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ABSTRACT

META-ANALYSIS USING BAYESIAN HIERARCHICAL MODELS IN
ORGANIZATIONAL BEHAVIOR

Michael D Ulrich
Department of Statistics

Master of Science

Meta-analysis is a tool used to combine the results from multiple studies into
one comprehensive analysis. First developed in the 1970s, meta-analysis is a major
statistical method in academic, medical, business, and industrial research. There
are three traditional ways in which a meta-analysis is conducted: fixed or random
effects, and using an empirical Bayesian approach. Derivations for conducting meta-
analysis on correlations in the industrial psychology and organizational behavior (OB)
discipline were reviewed by Hunter and Schmidt (2004). In this approach, Hunter
and Schmidt propose an empirical Bayesian analysis where the results from previous
studies are used as a prior. This approach is still widely used in OB despite recent
advances in Bayesian methodology. This paper presents the results of a hierarchical
Bayesian model for conducting meta-analysis of correlations and then compares these
results to a traditional Hunter-Schmidt analysis conducted by Judge et al. (2001).
In our approach we treat the correlations from previous studies as a likelihood, and

present a prior distribution for correlations.
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1. INTRODUCTION

As companies attempt to rein in inflated budgets and payrolls, they often look to find
ways to improve the productivity of their employees to maintain company-wide per-
formance. Numerous hypothesized factors can contribute to employee performance,
such as compensation, integrity, accountability, or having a strong, charismatic leader.
One of the oldest theorized facets of job performance is the level of satisfaction that
workers find within their jobs. This relationship, described as the “Holy Grail” of
industrial psychologists (Landy 1989; Judge et al. 2001), has been examined and de-
scribed in many academic and industrial studies (Sheridan and Jr. 1975; Petty et al.
1984; Iaffaldanco and Muchinsky 1985; Judge et al. 2001).

With such a profusion of information, attempts have been made to synthesize
the satisfaction/performance relationship. The first meta-analytical study on this
topic was published by Petty et al. (1984) and was limited to 16 studies from 1964 to
1983. A second meta-analysis conducted by Taffaldanco and Muchinsky (1985) offered
a much broader analytic vantage point than Petty et al. (1984) by incorporating 74
studies. This provided a great boost in understanding of the relationship between
performance and satisfaction, yet fell short on some requirements of a rigorous meta-
analysis (Judge et al. 2001; Hunter and Schmidt 2004). One such flaw was laffaldanco
and Muchinsky’s measurement of job satisfaction. Instead of measuring overall sat-
isfaction, they elected to use a composite score of various satisfaction components.
Despite this study’s shortcomings, it stood as the principal study on the relationship
between performance and satisfaction for over 15 years.

In 2001, Judge et al. published an exhaustive study which examined over 1,000
prior studies on satisfaction and performance. This study attempted to definitively
describe the correlation between job performance and job satisfaction. These esti-

mates were found using procedures presented by Hunter and Schmidt (2004) and are



based on a random effects meta-analysis. This technique is discussed in greater depth
later in the paper.

The data that we used for this project are found in the appendix of Judge
et al. (2001). These data represent 312 unique studies taken from both published and
unpublished articles, and were filtered to insure that they addressed the question of
correlation between job satisfaction and job performance. The total number of studies
gathered by Judge et al. exceeded 1,000, but only 312 of these studies met the criteria
presented by Judge et al. (2001). The total number of subjects represented in this
meta-analysis is 54,417, with an average sample size per study of 174. The size of this
sample emphasizes the benefit of a meta-analysis over conducting original research;
gathering a sample of over 50,000 subjects would require a substantial amount of
money, time, and other resources.

