
Brigham Young University
BYU ScholarsArchive

International Congress on Environmental
Modelling and Software

2nd International Congress on Environmental
Modelling and Software - Osnabrück, Germany -

June 2004

Jul 1st, 12:00 AM

Development of Multi-FrameworkModel
Components
R. M. Argent

Andrea-Emilio Rizzoli

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for
inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

Argent, R. M. and Rizzoli, Andrea-Emilio, "Development of Multi-FrameworkModel Components" (2004). International Congress on
Environmental Modelling and Software. 130.
https://scholarsarchive.byu.edu/iemssconference/2004/all/130

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2004%2Fall%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2004%2Fall%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2004%2Fall%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2004%2Fall%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2004%2Fall%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2004?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2004%2Fall%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2004?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2004%2Fall%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2004?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2004%2Fall%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2004%2Fall%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2004/all/130?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2004%2Fall%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Development of Multi-Framework Model Components

Rober t M Argenta and Andrea E Rizzolib
a Cooperative Research Centre for Catchment Hydrology, The University of Melbourne, 3010, Australia.

R.Argent@unimelb.edu.au
b IDSIA, Manno, Switzerland, andrea@idsia.ch

Abstract: A number of environmental modelling frameworks have been developed recently, and plans for
new frameworks are under way. Examples such as TIME, OpenMI, SME and OMS share an approach to
environmental modelling based on model components, and offer improved model development and
deployment. These approaches have methods for ensuring model component-linking compatibility using
manual and machine processes either internal or external to the model component. Examples include
matching output to input and checking data type compatibility. Semantic integration is also possible, such as
with the OpenMI, where a component requests and receives particular data. However, each framework does
model component checking in a different way and interoperability between model components of different
frameworks is limited. To improve the use of model components it is necessary to consider the development
of multi-framework model components (MFMC). Existing software standards enable communication at a
low level, but many problems remain at high levels. This paper discusses development of an MFMC in each
of TIME and the OMS, that can be accessed from the other framework. Additionally, the requirements for
further framework compatibility, such as the OpenMI, are considered. Six main approaches are described,
covering methods relevant to both between- and cross-platform compatibility, which range from re-
implementation, through Web Services, to declarative modelling. Web services are suggested as a viable
option for the problem considered here, although the other techniques warrant further investigation in
particular cases.

Keywords: Component-based modelling; Modelling frameworks; Model development, Multi-framework
model components.

1. INTRODUCTION

Development of new environmental modelling
ideas has been taking place over recent years.
Two primary ideas, of simplified modelling
focussing on dominant processes and using
parsimonious methods, are being combined with
modular or component-based modelling ideas. In
this approach components are created that
represent discrete system functions, and these
functions are then combined flexibly to address
particular problems using a tailored modelling
approach.

These developments have been associated with
the production of various support tools, the most
significant of which are the modelling
frameworks, or development environments, within
which developers can build and test components,
and click components together, and together with
data and visualisation components, to build multi-

component models. One of the problems in this
approach, and a major problem of the
environmental modelling science world, is that a
component build by and for one framework is not
directly compatible with another framework.

The problems of making algorithms from one
component into a useable form for other
components can be addressed using a range of
approaches. This paper explores these approaches
for the development of model components for
porting between three specific modelling
frameworks – the OpenMI, OMS, and TIME.
Furthermore, the semantic issues are explored
further to identify some of the critical issues that
need to be addressed before appropriate
components for use in multiple frameworks can be
identified and developed.

2. PORTING MODEL COMPONENTS

We have identified at least six methods to port a
model component across modelling frameworks,
but we must first distinguish between whether or
not the modelling frameworks are implemented
using the same software platform.

Where components are based on the same
platform, with binary level compatibility, porting
options are a) interface extension, and b) on-
demand data binding. For different platforms the
options are: c) manual re-implementation; d)
cross-compilation; f) web-servicing, with
declarative interfaces; and e) declarative
modelling.

