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Abstract: Environmental decision-making is complicated by the complexity of natural systems and the often 
competing needs of multiple stakeholders.  Modelling tools are often used to assist at various stages of the 
environmental decision-making process.  If such models are to provide effective decision support, the 
uncertainties associated with all aspects of the decision-making process need to be taken into account 
explicitly. However, as models become more complex in order to better represent integrated environmental, 
social and economic systems, achieving this goal becomes more difficult. Some of the important issues that 
need to be addressed in relation to the incorporation of uncertainty in environmental decision-making 
processes include (i) the development of appropriate risk-based performance criteria that are understood and 
accepted by a range of disciplines, (ii) the development of methods for quantifying the uncertainty associated 
with human input, (iii) the development of approaches and strategies for increasing the computational 
efficiency of integrated models, optimization methods and methods for estimating risk-based performance 
measures, and (iv) the development of an integrated framework that enables all sources of uncertainty to be 
incorporated in the environmental decision-making process.  

Keywords: Environmental decision-making; Environmental models; Uncertainty 

 

1. INTRODUCTION 

Environmental management presents significant 
challenges, as: 

• It is concerned with highly complex systems 
that are generally not well understood; 

• It generally involves a large number of 
stakeholders, often with competing objectives; 
and 

• There are generally a large number of 
potential management options. 

As a result, there has been an increase in the use of 
formal approaches to environmental management.  
Jakeman and Letcher [2003] and Jakeman et al. 
[2006] have demonstrated the importance of 
integrated models as a means of assessing the 
response of environmental systems to proposed 
management options.  Gunderson and Holling 
[2000], Cowie and Borrett [2005], Curtis  et al. 
[2005] and Pahl-Wostl [2005] have highlighted the 
need for the incorporation of social and 
institutional aspects into decision-making 

processes, and recently, agent-based models have 
been used in an attempt to integrate social, 
economic and environmental aspects in a single 
modelling framework (e.g. Bousquet and LePage, 
2004).  Much work has also been done in the field 
of multi-criteria decision analysis (MCDA) in 
order to combine social, environmental and 
economic assessment criteria into a single 
performance measure (e.g. David and Duckstein, 
1976; Roy and Vincke, 1981; Janssen 1996).  
Alternatively, in the instance where managers are 
faced with a large number of potential alternatives, 
Vasquez et al. [2000] and McPhee and Yeh [2004] 
have shown how environmental models can be 
linked with evolutionary optimisation algorithms in 
order to obtain optimal tradeoffs between 
competing objectives to better inform management 
decisions. 

As model complexity increases in order to better 
represent environmental and socio-environmental 
systems, there is an increased need to identify 
potential sources of uncertainty and to quantify 
their impact, so that appropriate management 



 

options can be identified with confidence.  Many 
studies have focussed on the identification and 
quantification of certain aspects of uncertainty, 
such as the development of risk-based performance 
measures (e.g. Hashimoto et al., 1982), and the 
incorporation of uncertainty into environmental 
models (e.g. Burges and Lettenmaier, 1975; 
Chadderton et al., 1982; Eheart and Ng, 2004), 
optimisation methods (e.g. Cieniawski et al., 1995; 
Vasquez et al., 2000; Ciu and Kuczera, 2005), 
multi-criteria methods (e.g. Rios-Insua, 1990; 
Barron and Schmidt, 1988; Hyde et al., 2004), and 
decision-support (e.g. Pallotino et al., 2005; 
Reichert and Borsuk, 2005) and adaptive 
management (e.g. Prato 2005) systems.  However, 
there is a need to examine the decision-making 
process in an integrated fashion, in order to 
identify all sources of uncertainty and ways of 
incorporating them into the decision-making 
process.  At present, several regional, co-operative 
research efforts are underway to address this 
problem as part of the Harmoni-CA project in 
Europe (http://www.harmoni-
ca.info/toolbox/Model_Uncertainty/index.php), the 
eWater Co-operative Research Centre in Australia 
(http://www.ewatercrc.com.au/researchprograms.ht
ml) and the Interagency Steering Committee on 
Multimedia Environmental Models - Workgroup 2: 
Uncertainty Analysis and Parameter Estimation 
(http://www.iscmem.org/WorkGroup_02.htm) in 
the United States.  In order to build on these 
efforts, the purpose of this paper is to: 

• Discuss the major steps in the environmental 
decision-making process; 

• Identify possible sources of uncertainty at each 
stage of the environmental decision-making 
process; and 

• Discuss current progress and identify some of 
the remaining issues, challenges and future 
directions in relation to the incorporation of 
uncertainty into the environmental decision-
making process, including the development of: 

o Appropriate risk-based assessment 
criteria; 

o Methods for quantifying uncertainty 
associated with human input; 

o Approaches for increasing computational 
efficiency; and 

o An integrated framework for addressing 
uncertainty as part of environmental 
decision-making processes. 

