:

TLC Rf = 0.46 (10% EtOAc/hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.76 – 7.74 (m, 1H), 7.67 – 7.63 (m, 2H), 7.45 – 7.34 (m, 6H), 7.23 – 7.12 (m, 9H) 7.02 (d, J = 4 Hz, 1H), 6.93 – 6.92 (m, 2H), 4.20 – 4.13 (m, 2H), 3.71 (t, J = 7.75 Hz, 1H), 3.40 (dd, J1 = 2.5 Hz, J2 = 11.5 Hz, 1H), 3.20 (dd, J1 = 1 Hz, J2 = 7.5 Hz, 1H), 2.72 (t, J = 7 Hz, 2H); 13C NMR (CDCl3, 125 MHz) δ 173.3, 142.6, 141.7, 137.9, 136.5, 136.3, 133.5, 132.7, 130.4, 130.2, 129.4, 129.2, 129.0, 128.5, 128.5, 128.3, 128.0, 127.7, 127.6, 127.2, 126.7, 126.6, 126.2, 126.0, 125.9, 65.4, 52.7, 37.5, 35.1; HRMS found 457.2188 [M+H]⁺, calcd 457.2162 for [C33H28O2]⁺; [α]D²⁴ = -35° (c 0.716, CHCl3).
(R)-phenethyl 2,3-di(naphthalen-2-yl)propanoate (Table 6.3, entry 7). Following the general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), substituting 2-bromomethyl naphthalene for allyl bromide, the crude product was obtained as a yellow oil (96%) with the following chiral HPLC data (DAICEL Chiralpak AD-H column, 5% EtOH/hexanes, 0.5 mL/min, 23 °C, λ = 254 nm): S (minor) 29.49 min, R (major) 31.82 min, 18.62 : 81.38 er, 63% ee. After recrystallization in 1:1 Et2O/hexanes, as described above, the product was obtained as a white, crystalline solid (73%) giving the following chiral HPLC data (same column/conditions): S (minor) 34.59 min, R (major) 37.63 min, 2.86 : 97.14, 94% ee. Data are:

TLC Rf = 0.77 (4 x 5% EtOAc/hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.83 – 7.76 (m, 5H), 7.73 – 7.70 (m, 2H), 7.61 (s, 1H), 7.48 – 7.40 (m, 5H), 7.27 (d, J = 4.5 Hz, 1H), 7.12 – 7.05 (m, 3H), 6.92 (d, J = 3.5 Hz, 2H), 4.21 (t, J = 7 Hz, 2H), 4.11 (t, J = 7.5 Hz, 1H), 3.66 (dd, J1 = 2.25 Hz, J2 = 11.75 Hz, 1H), 3.27 (dd, J1 = 3.5 Hz, J2 = 10 Hz, 1H), 2.746 (t, J = 2.74 Hz, 2H); 13C NMR (CDCl3, 125 MHz) δ 172.7, 137.1, 136.1, 135.5, 132.9, 132.9, 132.2, 131.7, 128.2, 127.9, 127.8, 127.4, 127.3, 127.1, 127.1, 126.9, 126.9, 126.4, 125.8, 125.6, 125.4, 124.9, 64.8, 53.3, 39.2, 34.4; HRMS found 431.2005 [M+H]+, calcd 431.2005 for [C31H28O2]+; [α]D24 = -64° (c 0.11, CHCl3).
(R)-phenethyl 2-(naphthalen-2-yl)propanoate (Table 6.3, entry 8). Following the general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), substituting iodomethane for allyl bromide, the crude product was obtained as a yellow oil (100%) with the following chiral HPLC data (DAICEL Chiralpak AD-H column, 5% EtOH/hexanes, 0.5 mL/min, 23 °C, λ = 254 nm): S (minor) 15.39 min, R (major) 17.48 min, 22.38 : 77.62 er, 55% ee. After recrystallization in 1:1 Et₂O/hexanes, as described above, the product was obtained as a white, crystalline solid (71%) giving the following chiral HPLC data (same column/conditions): S (minor) 15.62 min, R (major) 17.76 min, 4.08 : 95.92, 92% ee. Data are: TLC R_f = 0.46 (10% EtOAc/hexanes); 1H NMR (CDCl$_3$, 500 MHz) δ 7.85 – 7.80 (m, 3H), 7.73 (s, 1H), 7.51 – 7.47 (m, 2H), 7.41 (dd, $J_1 = 3.5$ Hz, $J_2 = 5$ Hz, 1H), 7.17 – 7.16 (m, 3H), 7.07 – 7.05 (m, 2H), 4.36 – 4.27 (m, 2H), 3.88 (q, $J = 3.5$ Hz, 1H), 2.89 – 2.86 (m, 2H), 1.59 (d, $J = 3.5$ Hz, 3H); 13C NMR (CDCl$_3$, 125 MHz) δ 174.6, 138.1, 137.9, 133.7, 132.8, 129.1, 128.6, 128.5, 128.0, 127.8, 126.6, 126.4, 126.3, 126.0, 125.9, 65.5, 45.9, 35.2, 18.6; HRMS found 305.1559 [M+H]$^+$, calcd 305.1536 for [C$_{21}$H$_{20}$O$_2$]$^+$; [α]$_D^{24}$ = -25° (c .1666, CHCl$_3$).