We now examine the advantages and the
disadvantages of these approaches.

2.1 Binary Compatible Modelling Frameworks

This is the case where the modelling frameworks
use the same software architecture (e.g. two
frameworks are implemented using the .NET
software architecture).

2.1.1 Inter face Extension

This approach proposes development of a
different model component interface for each
framework. The model component code stays
mostly unchanged when being used in a new
framework, and an interface or wrapper has to be
developed. This activity, to be done by hand, may
take a lot or little time depending on the
requirements and features of the frameworks.

2.1.2 On-Demand (XML) Data Binding

This approach involves the specification of the
model component interface by means of a
standard XML description. The description is
then parsed by software tools that automatically
generate the source code for the model component
interface, targeted to the appropriate modelling
framework. The source code is then compiled and
linked into the modelling framework. This
approach has been called XML data binding
(McLaughlin, 2002)

This option, while possibly requiring more effort
up-front in the definition of an XML schema to
define the interface data formats, may be better in
the long term, as new components can be readily
created to be multi-framework compatible. It also
has the advantage of being easy to implement both
in J2EE, using JAXB (Java Architecture for Data
Binding: http://java.sun.com/xml/jaxb) and in

.NET, using xsd, the W3C Schema Definition
Tool. A nice feature of this approach is that the
same XML interface can be used to generate code
for modelling frameworks based on both Java and
C#.

2.2 Heterogeneous Modelling Frameworks

This is the case where the model components are
designed and implemented to work under
incompatible modelling frameworks (e.g. one
modelling framework is based on the .NET
architecture, and one on J2EE).

2.2.1 Manual Re-implementation

This is the oldest and most common approach to
make a model component re-usable in another
modelling framework: make public the algorithms,
code and explanation of the science in the
component. This model component can then be
manually transformed for use in another
framework. This transformation will be of varying
complexity depending on the nature of the
algorithms, the language/s used for the components
and the features and capacities of the alternative
frameworks. It is the most straightforward approach
as it requires only a single unit block of work to
produce a workable solution. However, over time
this may become the most time consuming, as
every model component needs to be broken open,
re-written, de-bugged and tested.

2.2.2 Cross-Compilation and Translation

To limit the programming effort, model
components written for one modelling framework
can be ported to another using cross-compilation
and translation tools. For instance, JNBridge
(www.jnbridge.com), an implementation of the
.NET Remoting wire-level protocol, and
Remotesoft’s Java.NET (www.remotesoft.com)
allow translation of a model component written in
Java into a corresponding C# component.
However, in this approach the interfaces may be not
compliant with the specifications issued by the
target modelling framework, and therefore interface
extension or XML data binding might be required.

2.2.3 Web-Servicing

Model components can be implemented as web-
services, providing a published interface that is
remotely callable. The use of a standard protocol,
such as SOAP, to exchange data, and the fact that
the model component resides on a remote server,
enables interoperability among non binary-

compatible modelling frameworks. This approach
requires that the modelling framework knows
about the interface of the remote model
component. Thus, we fall back into one of the
two approaches for binary compatible systems:
interface extension or XML data binding. An
example of the latter can be found in Rizzoli et al.
(2001).

2.2.4 Declarative Modelling

This is the most generic approach to component
porting, but is also the most difficult to bring into
common practice and to implement.

The basic idea is to shift from a procedural
approach to modelling to a declarative one. In the
procedural approach, models are written as sets of
instructions for simulating the model, written in
the programming language of the modelling
framework, for instance C# or Java. In the
declarative approach, models are represented as a
set of statements defining the structure of the
model. These statements are written in a text file,
using a standard and open format (again, an XML
schema can be useful). Experiences of declarative
modelling are found in the Simile modelling
environment (Muetzelfeldt and Massheder, 2003)
and in the Integrating Modelling Architecture
(Villa, 2000). A declarative model can be
processed and transformed automatically, by
means of a model compiler, into a model
component targeting any modelling framework.