The Judge data set also provided variables describing the source of each study
(whether from a ranked or unranked journal, or from an unpublished study), the
measurement used to assess job performance (supervisory ratings, objective records,
peer-subordinate ratings, or other) and job satisfaction (global measurement, facet
composite measurement, not specified), the research design (cross-sectional or longi-
tudinal), job complexity (low, medium, or high), and sample occupation (scientists or
engineers, sales, teachers, managers or supervisors, accountants, clerical workers or
secretaries, unskilled and semi-skilled workers, nurses, or miscellaneous and mixed).

In the original model, most of these moderator variables did not appear to
substantially alter the correlation between satisfaction and performance. The largest
deviates from the global average were found in high complexity jobs and with scientists
and engineers, both of which measured above average, and nurses, which measured
below average.

Our project is built upon previous work done by Hunter and Schmidt and

presents a Bayesian hierarchical model for use in the meta-analysis of correlations.



Using the hierarchical model allows us to better account for parameter uncertainty in
our model and improve the validity and ease of interpretation. Our approach results

in a fully Bayesian analysis, which permits a Bayesian interpretation of the results.

1.1 Literature Review: Meta-analysis

We find ourselves in the mildly embarrassing position of knowing less
than we have proven. (Glass 1976, p. 8)

Researchers can produce findings and results faster than the information from
these studies can be assimilated. In a short period of time, dozens or more studies can
be conducted on a single research topic (Glass 1976), with each study demonstrating
varying levels of academic rigor and results. The problem of combining studies has
been debated and discussed in earnest since the 1970s. The term “meta-analysis” was
first coined by Glass (1976) in his seminal work. This paper asked that greater atten-
tion be given to researching how to combine quantitative research. Glass contested
that “we [as researchers| face an abundance of information. Our problem is to find
the knowledge in the information. [...] We need more scholarly effort concentrating
on the problem of finding the knowledge that lies untapped in completed research
studies” (Glass 1976, p. 4). Since the birth of “meta-analysis,” hundreds of articles
and dozens of books have been penned to explain both its theoretical and applied
concepts.

Beginning with their article in the Journal of Applied Psychology in 1977,
Hunter and Schmidt laid the foundation for meta-analysis in sociological research
(with an emphasis on organizations and industrial psychology). Hunter and Schmidt
(2004) produced what has become the standard textbook in synthesizing research for
the social sciences. While other books with emphasis on biology, medicine, or other
hard sciences have also become highly influential, they will not be mentioned in detail

here.



Hunter and Schmidt’s earliest work concentrated on validity generalization, a
method that attempts to generalize findings to a larger population (Rafilson 1991;
Schmidt et al. 1985). This technique was used by Hunter and Schmidt to develop a
quantitative measure of job performance that could be applied across different types
of jobs and industries. This method utilized meta-analysis to combine existing studies
in such a way that new studies can be readily integrated into previous research and
the results from a meta-analysis can be applied to new situations by making use of
“artifact” distributions.

Meta-analysis allows a researcher to combine the results found in other studies
into one grand encompassing study. By doing this, the researcher is able to take
advantage of a larger composite sample size without actually having to recruit thou-
sands of participants. Take, for example, a study of retail workers for an international
organization. In order to take a representative sample, the researcher would need to
find a list of thousands of employees, devise a sampling method, write and distribute
a survey, etc., all of which costs lots of money. A meta-analysis still involves a great
deal of work, but would allow the researcher to focus less energy on gathering a data
set and more time on analysis and interpretation. The researcher is now able to go
back and draw from previous work to find new results.

Meta-analysis also allows a researcher to study “moderator” variables that are
not observable in individual studies. Moderators are used to examine relationships
that are only seen when combining studies. These variables are created by coding
unique aspects of individual studies. For example, in Judge et al. (2001), each of
the 312 studies were coded to include information on the type of journal the studies
appeared in, the measurement tools used for both job performance and satisfaction,
the job complexity, and the participant’s occupation. With this information, Judge
et al. (2001) were able to compare the performance/satisfaction correlation in differing

scenarios to better understand this relationship.