(±)-phenethyl 2-(6-methoxynaphthalen-2-yl)pent-4-enoate (185). Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), substituting substrate 184 (described in section 7.6.7 below) for 177, the crude material was purified by column
chromatography (20% EtOAc/hexanes) to give the product as a white solid. Data are: TLC R_f = 0.57 (30% EtOAc/hexanes); ^1H NMR (CDCl_3, 500 MHz) δ 7.71 (dd, J1 = 4.5 Hz, J2 = 8.5 Hz, 2H), 7.66 (s, 1H), 7.39 (d, J = 4.25 Hz, 1H), 7.19 – 7.16 (m, 4H), 7.14 (bs, 2H), 7.09 – 7.07 (m, 2H), 5.77 – 5.69 (m, 1H), 5.10 – 4.99 (m, 2H), 4.35 – 4.27 (m, 2H), 3.95 (s, 3H), 3.77 (t, J = 8 Hz, 1H), 2.94 – 2.82 (m, 3H), 2.63 – 2.57 (m, 1H); ^13C NMR (CDCl_3, 125 MHz) δ 173.5, 157.7, 137.7, 135.3, 133.8, 133.6, 129.4, 128.9, 128.4, 128.9, 128.4, 127.2, 126.7, 126.4, 126.4, 119.0, 117.0, 105.5, 65.3, 55.3, 51.4, 37.4, 35.0; HRMS found 360.1725 [M+H]^+; calcd 360.1725 for [C_{24}H_{24}O_3]^+. enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): 3% EtOH/hexanes, 0.5 mL/min, 23 °C, λ = 254 nm, retention times: S 29.35 min, R 32.03 min, 50.1 : 49.9 er.

(R)-Phenethyl 2-(6-methoxynaphthalen-2-yl)pent-4-enoate (185). Following the general procedure for racemic aryl acetate alkylations (section 7.6.3 above), substituting substrate 184 (described in section 7.6.7 below) for 177, the crude product was obtained as a yellow oil (100%) with the following chiral HPLC data (DAICEL Chiralpak AD-H column, 5% EtOH/hexanes, 0.5 mL/min, 23 °C, λ = 254 nm): S (minor) 29.34 min, R (major) 32.34 min, 28.57 : 71.43 er, 43% ee. After recrystallization in 1:1 Et_2O/hexanes, as described above, the product was obtained as a white, crystalline solid (62%) giving the following chiral HPLC data (same column/conditions): S (minor) 29.17 min, R (major) 32.07 min, 7.57 : 92.43, 85% ee. Data are: TLC R_f = 0.37 (10% EtOAc/hexanes); ^1H NMR (CDCl_3, 500 MHz) δ 7.71 (dd, J1 = 4.5 Hz, J2 =
8.5 Hz, 2H), 7.66 (s, 1H), 7.39 (d, \(J = 4.25 \) Hz, 1H), 7.19 – 7.16 (m, 4H), 7.14 (bs, 2H), 7.09 – 7.07 (m, 2H), 5.77 – 5.69 (m, 1H), 5.10 – 4.99 (m, 2H), 4.35 – 4.27 (m, 2H), 3.95 (s, 3H), 3.77 (t, \(J = 8 \) Hz, 1H), 2.94 – 2.82 (m, 3H), 2.63 – 2.57 (m, 1H); 13C NMR (CDCl\(_3\), 125 MHz) \(\delta 173.5, 157.7, 137.7, 135.3, 133.8, 133.6, 129.4, 128.9, 128.9, 128.4, 127.2, 126.7, 126.4, 126.4, 119.0, 117.0, 105.5, 65.3, 55.3, 51.4, 37.4, 35.0; HRMS found 360.1725 [M+H]\(^+\), calcd 360.1725 for [C\(_{24}\)H\(_{24}\)O\(_3\)]\(^+\).