The main disadvantage with this approach is that
every modelling framework needs to adhere to a
standard and common declarative modelling
language, which currently exists only in some
domain. A major advantage is the ability to link
elements declared in the model with entities
declared in distributed ontologies, thus reducing
the risk of ambiguities and misuse of data, which
are quite frequent in all other approaches

This overview provides a range of techniques for
developing multi-framework model components,
with the primary determinants being the platform
and software structure used by the associated
modelling frameworks. The following explores
development of a simple component model in the
TIME framework, and the requirements for
operating this component in the OMS framework
and making the component compatible with the
OpenMI.

3. TIME – THE INVISIBLE MODELLING
ENVIRONMENT

TIME is an environmental modelling framework
constructed using .NET (Rahman et al., 2003). Its
primary features are a thin architecture and a strong
capability to use model metadata. By adding
metadata about parameters and variables, control of
the model by the TIME system can be automated in
many ways. One of these is to support automatic
creation of user interfaces. If a model has a
declared parameter with metadata regarding range
and default value, then a user interface consisting
of, say, a slider bar ranging between the extremes
of the allowable range, can be readily generated.
Also, if metadata information on data types relating
to inputs and outputs is given, then the linking
behaviour of two component models can also be
controlled by an intelligent model management
system, by means of XML data binding. Another
feature is the use of component technology, in that
components are designed to be multi-purpose,
either being run with command line techniques, to
support multiple runs for, say, stochastic modelling,
run remotely, for Web Service applications, or have
attached an automatic GUI, providing control over
parameter values for scenario exploration.

3.1 The Component

The selected component was one of the more
simple components that can be developed, and one
which has often been used for examples in
development of the TIME modelling environment
(Rahman et al., 2003). This is a rainfall runoff
model that uses a runoff ratio to create runoff from
rainfall (equation 1), which can be run once or for
every time step in a temporally dynamic simulation,
and which has spatial application to a point,
polygon or any cell in a raster.

 Ro = RR * (Rain – ET) (1)

Where

 Ro is runoff

 RR is runoff ratio

 Rain is precipitation

 ET is evapotranspiration

In a Java version of the component in TIME, the
component code is as follows:

package
TIME.Models.Examples.RainRunoffCoefft;

import TIME.Core.*;

/**
 * Rainfall runoff coefft test.
 * @author David Verrelli
 */

public class RunoffCoeff extends
Model
{
 /** @attribute Input() */
 double Rainfall, PET;

 /** @attribute Parameter()
 * @attribute Minimum(0.0)
 * @attribute Maximum(1.0) */
 double Coeff;

 /** @attribute Output() */
 double Runoff;

 //Constructor
 public RunoffCoeff()
 {
 super(); //This is implicit
 }

 public void runTimeStep()
 //This runs at every timestep.
 {
 Runoff = Coeff * Math.max(Rainfall

- PET, 0.0);
 }
 }

This kind of straightforward TIME routine has
three basic sections:

� An initiation section, containing basic
declarations of the package, any external
library requirements, class declaration
and, if required, parent class declaration

� declaration section for parameters and
variables, and

� run section, wherein lies the core code
for the algorithm

The component above extends the abstract parent
class Model, which controls the timestepping of
the model through a runTimeStep() abstract
method, and also keeps track of the progress of
the model run. Model has a Subject parent
class that, together with an Observer class,
provides a communication structure built on the
Observer pattern (Gamma et al., 1994). Data is
also an abstract parent class, sharing the
Subject parent class with Model. All child
classes of Data implement the setItem (in
i: int, in val: double) method and the
item(in i: int) query to provide a
common data interface (Rahman et al., 2003).

A similar code structure to the above could be
used to write the model component in other
languages, such as C#, FORTRAN95, Eiffel, and
Visual Basic, each of which would access the
same parent classes and methods.