 

  

2. ENVIRONMENTAL DECISION-
MAKING PROCESS 

In order to develop model-based decision-support 
tools for environmental management and policy 
analysis, one or more of the steps in the 
environmental decision-making process need to be 
considered.  The main factors that have an impact 
on whether environmental problems are addressed, 
and how this is done, are shown in Figure 1.  
Firstly, environmental problems need to be 
identified and brought to the attention of 
environmental managers / decision-makers.  This 
can be done through the reporting of routine data, 
modelling efforts, or input from local stakeholders 
and / or lobby groups.  Once a particular problem 
is on the agenda of environmental managers, a 
decision has to be made whether action should be 
taken to address the problem.  This decision will 
depend on a number of factors, such as the 
perceived importance and magnitude of the 
problem, as well as financial considerations.  If it is 
decided to address the problem, a list of alternative 
solutions has to be generated.  Depending on the 
type of problem, there may be a small or very large 
number of alternatives.  In order to determine 
which alternative, or set of alternatives, is 
considered “optimal”, analytical methods, such as 
integrated models, formal optimisation techniques 
and multi-criteria decision analysis are generally 
used.  Finally, the decision-maker has to decide 
which option will be implemented. 

Traditionally, model-based decision-support tools 
have been used to help determine which subset of 
potential alternatives can be considered “optimal” 
(i.e. Figure 1, Step 4).  As shown in Figure 1 
(Steps 4.1 – 4.3), this would require the selection 
of appropriate assessment criteria, followed by the 
assessment of all, or a subset of, the potential 
alternatives identified in Step 3 against these 
criteria.  If the number of candidate solutions is 
limited, all options can be assessed.  However, if a 
large number of options is available, formal 
optimisation approaches, such as genetic 
algorithms, should be used to select which subset 
of the potential alternatives to assess.  The 
assessment process would generally be done with 
the aid of one or more (integrated) simulation 
models, which enables the performance of the 
proposed alternatives to be assessed against the 
specified performance criteria. In general, there 
will be a number of competing objectives, making 
it difficult to rank the candidate options.  In cases 
where the number of proposed alternatives is 
limited, MCDA is often used to arrive at a single 
performance measure for each alternative.  If the 
number of alternatives is large, and formal 



 

optimisation algorithms are used, Pareto optimal 
trade-off curves can be developed to identify a set 
of “optimal” solutions. 

Models can also be used in other steps of the 
process outlined in Figure 1, such as the 
identification of the initial problem, the decision 
whether to take action, and the identification of 
potential alternatives.  In addition, there may be a 
need to model all, or various subsets, of the 
process shown in Figure 1.  For example, if the 
objective is to assess the impact of alternative 
policy directions on the degree to which different 
types of environmental problems are being 
addressed over an extended period of time, all of 

the steps outlined in Figure 1 would need to be 
modelled.  However, regardless of which steps of 
the environmental decision-making process are 
considered, all sources of uncertainty need to be 
modeled explicitly in order to enable decisions to 
be made with confidence or a known level of 
certainty.  Consequently, potential sources of 
uncertainty in the environmental decision-making 
process need to be identified, as discussed in 
Section 3. 

  
3.     SOURCES OF UNCERTAINTY   

Various forms of uncertainty are associated with 
each of the steps in the environmental decision-

 

  

1. Identification of need 

2. Decision to take action 

3. Identification of potential 
alternatives 

4. Identification of optimal 
alternative(s) 

5. Selection of final alternative 

Environmental 

System 

4.1 Selection of assessment 

criteria 

4.2 Selection of alternative for 
assessment 

4.3 Assessment of selected 
alternative 

4.3.1 Run simulation  
model(s) 

4.3.2 Obtain outputs 
addressing criteria 

4.3.3 Process outputs 
• Trade-off curves 
• MCDA 

4.3.4 Calculate objective 

function 

Optimisation 

Module 

(optional) 

  

 

Figure 1.  Process for arriving at a chosen development / management alternative. 

 



 

making process outlined in Figure 1, as 
summarised in Table 1.  Traditionally, the focus 
has been on uncertainty in data and environmental 
models.  However, there is an increasing 
recognition that the uncertainties associated with 
“human” factors also need to be taken into 
consideration. 

Data are used extensively in the environmental 
decision-making process.  For example, data may 
be used to highlight an environmental problem that 
needs to be addressed, to determine the magnitude 
of a particular problem, to help with the selection 
and screening of potential alternative solutions, to 
assist with the development of system models (e.g. 
calibration, validation) and to identify appropriate 
performance values in multi-criteria decision 
analyses.  Uncertainties in data include: 

• Measurement error: This could be due to the 
type of instrument used (e.g. measurement 
precision), how well the instrument is 
calibrated, how the data are read (e.g. 
automatic logging, manual reading), how 
frequently the data are measured and recorded 

(e.g. are all major system variations captured) 
and how the data are transmitted and stored. 

• Type of data recorded: In many instances, not 
all relevant data are recorded.  Consequently, 
the data may present an incomplete or skewed 
picture of the state of a system.  However, 
such data can be the basis of decisions made. 

• Length of data record: The length of the data 
record is likely to have an impact on the types 
of events that have been captured, and can 
therefore have a significant impact on 
decisions made and models calibrated and 
validated using these data. 

• The way the data are analysed / processed and 
presented: The way raw data are analysed / 
processed can have a significant impact on 
decision-making processes, as this may 
highlight certain factors in preference over 
others and can affect the strength of the 
argument made to environmental managers / 
decision-makers. 

 

 

Table 1:  Example sources of uncertainty in the environmental decision-making process. 