7.6.7. Total Synthesis of (S)-Naproxen

![Chemical structure of (S)-Naproxen](image)

2-(6-methoxynaphthalen-2-yl)-1-morpholinoethanethione. 6-methoxy-2-acetylnaphthalene (1.0 g, 4.99 mmol, 1.0 equiv), sulfur (precipitated USP, 319 mg, 9.99 mmol, 2.0 equiv), and \(p \)-toluenesulfonic acid (15 mg, 0.074 mmol, 0.015 equiv) were dissolved in morpholine (1.3 mL, 14.98 mmol, 3.0 equiv) and stirred at reflux (~130 °C) to form a deep red mixture, which continued for ~45 hours. Once the starting material was consumed (TLC), the reaction mixture was cooled to RT, diluted with CH\(_2\)Cl\(_2\) (10 mL), and wash sequentially with saturated aqueous NaHCO\(_3\) (1x10 mL) and saturated aqueous NaCl (1x10 mL). The organic layer was concentrated and purified by column chromatography (20% EtOAc/hexanes) to afford 1.47 g (98%) of the target compound as a yellow/gray solid. Data are: TLC \(R_f = 0.36 \) (20% EtOAc/hexanes); \(^1\)H NMR (CDCl\(_3\), 300 MHz) \(\delta 7.74 – 7.66 \) (m, 3H), 7.45 (d, \(J = 3.5 \) Hz, 1H), 7.18 – 7.14 (m, 2H), 4.49 (s, 1H), 4.41 – 4.33 (m, 2H), 3.98 – 3.91 (m, 2H), 3.79 – 3.66 (m, 6H), 3.37 (t, \(J = 4.5 \) Hz, 1H), 2.68 (s, 1H); 13C NMR (CDCl\(_3\), 75 MHz) \(\delta 157.8, 133.7, 130.9, 129.2, 129.1, 127.6, 126.5, 126.2, 119.3, 105.8, 66.5, 66.2, 55.4, 50.9, 50.7, 50.3; HRMS found 302.1258 [M+H]\(^+\), calcd 302.1209 for
[C₁₇H₁₉NO₂S]⁺. [Note: An alternative procedure for this compound was successfully employed using 1.2 equivalents of sulfur (precipitated USP) and 3.28 equivalents of morpholine, with no p-toluenesulfonic acid added. Otherwise following the same conditions (including temperature, time, and workup) the crude product was taken on to the next step without any purification. The crude yield was 123% (1.855 g).

2-(6-methoxynaphthalen-2-yl)acetic acid. 2-(6-methoxynaphthalen-2-yl)-1-morpholinooethanethione (283 mg, 0.939 mmol, 1.0 equiv) was diluted with 8% w/w NaOH in 1:1 H₂O/MeOH (187 mL, 0.005 M) and was stirred at reflux (~130 °C), gradually forming a yellow solution. After 5 hours, the reaction mixture was cooled to RT, was diluted with CH₂Cl₂ (1 x 50 mL) and transferred to a separatory funnel. The layers were mixed and separated (the organic layer being discarded), and the aqueous layer was transferred to a 1 L beaker, where it was lowered to pH 4 with 50% aqueous AcOH. Once it had reached pH 4, the solution was concentrated, transferred again to a separatory funnel, and was diluted with CH₂Cl₂ (50 mL). The layers were mixed and separated, and the aqueous layer was extracted with CH₂Cl₂ (5 x 50mL). The combined organic layers were dried (MgSO₄), filtered, and concentrated, giving 209 mg (103% crude yield) of the target compound as a light-tan solid. The material was rinsed with hexanes and taken on to the next step without further purification. Data are: TLC Rf = 0.00 (20% EtOAc/hexanes); ¹H NMR (Acetone d₆/CDCl₃, 500 MHz) δ 7.69 (d, J = 7 Hz, 2H), 7.66 (s, 1H), 7.37 (d, J = 4.25 Hz, 1H), 7.17 (s, 1H), 7.08 (d, J = 4.5 Hz, 1H), 3.87 (s, 3H), 3.71 (s, 2H); ¹³C NMR (Acetone d₆/CDCl₃, 125 MHz) δ 171.6, 156.8, 132.9, 129.1, 128.2, 128.2, 127.3, 126.9, 126.1, 118.1, 104.8, 54.1, 39.9; HRMS found 216.0786 [M]⁺; calcd 216.0786 for [C₁₃H₁₂O₂]⁺. [Note: An alternative procedure for this compound was successfully employed using the same conditions, except that
acidification was done with 1 N HCl to pH 2.0. This gave the final product as a yellow solid with an 88% yield (0.951 g).]