Meta-analysis is not without its limitations and faults. Since the data used in
a meta-analysis are taken from previous work, the results of the analysis are greatly
dependent on the quality of others’ research. The researcher loses control over sample
design and how the original data were collected. There is also a substantial amount
of effort required to find all of the relevant research findings. It is not enough to just
find a few convenient studies and slap them together to produce a comprehensive
body of knowledge. Hunter and Schmidt (2004) and Lipsey and Wilson (2001) both
provide a thorough discussion on the steps required to populate the studies to be
used in a meta-analysis. The greatest advantage that Judge et al. (2001) had over
previous meta—studies came from their comprehensive gathering of previous work. By
collecting over 1,000 studies from a multitude of sources, they were able to examine
additional moderator variables and other facets of interest.

There are two philosophies behind meta-analytic calculations. These methods
serve the same ultimate purpose but are based on very different premises. The most
basic approach is called a fixed effects model, which was adopted early in meta-
analysis’s history due to its simple calculations and freedom from computational
requirements (National Research Council 1992; Sutton and Abrams 2001; Hunter
and Schmidt 2004). An assumption made by the fixed effects model is that the
correlations collected from previous studies are taken from a single population.

Random effects models are based on the premise that each study carries with
it a unique true correlation distribution. These distributions are combined to synthe-
size a Pangaea distribution from which a researcher can make inference (Sutton and
Abrams 2001; Field 2005). This approach requires that additional variability terms
be included in the model to account for variability between studies. This additional
variation increases the realism and breadth of application at the expense of more
statistical uncertainty:.

A simple example is used to explain the differences between fixed and random



effects models. In the fixed effects model, one can assume that each study correlation
is sampled from a normal distribution centered at p with variance o2. In the random
effects model, the model takes the form of a two-stage hierarchical model (National

Research Council 1992):

ri ~ N(p;, 07)

pi ~ N(p,7%). (1.1)

In this equation, r; represents a sample correlation taken from the population correla-
tion for that study, p; with variance o2. The p; are then normally distributed centered
around p with variance 72. This random effects model is identical to the fixed effects
model when 72 = 0. Field (2005) also conducted a simulation which showed that the
random effects model is highly accurate when study population correlations vary. It
is also important to note that in this model, p and ¢ are independent from one an-
other. We will later show using the sampling distribution of r that this is an incorrect
assumption for correlations.

As with most statistical techniques, advances in methodology take time to im-
plement. In 1992 the National Research Council published a report detailing the
advantages of the random effects model and stated that “the panel generally favors
random effects models,” and that “fixed effects models should be used for combin-
ing information only in the presence of significant prior information that 72 = 0”
(National Research Council 1992, pp. 52, 143). Hunter and Schmidt (2004) and
the National Research Council (1992) both present tests for homogeneity, checking
whether 72 = 0. Despite the recommendation from the National Research Council
and the philosophical advantages of a random effects model, numerous fixed effects
models still appear in the literature (see Hunter and Schmidt, pp. 395-96 for a
listing).

There are three proposed formulae used to calculate point and variability esti-



mates for random effects meta-analysis. These techniques are compared and criticized
in Johnson et al. (1995) and debated by Schmidt and Hunter (1999). The empirical
Bayesian approach found in Hunter and Schmidt (2004) has become a de facto stan-
dard in organizational behavior and was the basis for the calculations used by Judge
et al. (2001). Deeley and Lindley (1981), Morris (1983), and Sutton and Abrams
(2001) show that these empirical methods are a classical maximum likelihood method
disguised as a Bayesian analysis. Hunter and Schmidt (2004) justify their use of the
Bayesian paradigm by adjusting the correlations to account for statistical artifacts.
After simply adjusting for statistical artifacts, Whitener (1990) claims that these cor-
relations now represent the posterior distribution. The reliability estimates for each

study used in our analysis were provided by Judge et al. (2001). These estimates are

Tcorrected = Tay (1 . 2)
y/reliability, , /reliability,
and
o2
o2 (1.3)

© comected \/reliability, , /reliability, '

Equations (1.2) and (1.3) are used to correct for artifact distributions using reliability
estimates for  and y.