Category Example Sources of Uncertainty 

Data • Measurement error 

o Type of instrument 

o Quality and frequency of calibration of instrument 

o Data reading and logging 

o Data transmission and storage 

• Type of data recorded 

• Length of data record 

• Type of data analysis / processing 

• The way the data are presented 

Models • Modelling method used 

• Type, quality and length of record of available data 

• Calibration method and data used 

• Validation method and data used 

• Input variability 

Human • Knowledge, experience and expertise of modeller 

• Political “clout” and perceived importance of stakeholder(s) 

• Knowledge, values and attitudes of stakeholders 

• Strength of argument presented by stakeholders 

• Values and attitudes of managers / decision-makers 

• Current political “climate” 

 



 

Models can play an important role at a number of 
stages of the environmental decision-making 
process, including identification and quantification 
of the severity of environmental problems, as well 
as the identification of potential and optimal 
solutions.  Models can vary significantly in 
complexity (and hence data requirements) and can 
serve a variety of purposes.  For example, models 
can be used for simulation purposes in order to 
obtain a better understanding of complex systems 
or for prediction / forecasting to assist managers 
with assessing the utility of proposed management 
actions or the response of the system to other types 
of perturbations.  Forecasting / prediction models 
are generally process based (deterministic) or data 
based (statistical), although the use of hybrid 
models is becoming increasingly popular.  Models 
can also be used for optimisation or to conduct 
multi-criteria decision analysis. 

It is well-recognized that predictive models are 
generally subject to input, model and parameter 
uncertainty (e.g. Loucks and Lynn, 1966; Burges 
and Lettenmaier, 1975; Vicens et al., 1975).  
Uncertainties in model inputs are due to 
measurement errors and / or natural variability (e.g. 
using a single, critical input, rather than a 
distribution of extreme inputs).  The term model 
uncertainty is generally used to describe the 
uncertainty associated with the inability of the 
developed model to represent the system it 
attempts to model.  This may be due to the choice 
of a sub-optimal model type or structure, the lack 
of representative data (in the case of data-driven 
models, where the selection of an appropriate 
model structure is a function of the available data) 
or the lack of existence of a representative model 
type and / or structure (e.g. in the case where the 
system to be modelled in insufficiently well 
understood).  Parameter uncertainty refers to the 
uncertainty associated with model parameters, 
which generally have to be obtained directly from 
measured data or indirectly from measured input-
output data by calibration.  If parameters are 
obtained directly from measured data, some of the 
uncertainties associated with data discussed 
previously come into play.  If parameters are 
obtained by calibration, the length, quality and type 
of available data records discussed previously can 
have a significant impact. In addition, the type of 
calibration method employed can have a marked 
influence on the model parameters obtained (e.g. 
whether calibration is conducted manually or using 
a sophisticated optimisation algorithm). 

One type of uncertainty that has received limited 
attention in the literature is the uncertainty 
associated with human input.  However, this type 
of uncertainty can have a significant impact at all 

stages of the environmental decision-making 
process.  For example, the values and attitudes of 
the environmental manager / decision-maker, as 
well as the current political climate, can 
significantly impact on whether an environmental 
problem is addressed, which alternative solutions 
will be considered, which assessment criteria will 
be used and which alternative is ultimately 
selected.  The knowledge base, education, attitudes 
and political “clout” of stakeholder and lobby 
groups can also have a major influence on the final 
outcome of the decision-making process.  For 
example, whether a particular environmental 
problem is drawn to the attention of the 
environmental manager / decision maker, and how 
seriously it will be treated, can be a function of the 
above factors.  Similarly, stakeholder groups can 
have an input into the choice and screening of 
potential alternatives, as well as the assessment 
process via the development of appropriate 
assessment criteria and the provision of weightings, 
if multi-criteria decision approaches are utilized. 

Even the more “technical” aspects of the decision-
making process are not immune from uncertainty 
due to human input.  For example, Refsgaard et al. 
[2005] found that the results of a modelling 
exercise varied significantly when different 
modellers were presented with the same problem 
and data.  The knowledge, experience and 
preferences of the modellers were found to have a 
significant impact on the results obtained.  For 
example, if modellers have experience with a 
particular modelling approach and / or software 
package, they are more likely to utilize this 
approach / package, in preference to a, perhaps, 
more appropriate modelling tool.  Similarly, the 
way a particular modelling approach is applied 
(e.g. what calibration method is used, how the 
available data are used) can also vary from 
modeller to modeller, based on their knowledge, 
experience and preferences. 

The extent to which the above uncertainties have 
been incorporated into modelling frameworks, and 
the remaining and emerging challenges of 
developing model-based decision support tools for 
integrated environmental management, are 
discussed in Section 4. 

 

4.  PROGRESS, CHALLENGES AND 
FUTURE DIRECTIONS  

4.1   Risk-Based Assessment Criteria 

If uncertainty is incorporated into models 
explicitly, the criteria used to assess the 
performance of alternative solutions need to reflect 
this.  A number of risk-based performance criteria 



 

have been proposed for environmental models, 
which generally relate to the concept of the 
likelihood, the likely magnitude and the likely 
duration of failure, where failure is defined as the 
inability of an environmental system to perform its 
desired function.   For example, Hashimoto et al. 
[1982] introduced three risk-based performance 
measures for water resources systems, including 
reliability (likelihood of failure), vulnerability 
(degree of failure) and resilience (expected length 
of failure).  However, even though the above 
concepts are widely accepted, the terminology used 
to describe them, and their exact definition, tend to 
vary between, and even within, discipline areas.  
One example of this is the term resilience, which 
has been defined in a variety of ways (e.g. Holling, 
1996; Hashimoto et al., 1982; Fiering, 1982; 
Batabyal, 1998).  In addition, concepts related to 
the stability of systems and the ability of systems to 
move between multiple stable states are also 
common in other disciplines, such as economics 
and control engineering. 