![Chemical structure of 184](image)

Phenethyl 2-(6-methoxynaphthalen-2-yl)acetate (184). Following procedure for 177 (section 7.6.1 above), 250 mg (1.16 mmol) of 2-(6-methoxynaphthalen-2-yl)acetic acid was converted to ester 184. Following column purification (10% EtOAc/hexanes), 274 mg of 184 (74%) were obtained as a white solid. Data are: TLC $R_f = 0.51$ (20% EtOAc/hexanes); 1H NMR (CDCl$_3$, 500 MHz) δ 7.66 (dd, $J_1 = 1.25$ Hz, $J_2 = 4.75$ Hz, 2H), 7.59 (s, 1H), 7.31 (d, $J = 4.25$ Hz, 1H), 7.20 – 7.17 (m, 3H), 7.14 – 7.71 (m, 4H), 4.29 (t, $J = 7$ Hz, 2H), 3.87 (s, 3H), 3.70 (s, 2H), 2.88 (t, $J = 7$ Hz, 2H); 13C NMR (CDCl$_3$, 125 MHz) δ 171.7, 157.7, 137.8, 133.7, 129.3, 129.2, 129.0, 128.5, 128.0, 127.9, 127.1, 126.6, 119.0, 105.6, 65.4, 55.3, 41.5, 35.1; HRMS found 321.1481 [M+H]$^+$, calcd 321.1485 for [C$_{21}$H$_{20}$O$_3$]$^+$.

![Chemical structure of 187](image)

(±)-Phenethyl 2-(6-methoxynaphthalen-2-yl)propanoate (187). Following the general procedure for racemic aryl acetate alkylations (section 7.6.2 above), substituting iodomethane for allyl bromide, 51 mg of product (±)-187 (98%) were obtained as a white solid. Data are: TLC $R_f = 0.62$ (20% EtOAc/hexanes); 1H NMR δ 7.69 – 7.67 (m, 2H), 7.62 (s, 1H), 7.35 (dd, $J_1 = 3.5$ Hz, $J_2 = 5$ Hz, 1H), 7.15 – 7.11 (m, 5H), 7.05 – 7.03 (m, 2H), 4.33 – 4.23 (m, 2H), 3.91 (s, 3H), 3.82 (q, $J = 7$ Hz, 1H), 2.86 – 2.82 (m, 2H), 1.55 (d, $J = 7$ Hz, 3H); 13C NMR (CDCl$_3$, 125 MHz)
δ174.8, 157.8, 137.9, 135.8, 129.5, 129.1, 129.7, 128.5, 127.3, 126.6, 126.5, 126.2, 119.1, 105.7, 65.4, 55.5, 45.7, 35.2, 18.6; HRMS found 335.1318 [M+H]+, calcd 335.1641 for [C22H22O3]+; the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column): 5% EtOH/hexane, 0.5 mL/min, 23 °C, λ = 254 nm, retention times: S 19.89 min, R 23.70 min, 49.65 : 50.35 er.

(S)-phenethyl 2-(6-methoxynaphthalen-2-yl)propanoate (187). Following the general procedure for asymmetric aryl acetate alkylations (section 7.6.3 above), substituting iodomethane for allyl bromide and catalyst 186 (described in section 7.6.8 below) for catalyst 61, the crude product was obtained as a yellow oil (99%) with the following chiral HPLC data (DAICEL Chiralpak AD-H column, 5% EtOH/hexanes, 0.5 mL/min, 23 °C, λ = 254 nm): S (major) 18.06 min, R (minor) 22.05 min, 81.93 : 18.07 er, 64% ee. After recrystallization in 1:1 Et2O/hexanes, as described above in section 7.6.6, the product was obtained as a white, crystalline solid (71%) giving the following chiral HPLC data (same column/conditions): S (major) 17.94 min, R (minor) 22.07 min, 96.18 : 3.82, 92% ee. Data are: TLC Rf = 0.62 (20% EtOAc/hexanes); 1H NMR δ 7.69 – 7.67 (m, 2H), 7.62 (s, 1H), 7.35 (dd, J1 = 3.5 Hz, J2 = 5 Hz, 1H), 7.15 – 7.11 (m, 5H), 7.05 – 7.03 (m, 2H), 4.33 – 4.23 (m, 2H), 3.91 (s, 3H), 3.82 (q, J = 7 Hz, 1H), 2.86 – 2.82 (m, 2H), 1.55 (d, J = 7 Hz, 3H); 13C NMR (CDCl3, 125 MHz) δ174.8, 157.8, 137.9, 135.8, 133.9, 129.5, 129.1, 129.7, 128.5, 127.3, 126.6, 126.5, 126.2, 119.1, 105.7, 65.4, 55.5, 45.7, 35.2, 18.6; HRMS found 335.1318 [M+H]+, calcd 335.1641 for [C22H22O3]+; [α]D24° = +29° (c 0.550, CHCl3). [Note: The absolute configuration of the major enantiomer was deduced as S based on
the following: (1) commercial (S)-Naproxen was converted to 187 (see below) and gave the same optical rotation and spectral data; (2) (S)-Naproxen made from synthetic 187 gave the same optical rotation and spectral data as a commercial sample (see below); (3) The major S enantiomer of 187 has a lower retention time than its R counterpart by chiral HPLC. Alkylation reactions run with catalyst 61, therefore, were presumed to give R-enriched products because their major enantiomers had higher retention times (chiral HPLC). S-product 187 gave positive optical rotation, while alkylation products from 61 gave negative.