4. THE OBJECT MODELING SYSTEM - OMS

The OMS is a modelling framework written in
Java, developed by members of the USGS, USDA
and Friedrich-Schiller University. Modular
modelling lies at the core of the OMS with a
structure that clearly separates the system core,
system extensions, and the user interface. The core
provides the functionality for basic module
operation, data handling, input-output, visualisation
and remote access. Extensions cover features such
as module development, application construction
and the management of 'dictionaries' that covers, to
some degree, the semantics of interaction between
modules.

A model component, which performs a similar
computation to the one examined above, can be
implemented in the OMS modelling framework.
The model component also contains three basic
sections: an initialisation section, a run section and
a clean-up or handover section, as shown below.

/**
 * RunOffCoeff.java
 * @author adapted from Sven Kralisch
 */

package de.unijena.jenamodel;
import org.omscentral.data.*;
import org.omscentral.model.*;
import java.io.ObjectInputStream;
import org.j2k_io.j2kBinFileHeader;

public class RunOffCoeff extends
OMSComponent {
 transient OMSTimeInterval time;
 transient OMSEntitySet es;

 /** @attribute Input() */
 transient public double Rainfall =
0;
 transient public double PET = 0;

 /** @attribute Parameter() */
 transient public double Coeff = 0.2;

 /** @attribute Output() */
 transient public double Runoff = 0;

 // Constructor
 public RunOffCoeff() {}
 public void register() {}
 public int init() {return 0;}
 private void initData() {
 OMSEntity currentEntity =
this.es.current;

 try {

 Coeff = Double.parseDouble((String)
currentEntity.getAttribute("Coeff"));
 Rainfall =
Double.parseDouble((String)
currentEntity.getAttribute("Rainfall"
));
 PET = Double.parseDouble((String)
currentEntity.getAttribute("PET"));

}
 catch
(org.omscentral.data.OMSEntity.NoSuch
AttributeException nsae)
{System.out.println("Attribute not
found");
}
}

 public int run() {
 initData();
 double Temp = 0.0;
 if(Rainfall> PET)
 Temp = Rainfall-PET;
 else
 Temp = 0.0;
 Runoff = Coeff * Temp;
cleanup();
return 0;
 }

public boolean cleanUp(){
 OMSEntity currentEntity =
this.es.current;
try {
currentEntity.setAttribute("Runoff",
new Double(Runoff));
}
 catch
(org.omscentral.data.OMSEntity.NoSuch
AttributeException nsae) {
System.out.println("Attribute not
found");
}
return true;
}
}

Comparison between this component and that
built for TIME highlights some similarities and
differences between the two. In terms of control
structures and looping or stepping through time
and space, both have a similar approach, with the
'run part' of the component, containing the
operational algorithm, being separate from these
structures. The differences arise from more
framework-specific attributes, such as the type
and arrangement of parent classes.

These differences influence the selection of an
approach for accessing a TIME component from
the OMS, and indicate that the web service
approach offers the most efficient approach in this
case. Undertaking this would be done through the
core support in OMS for accessing remote

components. In the opposite direction, that of
operating an OMS component from within TIME, a
web service option is also suggested. The .NET
system, upon which TIME is based, has native
support for remote component access, and
implementation of these within TIME would be
straightforward.

This straightforward use of a web service approach
is a reasonably elegant approach to framework
interaction, although it has the difficulties of remote
operation. Despite these difficulties, web services
are growing in use in areas outside of
environmental modelling, and there is a
considerable potential for providing modelling
services in this way.

An alternative approach is to support a common
component interface within each framework, and to
create local component interfaces that conform to
this standard.

5. THE OPEN MODELLING INTERFACE
(OpenMI)

The OpenMI is an approach to components and
models that focusses on the linking of models,
rather than internal model or component operation
or construction (Gijsbers et al., 2002). The
OpenMI has arisen from consideration of existing
environmental modelling and the needs of the
European Water Framework Directive, and consists
of a set of interfaces and concrete classes that
specify the requesting and exchange of data
between models or components.