Given (i) the increased recognition for the need to 
incorporate uncertainty into decision-support 
models, (ii) the increase in the utilization of 
integrated models, which are generally developed 
by multidisciplinary teams, and (iii) the diversity 
of, and confusion surrounding, the definition and 
estimation of risk-based performance measures, 
there is a need to develop a common lexicon in 
relation to risk-based performance criteria across 
disciplines.  There have been some attempts to 
develop classification systems for risk-based 
performance criteria (e.g. Maier et al., 2002), but 
more work is required in this area.  In addition, it is 
timely to re-visit the question of whether the types 
of performance criteria currently in use are 
appropriate for complex environmental problems.  
This is particularly relevant in relation to 
appropriate performance measures related to 
sustainability goals. 

4.2   Uncertainty in Human Input 

Uncertainties associated with data, as well as 
model inputs and parameters, have been 
recognized for some time, and much work has been 
done to incorporate these types of uncertainty into 
modelling frameworks (e.g. Thyer et al., 2002).  
However, because the significance of the impact 
human input can have on the environmental 
decision-making process has only been recognised 
relatively recently, methods for dealing with the 
uncertainty associated with this factor are still in 
their developmental stages.  Significant advances 
have been made in relation to developing models 
of human behaviour and linking them with 
ecological, environmental and economic models 

for the purposes of environmental management and 
policy assessment (e.g. Anderies, 2000; Bossel, 
2000; Janssen et al., 2000; Peterson, 2000; Walker 
et al., 2002; Bousquet et al., 2004).  However, 
although these models generally allow for 
heterogeneity in human behaviour, they do not 
model uncertainty in the various model 
components.  Consequently, one of the upcoming 
challenges is to develop frameworks that enable 
the uncertainties associated with human inputs to 
be accounted for explicitly.  This includes the 
development of uncertainty analysis methods that 
are able to cater for subjective and non-quantitative 
factors (e.g. van der Sluijs et al., 2005), human 
decision-making processes (which may be 
influenced by political and other external factors), 
and uncertainties associated with the model 
development process itself (e.g. Refsgaard et al., 
2006). 

Uncertainty due to human input also has a role to 
play in the ranking of potential alternatives in 
accordance with the selected assessment criteria.  
Assessment criteria generally address competing 
objectives, which complicates the ranking of 
proposed alternatives.  If there are a limited 
number of alternatives, some form of multi-criteria 
decision-analysis can be used to rank the potential 
alternatives, such as value focused approaches (e.g. 
Weighted Sum Method (WSM) (Janssen, 1996) or 
Analytic Hierarchy Process (AHP) (Saaty, 1977)) 
and outranking methods (e.g. PROMETHEE 
(Brans et al., 1986) or  ELECTRE (Roy, 1991)).  
All of these approaches rely on the provision of 
relative weightings of the assessment criteria 
(performance values) by actors representing 
stakeholder groups.  A number of distance-based 
sensitivity analysis and probability-based 
uncertainty analysis methods have been developed 
to take account of potential uncertainties in the 
weightings provided by the actors (e.g. Barron and 
Schmidt, 1988; Butler et al., 1997).  This provides 
decision-makers with information on the impact of 
uncertainties in the weightings on the ranking of 
alternatives.  However, the above approaches 
generally do not consider uncertainties associated 
with the assessment criteria.  Recently, Hyde et al. 
[2003] have demonstrated that uncertainties in the 
assessment criteria can have a significant impact on 
the rankings of alternatives, and concluded that it is 
desirable to jointly consider uncertainties in the 
assessment criteria and the weightings provided by 
stakeholders.  If values of the assessment criteria 
are obtained using models that take into account 
uncertainty, and appropriate risk-based 
performance measures are used, this issue is 
addressed automatically.  However, if uncertainties 
have not been considered when obtaining values of 



 

the assessment criteria (e.g. by using deterministic 
models or the input of experts), methods such as 
that proposed by Hyde et al. [2003] have to be 
used. 

If  the number of potential alternatives is large, 
multi-objective optimisation approaches (e.g. Deb 
et al., 2002) can be used to obtain Pareto optimal 
tradeoffs between competing assessment criteria 
(e.g. Vasquez et al., 2000).  Such trade-off curves 
can be used by decision-makers to choose the most 
appropriate alternative.  Recently, the use of 
clustering techniques, such as self-organising maps 
(Kohonen, 1982), have been proposed as a means 
of extracting solutions from Pareto trade-off curves 
that are representative of areas of the solution 
space with different characteristics (e.g.  low cost 
solutions with high associated risks of failure and 
vice versa) (Shie-Yui et al., 2004).  This reduces 
the number of potential Pareto optimal solutions 
that have to be considered by decision-makers.  In 
addition, if the resulting number of characteristic 
solutions is relatively small, they could be 
considered as potential solutions as part of a multi-
criteria decision-analysis.  However, such an 
approach is yet to be tested. 