(S)-phenethyl 2-(6-methoxynaphthalen-2-yl)propanoate (187). Following procedure for 177 (section 7.6.1 above), 1.5 g (6.51 mmol) of commercial (S)-Naproxen 12 [(S)-(+)6-methoxy-α-methyl-2-naphthaleneacetic acid] was converted to 187. After purification by column chromatography (10% EtOAc/hexanes), 1.69 g of 187 (93%) was isolated as a white crystalline solid. Data are: TLC Rf = 0.62 (20% EtOAc/hexanes); 1H NMR δ 7.76 (d, J = 4.25 Hz, 2H), 7.71 (s, 1H), 7.45 (d, J = 4.25 Hz, 1H), 7.23 – 7.19 (m, 5H), 7.12 (bs, 2H), 4.41 – 4.31 (m, 2H), 3.94 (s, 3H), 3.90 (q, J = 3.5 Hz, 1H), 2.92 (bs, 2H), 1.64 (d, J = 3.5 Hz, 3H); 13C NMR (CDCl3, 125 MHz) δ 174.6, 157.7, 137.8, 135.7, 133.8, 129.4, 129.1, 129.0, 128.4, 127.2, 126.5, 126.3, 126.1, 119.0, 105.6, 65.3, 55.3, 45.6, 35.1, 18.5; HRMS found 334.1569 [M]+, calcd 334.1569 for [C22H22O3]+; [α]D24 = +27.5° (c 1.018, CHCl3); the enantiomers’ retention times were determined by chiral HPLC (DAICEL Chiralpak AD-H column, 5% EtOH/hexanes, 0.5 mL/min,
$23 \, ^\circ C, \, \lambda = 254 \, \text{nm})$: S (major) 18.67 min, R (minor) 22.22 min, 99.47 : 0.53 er, >98% ee. These data match those of 187 made from 184 (above).