In this approach, an estimate of the true observed correlation is found using

_ Y [Nir]
PN 14)

This formula is a weighted average with the sample size of each study used as weights.

Similarly, an estimate of the variance between studies is found using

o) = Z[NZ(TN_] 1 (1.5)

which again incorporates the sample sizes of the individual studies as weights.

The formula presented by Hunter and Schmidt for finding the variability at-

tributed to sampling error is
1—72%)?2
L=

- (16)



Finally, the variance of population correlations is

_ 2
o,=0,—0,.

hs)



2. ANALYSIS

2.1 Development

The examples used in Hunter and Schmidt (2004) did not clearly explain how
to correct correlations for attenuation based on reliability coefficients. To better
understand how these equations are used, we reproduced Table 1.4 from Judge et al.
(2001) using the same methods described in Hunter and Schmidt (2004). The results
are shown in Table 2.1. In our findings, we calculated p = 0.29 and Uﬁ to be 0.19,
compared to 0.30 and 0.21 as reported in Judge et al. (2001), respectively. The
psychometric package in R, which uses the Hunter and Schmidt formulae for meta-
analysis, produced the same results as we found in our own calculations.

These differences do not change the conclusion reached in Judge et al. (2001);
however, there is room to question whether these results should be considered signif-
icant as assumed by Judge et al. In reference to the 80% credibility interval, Judge
et al. wrote the following:

The 80% credibility interval also excluded zero, indicating that more
than 90% of the individual corrected true score correlations are greater
than zero. [...] Thus, these results indicate that the mean true score
correlation between job satisfaction and job performance is moderate
in magnitude (.30) and distinguishable from zero. (2001, p. 385)

One question about this conclusion revolves around the methods used to calcu-
late a credibility interval. When Hunter and Schmidt developed their methodology
for meta-analysis, Bayesian methods were still in their infancy. The Hunter-Schmidt
model utilizes an empirical Bayesian approach, where the correlations from previous
studies is used as the Bayes prior distribution. This empirical technique was favored
due to the computational limitations of the 1970s, which prohibited researchers from

utilizing a Markov chain Monte Carlo (MCMC) or similar algorithm to compute the
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k N r  SD. p SD, 80%CV 95%ClI % Var Q
312 54471 0.18 0.12 0.30 0.21 0.03-0.57 0.27-0.33 25.15 1240.51

Table 2.1: Judge et al. (2001). k=number of correlations; N=total sample size for
all studies combined; mean r = average uncorrected correlation; SD,=standard de-
viation of uncorrected correlation; mean p=average corrected correlation; SD, =
standard deviation of corrected (true score) correlation; 80% CV = lower and upper
limits of 80% credibility interval; 95% CI = lower and upper limits of 95% confidence
interval; % variance = percentage of the variance in the correlations explained by sta-
tistical artifacts; () = statistic used to test for homogeneity in the true correlations
across studies.

posterior distribution. Researchers at the time also distrusted what we would con-
sider a true Bayesian analysis because of the subjective nature of selecting Bayesian
prior distributions. A comparison between an empirical and a “fully” Bayesian meta-
analysis are presented by Sutton and Abrams (2001). Sutton concludes that a “fully”
Bayesian meta-analysis is preferable to the empirical analysis presented by the early
meta-analysis developers.

The majority of meta-analyses that are currently being conducted in the field
of industrial psychology still use an empirical Bayesian approach. Deeley and Lind-
ley (1981) and Morris (1983) show that these empirical methods are really classical
maximum likelihood methods disguised as Bayesian. Since these methods are not
truly Bayesian, Raudenbush and Bryk (1985) argue that they should not be allowed
a Bayesian interpretation. A method for conducting a fully Bayesian analysis in medi-
cal research was explained for by Sutton and Abrams (2001) and in general in Gelman
et al. (2003). These approaches take advantage of modern MCMC methods, which
allow a more robust and sophisticated statistical model as well as a more intuitive
interpretation.