4.3   Computational Efficiency 

Historically, the inclusion of uncertainty in even 
relatively simple simulation models has been a 
problem from the perspective of computational 
efficiency.  This is because the evaluation of risk-
based performance measures generally requires 
simulation models to be run repeatedly (e.g. as part 
of Monte Carlo methods).  Advances in computing 
power have made the estimation of risk-based 
performance measures possible for models with 
relatively short run times.  However, as models are 
becoming increasingly complex in order to model 
environmental systems in a more realistic fashion, 
issues related to computational efficiency are likely 
to be exacerbated to the point where run times are 
infeasible.  Although processor speed is increasing 
rapidly, this is unlikely to outweigh the impact of 
the increased computational requirements of more 
complex models.  Past experience indicates that, as 
computational power increases, so does the 
difficulty and complexity of the problems being 
tackled.  Consequently, there is a need to develop 
alternative means of addressing the problems 
posed by excessive computer run times. 

In order to increase computational efficiency, a 
number of different approaches can be taken, 
including: 

• The use of more efficient methods for 
estimating risk-based performance measures: 
There have been many attempts to speed up 

Monte Carlo methods, including the use of 
more efficient stratified sampling methods, 
e.g. random, importance, Latin Hypercube, 
and Hammersley sampling (McKay et al., 
1979; Helton and Davis, 2003).  In addition, 
first- and second-order approximations can be 
used (e.g. Maier et al., 2001).  More recently, 
alternative methods of estimating risk-based 
performance measures have been introduced 
in order to increase computational efficiency 
(e.g. Babayan et al., 2005), and work in this 
area is ongoing. 

• The skeletonisation of complex models via 
innovative sensitivity analysis methods:  
Sensitivity analysis methods can be used to 
identify parts of integrated models to which 
model outputs are relatively insensitive.  This 
enables insensitive model components to be 
treated as deterministic or, alternatively, to be 
removed from the model altogether.  However, 
one problem with this approach is that 
traditional sensitivity analysis methods, such 
as the Morris method (Morris, 1991), are ill-
equipped to deal with the high degree of non-
linearity and interaction that characterise 
integrated models.  Monte-Carlo methods 
overcome these problems, but are generally 
too computationally expensive.  More 
computationally efficient alternatives include 
the Extended Fourier Amplitude Sensitivity 
Testing (FAST) method (Saltelli et al., 1999) 
and the new sensitivity analysis approach 
proposed by Norton et al. [2005]. 

• The use of metamodels to replace all, or 
portions of, computationally inefficient 
process models: An alternative to using 
computationally expensive process models is 
the use of data-driven metamodels.  
Metamodels, first proposed by Blanning 
[1975], are models of simulation models. They 
serve as a surrogate, or substitute, for more 
complex and computationally expensive 
simulation models. While it takes time to 
develop metamodels, this is offset by the 
considerable time savings achieved when they 
are required to be run repeatedly.  Recently, 
artificial neural network models have been 
used successfully as metamodels (e.g. Broad et 
al., 2005a), and are well-suited to act as 
metamodels for integrated environmental 
models due to their ability to deal with highly 
non-linear data.  Once developed, artificial 
neural network metamodels can be used to 
estimate a range of risk-based performance 
measures (e.g. Broad et al., 2005b).  However, 
the metamodeling approach assumes that the 
metamodel is valid with respect to the 



 

simulation model it is approximating and that, 
in turn, the simulation model is valid with 
respect to the system it is designed to model.  
This raises the issue of how to take into 
account any uncertainties associated with the 
simulation model and its representation by the 
metamodel. As metamodels are data-driven, 
their parameters generally do not have any 
physical meaning. Consequently, 
incorporation of parameter uncertainty is not 
an easy task.  Methods such as those discussed 
in Lampinen and Vehtari [2001] and Kingston 
et al. [2005] go partway towards addressing 
this problem by enabling metamodel 
parameter uncertainty to be taken into account 
explicitly.  However, this issue needs to be 
explored more fully. 

4.4  Integrated Uncertainty Framework for 
Decision Making 

As discussed in Section 2 and illustrated in Figure 
1, many of the issues and challenges discussed in 
Sections 4.1-4.3 are highly interrelated and need to 
be addressed in an integrated fashion and in the 
context of environmental decision-making.  
Consequently, there is a need to develop a holistic, 
integrated uncertainty framework to support the 
development, evaluation and utilization of models 
for effective environmental decision-support.  
Some of the issues that should be addressed by 
such a framework include explicit incorporation of 
uncertainties arising from incomplete definitions of 
the model structural framework, spatial / temporal 
variations in variables that are either not fully 
captured by the available data or not fully resolved 
by the model, and the scaling behaviour of 
variables across space and time.  Such a framework 
should also tie together uncertainty related to 
multi-criteria tradeoffs and combined measures of 
model fit and complexity and also discuss data 
collection needs, i.e., when to stop collecting data 
and refine the model and, if additional data need to 
be collected, what should be collected in order to 
materially reduce model uncertainty? 