10% Pd/C, Pd(OAc)$_2$

(S)-**Naproxen** (12). (S)-phenethyl 2-(6-methoxynaphthalen-2-yl)propanoate 187 (96 mg, 0.287 mmol, 1.0 equiv), 10% Pd/C (64 mg, 0.667 grams of Pd/C per gram of 187), palladium acetate (71 mg, 0.316 mmol, 1.1 equiv), and ammonium formate (86 mg, 1.36 mmol, 4.76 equiv) were dissolved in methanol (6.5 mL, 0.0442 M). The mixture was then stirred at reflux (\sim65°) for 17 hours. Once 187 was consumed (TLC), the reaction flask was cooled to RT. The crude suspension was filtered, and the filtrate was concentrated to form a white solid. This material was dissolved in chloroform (50 mL), and the organic layer was washed with 1N aqueous HCl (10 mL). The organic layer was separated, dried (MgSO$_4$), filtered, and concentrated. It was then diluted and passed through 20 mL of silica gel packed into a 30M filter cup that was fitted onto an evacuated filter flask (eluent: 50% EtOAc/hexanes, 250 mL + ~5 drops AcOH). The filtrate was transferred to a pre-weighed flask and was concentrated by rotary evaporator. (Note: diluting and then evaporating this concentrated product a few times with cyclohexane azeotropically removes excess AcOH.) This gave 60 mg (91%) of (S)-Naproxen (12) as a white, crystalline solid. Data are: TLC R$_f$ = 0.10 (20% EtOAc/hexanes); 1H NMR δ 11.12 (bs, 1H), 7.71 (d, $J = 5$ Hz, 3H), 7.43 (d, $J = 4.25$, 1H), 7.17 – 7.12 (m, 2H), 3.92 (s, 3H), 3.89 (q, $J_1 = 3.5$ Hz, $J_2 = 7$ Hz, 1H), 1.61 (d, $J = 3.75$ Hz, 3 H); 13C NMR (CDCl$_3$, 125 MHz) δ 180.9, 157.7, 134.9, 133.8, 129.3, 128.9, 127.3, 126.2, 126.1, 119.0, 105.6, 55.3, 45.3, 18.1; [α]$_{D}^{24}$ = +56° (c 0.767, CHCl$_3$). Data for commercial (S)-Naproxen (12): 1H NMR δ 11.29 (bs, 1H), 7.72 – 7.70 (m, 3H), 7.42 (d, $J = 4.25$, 1H), 7.16 – 7.12 (m, 2H), 3.92 (s, 3H), 3.88 (q, $J_1 = 3.75$ Hz, $J_2 = 7$ Hz, 1H), 1.60 (d, $J = 3.5$
Hz, 3 H); 13C NMR (CDCl$_3$, 125 MHz) δ 180.1, 157.7, 134.8, 133.8, 129.3, 128.9, 127.3, 126.2, 126.1, 119.1, 105.5, 55.3, 45.2, 18.2; $[\alpha]_D^{24} = +64^\circ$ (c 0.7667, CHCl$_3$).

7.6.8. Synthesis of Catalyst 186

Hydrocinchonine. Following the procedure for hydrocinchonidine 68 (section 7.3.3 above), substituting (+)-cinchon for (-)-cinchonidine, 1.73 g (87%) of product were isolated as an off-white solid.

2,7-bis(hydrocinchoninium-N-methyl) naphthalene dibromide. Following the procedure described for compound 71 (section 7.3.3 above), substituting hydrocinchonine for hydrocinchonidine, 0.885 g (54%) of product were isolated as a light red solid.
2,7-bis[N(9)-allylhydrocinchoninium-N-methyl]naphthalene dibromide (186). Following the procedure for catalyst 61 (section 7.3.3 above), substituting 2,7-bis(hydrocinchoninium-N-methyl) naphthalene dibromide for 71, 0.297 g (31%) of product 186 were isolated as an orange-cream solid. Data are: 1H NMR (DMSO-d_6, 500 MHz, with increased Fourier transfers): δ 9.03 (s, 1H), 8.45 (s, 2H), 8.34 – 8.27 (m, 2H), 8.27 – 8.23 (m, 2H), 8.16 – 8.14 (m, 2H), 7.99 – 7.95 (m, 2H), 7.87 – 7.87 (m, 2H), 7.76 – 7.74 (m, 4H), 7.65 – 7.63 (m, 1H), 6.44 (bs, 2H), 6.22 – 6.16 (m, 2H), 5.50 (d, $J = 8.75$ Hz, 2H), 5.36 – 5.13 (m, 4H), 4.83 (d, $J = 6$ Hz, 2H), 4.34 (d, $J = 6.5$ Hz, 2H), 4.02 – 3.91 (m, 8H), 3.74 – 3.58 (m, 3H), 2.97 (m, 3H), 1.89 – 1.68 (m, 6H), 1.53 (bs, 4H), 1.22 (bs, 4H), 0.85 (t, $J = 7$ Hz, 6H); large extraneous peaks: δ 3.33 (H$_2$O in DMSO-d_6), 2.49 (DMSO-H$_x$ in DMSO-d_6). HRMS found 413.2587 [M+2H]$^{2+}$/2; calcld 413.26 for [C$_{56}$H$_{66}$N$_4$O$_2$]$^{2+}$/2.
Selected NMR Spectra
N(OMe)Me

OSi(Et)₃

79
HN OSi(Et)$_3$
\[\text{HNOSi(Et)}_3 \]
2
(+)-kurasoin B
The image shows a chemical structure with labels OBn, CHO, and 133. The structure appears to be a molecular diagram with a specific compound representation.
PhCO₂Bn

220 200 180 160 140 120 100 80 60 40 20 0 ppm
\[
\text{\text{OH}} \quad \text{CO}_2\text{Bn}
\]
12
(S)-Naproxen
(S)-Naproxen