In the OpenMI a model component, identified as a
linkable component, is populated with persistent
data by an initialisation method
(Initialise()), then data are obtained using a
GetValues() run method invoked from a calling
component. The main difference from the above
two components lies in the pull mechanism, which
allows a calling component to perform the
computation and extract the results with one call to
the GetValues() method.

Given this, the OpenMI approach could be used to
support component interaction between different
frameworks. To achieve this, each framework
would separately contain the methods and classes
necessary to use the OpenMI, and components,
created as discrete objects with published
interfaces, would be made compatible with
OpenMI. This approach, or that of web services,
provides a way of allowing components constructed
in different frameworks to be used together in a
confederated model. Additional difficulties arise,

however, over the semantics of the data exchange
between components.

6. SEMANTIC CONSIDERATIONS

In component-based modelling a common
problem is that of the meaning of data, variable
and parameter names that are used by and passed
between components. When components are built
by different people using different frameworks,
and then offered for use by other people with
other frameworks, misunderstandings can arise
unless a clear meaning is given to data,
parameters and variables. To do this a clear
language needs to be established covering not
only these, but also the modelled concepts.

This problem is well recognised within
disciplines, and approaches such as formal
ontologies have been proposed. As environmental
management expands and becomes more multi-
disciplinary, components are necessarily re-
constructed to fit new scales or conceptual
structures. This brings with it an increased
problem on accurate information exchange
between components. Technical solutions to this
include a greater use of metadata and meta-
information, supported by XML. In particular, the
declarative modelling approach appears to be well
suited to this purpose. The Semantic Web
initiative of the W3C
(http://www.semanticweb.org) also offers some
hope, through improved definition and
communication of the 'meaning' of web
information.

7. CONCLUSION

The area of multi-framework model components
is one of considerable challenge, although the
range of technical solutions listed here, and the
development styles of those working on
environmental modelling frameworks offers an
indication that the difficulties are not
insurmountable. Future key areas for
investigation and practice include testing of the
approaches listed here, identification of the
advantages and disadvantages of implementation,
and extension of these ideas beyond the limited
range of frameworks considered here.

7. REFERENCES

Gamma, E., Helm, R., Johnson, R., Vlissides, J.,
1995. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley:
Reading, MA.

Gijsbers, P. J. A., Moore, R. V., Tindall, C. I.,
2002. HarmonIT: Towards OMI, an Open
Modelling Interface and Environment to harmonise
European developments in water related simulation
software, Hydroinformatics 2002. Fifth
International Conference on Hydroinformatics:
Cardiff, UK, IAHR, p. 7pp.

McLaughlin, B. 2002, Java & XML Data Binding,
O’Reilly.

Muetzfeldt, R., Massheder, J., 2003. The Simile
visual modelling environment. European Journal of
Agronomy, 18, 345-358.

Rahman, J. M., Seaton, S. P., Perraud, J.-M.,
Hotham, H., Verrelli, D. I., Coleman, J. R., 2003.
It's TIME for a new environmental modelling
framework. In: Post, D. A., (Ed.), MODSIM 2003
International Congress on Modelling and
Simulation: Townsville, Modelling and Simulation
Society of Australia and New Zealand Inc., p.
1727-1732.

Rizzoli, A.E., Argent, R.M., Manglaviti, M., Mutti,
M. 2001. Encapsulating Environmental Models
And Data: A Self-Consistent Approach. In:
Ghassemi, F. et al.. (eds). Proceedings of MODSIM
2001, International Congress on Modelling and
Simulation, 10-13 December 2001, The Australian
National University, Canberra, Australia, 1649-
1654.

Villa, F., 2001. Integrating modelling architecture:
a declarative framework for multi-paradigm, multi-
scale ecological modelling. Ecological Modelling,
137 (1), 23-42.

	Brigham Young University
	BYU ScholarsArchive
	Jul 1st, 12:00 AM

	Development of Multi-FrameworkModel Components
	R. M. Argent
	Andrea-Emilio Rizzoli

	Microsoft Word - 51_R.Argent@unimelb.edu.au_1.doc