In addition, there is also a need to expand the 
framework to incorporate sensitivity analysis.  
Although sampling-based uncertainty and 
sensitivity analysis is a fairly established area of 
study, a number of important challenges and areas 
for additional study remain.  For example, there is 
a need for sensitivity analysis procedures that are 
more effective at revealing nonlinear relations than 
those currently in use.  Candidates include 
procedures based on complete variance 
decomposition (Li et al., 2001), tests for non-
monotonic relations (Hora and Helton, 2003), 
nonparametric regression (Bowman and Azzalini, 

1997), and the two-dimensional Kolmogorov-
Smirnov test (Garvey et al., 1998).  Furthermore, 
sampling-based procedures for uncertainty and 
sensitivity analysis typically use probability as the 
model, or representation, for uncertainty.  
However, when incomplete information is 
available with which to characterize uncertainty, 
probabilistic characterizations can give the 
appearance of more knowledge than is really 
present (Helton et al., 2004).  Alternative 
representations for uncertainty such as evidence 
theory and possibility theory merit consideration 
for their potential to represent uncertainty in 
situations where sparse information is available 
(Helton et al., 2004).  Finally, a significant 
challenge is the communication to potential users 
of uncertainty and sensitivity analysis about: (i) the 
significance of such analyses, and their role in both 
large- and small-scale analyses; (ii) the need for an 
appropriate delineation of uncertainty due to lack 
of knowledge and uncertainty due to variability 
(Hoffman and Hammonds 1994); (iii) the 
importance of avoiding excessively conservative 
assumptions if meaningful uncertainty and 
sensitivity analysis results are to be obtained; and 
(iv) the need for a concise conceptual blueprint of 
what an analysis is intended to characterize, and a 
computational design consistent with that 
blueprint.   

 

5.  SUMMARY AND CONCLUSIONS 

Environmental decision-making is extremely 
complex due to the complexity of the systems 
considered and the competing interests of multiple 
stakeholders.  In order to improve the quality of 
decisions made, formal decision support tools, 
such as integrated models, optimisation algorithms 
and multi-criteria decision-analysis, are being used 
increasingly.  In addition, the need to consider 
environmental, social and economic systems in an 
integrated fashion has also received increased 
attention.  However, as decision-support tools 
increase in complexity, the need to consider 
uncertainty at all stages of the decision-making 
process becomes more important, so that decisions 
can be made with confidence or known certainty.  
Some of the important areas that need to be 
addressed in relation to the incorporation of 
uncertainty in environmental decision-making 
processes include: 

• The development of appropriate risk-based 
performance criteria that are understood and 
accepted by a range of disciplines. 

• The development of methods for quantifying 
the uncertainty associated with human input. 



 

• The development of approaches and strategies 
for increasing the computational efficiency of 
integrated models, optimization methods and 
methods for estimating risk-based 
performance measures. 

• The development of an integrated framework 
that enables all sources of uncertainty to be 
incorporated in the environmental decision-
making process. 

 

6.  REFERENCES 

Anderies J.M., On modeling human behaviour and 
institutions in simple ecological economic 
systems, Ecological Economics, 35, 393-
412, 2000. 

Babayan A., Kapelan Z., Savic D, and Walter G., 
Least-cost design of water distribution 
networks under demand uncertainty, 
Journal of Water Resources Planning and 
Management, 131, 375-382, 2005. 

Batabyal A.A., On some aspects of ecological 
resilience and the conservation of species. 
Journal of Environmental Management, 
52(4), 373-378, 1998. 

Barron H. and Schmidt P., Sensitivity analysis of 
additive multiattribute value models, 
Operations Research, 36(1), 122-127, 
1998. 

Blanning R.W., The construction and 
implementation of metamodels, Simulation, 
24(6), 177-184, 1975. 

Bossel H., Policy assessment and simulation of 
actor orientation for sustainable 
development, Ecological Economics, 35, 
337-355, 2000. 

Bowman, A.W. and Azzalini, A., Applied 
Smoothing Techniques for Data Analysis, 
Oxford, Clarendon, 1997. 

Bousequet F. and LePage C., Multi-agent 
simulations and ecosystem management: a 
review, Ecological Modelling, 176(3-4), 
313-332, 2004. 

Brans J.P., Vincke P., and Mareschal B.,  How to 
select and how to rank projects: the 
PROMETHEE method, European Journal 
of Operational Research, 24, 228-238, 
1986. 

Broad D.R., Dandy G.C., and Maier H.R., Water 
distribution system optimization using 
metamodels, Journal of Water Resources 
Planning and Management, 131(3), 172-
180, 2005a. 

Broad D.B., Maier H.R., Dandy G.C., and Nixon 
J.B., Estimating risk measures for water 
distribution systems using metamodels, 
World Water & Environmental Resource 

Congress, ASCE, Anchorage, Alaska, USA, 
May 15-19, 2005b. 

Burges S.J. and Lettenmaier D.P., Probabilistic 
methods in stream quality management, 
Water Resources Bulletin, 11(1), 115-130, 
1975. 

Butler J., Jia J., and Dyer J., Simulation techniques 
for the sensitivity analysis of multi-criteria 
decision models, European Journal of 
Operational Research, 103(3), 531-546, 
1997. 

Chadderton R.A., Miller A.C., and McDonnell 
A.J., Uncertainty analysis of dissolved 
oxygen model,  Journal of the 
Environmental Engineering Division, 
108(EE5), 1003-1013, 1982. 

Cieniawski S.E., Eheart J.W., and Ranjithan S., 
Using genetic algorithms to solve a 
multiobjective groundwater monitoring 
problem,  Water Resources Research, 
31(2), 399-409, 1995. 

Ciu L.J. and Kuczera G., Optimizing water supply 
headworks operating rules under stochastic 
inputs: Assessment of genetic algorithm 
performance, Water Resources Research, 
41, W05016, doi:10.1029/2004WR003517, 
2005. 

Cowie G.M. and Borrett S.R., Institutional 
perspectives on participation and 
information in water management, 
Environmental Modelling and Software, 
20(4), 469-483, 2005. 

Curtis A., Byron I., and Mackay J., Integrating 
socio-economic and biophysical data to 
underpin collaborative watershed 
management, Journal of the American 
Water Resources Association, 41(3), 549-
563, 2005. 

David L. and Duckstein L., Multi-criterion ranking 
of alternative long-range water resources 
systems, Water Resources Bulletin, 12, 731-
754, 1976. 

Deb A., Pratap A., Agarwal S., and Meyarivan T., 
A fast and elitist multiobjective genetic 
algorithm: NSGA-II, IEEE Transactions on 
Evolutionary Computation, 6(2), 182-19, 
2002. 

Eheart J.W. and Ng T.L., Role of effluent permit 
trading in total maximum daily load 
programs: Overview and uncertainty and 
reliability implications,  Journal of 
Environmental Engineering, 130(6), 615-
621, 2004. 

Fiering M.B., Alternative indices of resilience, 
Water Resources Research, 18(1), 33-39, 
1982. 

Garvey, J.E., Marschall, E.A., and Wright, R.A., 
From star charts to stoneflies: detecting 



 

relationships in continuous bivariate data, 
Ecology, 79(2), 442–447, 1998. 

Gunderson L.H. and Holling C.S., Theories for 
Sustainable Futures,  Island Press, 2000. 

Hashimoto T., Stedinger J.R., and Loucks D.P., 
Reliability, resiliency, and vulnerability 
criteria for water resource system 
performance evaluation, Water Resources 
Research, 18(1), 14-20, 1982. 

Helton, J.C. and Davis, F.J., Latin hypercube 
sampling and the propagation of uncertainty 
in analyses of complex systems, Reliability 
Engineering and System Safety, 81(1), 23–
69, 2003. 

Helton, J.C., Johnson, J.D., and Oberkampf, W.L., 
An exploration of alternative approaches to 
the representation of uncertainty in model 
predictions, Reliability Engineering and 
System Safety, 85(1-3), 39–71, 2004. 

Hoffman, F.O. and Hammonds, J.S., Propagation 
of uncertainty in risk assessments: the need 
to distinguish between uncertainty due to 
lack of knowledge and uncertainty due to 
variability, Risk Analysis, 14(5), 707–712, 
1994. 

Holling C.S., Engineering resilience versus 
ecological resilience, in Engineering Within 
Ecological Constraints, pp. 31-43, edited 
by P. C. Schulze, National Academy Press, 
Washington, D.C, 1996. 

Hora, S.C. and Helton, J.C., A distribution-free test 
for the relationship between model input 
and output when using latin hypercube 
sampling,  Reliability Engineering and 
System Safety, 79(3), 333–339, 2003. 

Hyde K.M., Maier H.R., and Colby C.B., 
Incorporating uncertainty in the 
PROMETHEE MCDA method,  Journal of 
Multi Criteria Decision Analysis, 12(4-5), 
245-259, 2003. 

Hyde K.M., Maier H.R., and Colby C.B., 
Reliability-based approach to multi-criteria 
decision analysis for water resources, 
Journal of Water Resources Planning and 
Management, 130(6), 429-438, 2004. 

Jakeman A.J. and Letcher R.A., Integrated 
assessment and modelling: Features, 
principles and examples for catchment 
management, Environmental Modelling and 
Software, 18, 491-501, 2003. 

Jakeman A.J., Norton J.P., Letcher R.A. and Maier 
H.R., Integrated modelling for managing 
catchments, In: Sustainable Management of 
Water Resources: an Integrated Approach, 
C. Giupponi, A. Jakeman and D. 
Kassenberg, Eds., Edward Elgar Publishing, 
384pp., 2006. 

Janssen M.A., Walker B.H., Langridge J. and Abel 
N., An adaptive agent model for analysing 
co-evolution of management and policies in 
a complex rangeland system, Ecological 
Modelling, 131, 249-268, 2000. 

Janssen, R., Multiobjective Decision Support for 
Environmental Management, Kluwer 
Academic Publishers, Netherlands, 1996. 

Kingston G.B., Lambert M.F, and Maier H.R., 
Bayesian parameter estimation applied to 
artificial neural networks used for 
hydrological modeling, Water Resources 
Research, 41, W12409, 
doi:10.1029/2005WR004152, 2005. 

Kohonen T., Self-organized formation of 
topologically correct feature maps, 
Biological Cybernetics, 43, 59-69, 1982. 

Lampinen J. and Vehtari A., Bayesian approach for 
neural networks - review and case studies,  
Neural Networks, 14(3), 7-24, 2001. 

Li, G., Rosenthal, C., and Rabitz, H., High-
dimensional model representations. J. Phys. 
Chem., 105(33), 7765–7777, 2001. 

Loucks D.P. and Lynn W.R., Probabilistic models 
for predicting stream quality, Water 
Resources Research, 2(3), 593-605, 1966. 

Maier H.R., Lence B.J., Tolson B.A., and Foschi 
R.O., First-order reliability method for 
estimating reliability, vulnerability and 
resilience, Water Resources Research, 
37(3), 779-790, 2001. 

Maier H.R., Lence B.J., and Tolson B.A.,  The role 
of reliability, vulnerability and resilience in 
the management of water quality systems, 
27th Hydrology and Water Resources 
Symposium, The Institution of Engineers, 
Australia, Melbourne, Australia, May 20-
23, 2002. 

McKay, M.D., Beckman, R.J., and Conover, W.J., 
A comparison of three methods for 
selecting values of input variables in the 
analysis of output from a computer code, 
Technometrics, 21(2), 239–245, 1979. 

McPhee J. and Yeh W.W.G., Multiobjective 
optimization for sustainable groundwater 
management in semiarid regions, Journal of 
Water Resources Planning and 
Management, 130(6), 490-497, 2004. 

Morris, M.D., Factorial sampling plans for 
preliminary computational experiments, 
Technometrics, 33(2), 161-174, 1991. 

Norton J.P., Chiew F.H.S., Dandy G.C., and Maier 
H.R., A parameter-bounding approach to 
sensitivity assessment of large simulation 
models, Modsim 2005 - International 
Congress on Modelling and Simulation, 
Modelling and Simulation Society of 



 

Australia and New Zealand Inc, Melbourne, 
Australia, December 12-15, 2005. 

Pahl-Wostl C., Information, public empowerment, 
and the management of urban watersheds, 
Environmental Modelling and Software, 20, 
457-467, 2005. 

Pallottino S., Secchi G.M., and Zuddas P., A DSS 
for water resources management under 
uncertainty by scenario analysis, 
Environmental Modelling and Software, 20, 
1031-1042, 2005. 

Peterson G., Political ecology and ecological 
resilience: An integration of human and 
ecological dynamics, Ecological 
Economics, 35, 323-336, 2000. 

Prato T., Bayesian adaptive management of 
ecosystems, Ecological Modelling, 183(2-
3), 147-156, 2005. 

Refsgaard J.C., van der Sluijs J.P., Højberg A.L., 
and Vanrolleghem P., Harmoni-CA 
Guidance: Uncertainty Analysis 
(http://www.harmoni-
ca.info/toolbox/docs/Harmoni-
ca_Guidance_1_Uncertainty_Analysis.pdf), 
2005. 

Refsgaard J.C., van der Sluijs J.P., Brown J. and 
van der Keur P., A framework for dealing 
with uncertainty due to model structure 
error, Advances in Water Resources, 
doi:10.1016/j.advwatres.2005.11.013, 
2006. 

Reichert P. and Bosrsuk M.E., Does high forecast 
uncertainty preclude effective decision 
support?, Environmental Modelling and 
Software, 20, 991-1001, 2005. 

Rios Insua D., Sensitivity Analysis in Multi-
objective Decision Making, Springer-
Verlag, 193pp., Berlin, 1990. 

Roy B., The outranking approach and the 
foundations of Electre methods, Theory and 
Decision, 31, 49-73, 1991. 

Roy B. and Vincke P., Multicriteria analysis: 
survey and new directions, European 
Journal of Operational Research, 8(3), 
207-218, 1981. 

Saaty T.L., A scaling method for priorities in 
hierarchical structures, Journal of 
Mathematical Psychology, 15, 234-281, 
1977. 

Saltelli A., Tarantola S., and Chan K.P.S., A 
quantitative model-independent method for 
global sensitivity analysis of model output, 
Technometrics, 41(1), 39-56, 1999. 

Shie-Yui L., Al-Fayyaz T.A., and Sai L.K., 
Application of evolutionary algorithms in 
reservoir operations, Journal of the 
Institution of Engineers, Singapore, 44(1), 
39-54, 2004. 

Thyer M., Kuczera G., and Wang Q.J., Quantifying 
parameter uncertainty in stochastic models 
using the Box-Cox transformation, Journal 
of Hydrology, 265(1-4), 246-257, 2002.  

van der Sluijs J., Craye M., Funtowicz S., 
Kloprogge P., Ravetz J., and Risbey J., 
Combining quantitative and qualitative 
measures of uncertainty in model based 
environmental assessment: the NUSAP 
system, Risk Analysis, 25(2), 481-492, 
2005. 

Vasquez J.A., Maier H.R., Lence B.J., Tolson 
B.A., and Foschi R.O., Achieving water 
quality system reliability using genetic 
algorithms, Journal of Environmental 
Engineering, 126(10), 954-962, 2000. 

Vicens G.J., Rodriguez-Iturbe I., and Schaake Jr., 
J.C., A Bayesian framework for the use of 
regional information in hydrology, Water 
Resources Research, 11(3), 405-414, 1975. 

Walker B., Carpenter S., Anderies J., Abel N., 
Cumming G., Janssen M., Lebel L., 
Norberg J., Petrerson G.D., and Pritchard 
R., Resilience management in social-
ecological systems: A working hypothesis 
for a participatory approach. Conservation 
Ecology 6(1), 14, 2002. 

 

 


	Brigham Young University
	BYU ScholarsArchive
	Jul 1st, 12:00 AM

	Uncertainty in Environmental Decision-Making: Issues, Challenges and Future Directions
	Holger R. Maier
	James C. Ascough II

	IEMSS2006_W2_Final_Position_Paper_Maier_Ascough_Formatted.PDF