The full Bayesian analysis as described by Sutton and Abrams (2001) is a
Bayesian hierarchical model. This approach to meta-analysis has found wide use

outside of the organizational behavior literature, including in medicine, ecology, and

10



education (Seltzer et al. 1996; Sutton and Abrams 2001; Helser et al. 2007). The
Hunter-Schmidt model assumes both a normal likelihood and a normal prior distri-
bution. These assumptions allowed Hunter and Schmidt to use a conjugate normal
posterior distribution, which had little computational requirements. These normal
distribution assumptions are not required for the hierarchical model. Hierarchical
models permit greater flexibility by allowing researchers to use any reasonable likeli-
hood and prior distributions to model correlation.

The Hunter-Schmidt paradigm also incorporates a knowledge of the posterior
distribution of p using Formulae (1.7), (1.5), and (1.6). In Whitener (1990) we are
told,

In Bayesian statistics, the appropriate standard deviation used to

construct credibility intervals is the standard deviation of the pos-

terior distribution. For meta-analysis, the posterior distribution is

the distribution of effect sizes that results after corrections have been

made for statistical artifacts. (p. 316, emphasis added)
These formulae do not necessarily describe a true Bayesian posterior distribution,
which is implied by the conversation about Bayesian credibility intervals found in
Hunter and Schmidt (2004). Using the hierarchical model, we are able to calculate a
true posterior distribution of p, which is then used to find a true Bayesian credibility
interval.

Using the hierarchical approach, we treat the correlations found in Judge et al.
(2001) as our likelihood. This differs from the Hunter-Schmidt approach, which treats
these data as being taken from the prior distribution. The likelihood distributions
used in our analysis were chosen because they had identical support to a correlation
statistic, (—1,1). There are very few continuous distributions which are bounded
on (—1,1). The most widely known, the Beta distribution, had to be generalized to
range from —1 to 1. It is possible to truncate any distribution at —1 and 1, but for the

purposes of this study, we chose to only examine the normal distribution. Kendall and
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Stuart (1973) show that correlation statistics approximately follow a ¢-distribution,
which is very similar to the normal distribution.

We chose to examine three candidate prior distributions for our analysis. We
selected prior distributions using similar rationale to our method in selecting our
likelihood distributions. For this reason our first two candidate distributions are a
Beta distribution ranging from —1 to 1, and a Truncated Normal distribution with
the same range. Finally, we used a Uniform(—1,1) distribution, a noninformative
prior, as a comparison distribution.

The general form of our hierarchical model is

w(p) o< [T w(oilr)m (o)
pi ~ 1(0). (2.1)

In this equation, p represents the grand population correlation, p; represents the
population correlation from each study, r; represents the sample correlation from

each study, and f represents one of the previously mentioned prior distributions.

2.2 Methods

As previously mentioned, we elected two different likelihood distributions: the
Truncated Normal (TN) distribution (2.2), and the Generalized Beta (GB) distribu-
tion (2.3) (United States Commerce Department 2006), both of which are bounded
by —1 and 1. For our prior distributions on p;, we used a Uniform(—1, 1) distribu-
tion, in addition to the TN and GB distributions. These combinations gave us six
unique candidate distributions for modeling the correlation between job satisfaction
and job performance. For comparison purposes, we also modeled a Normal-Normal
likelihood-prior distribution.

If X ~TN(p,o0) then

(%)
(78) — @ ()

f(zlp,0,a,b) = a<x<b. (2.2)

q
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If X ~GB(a, ) then

(x —a)* 1 (b— :10)6*1

el B.0.8) = P

a<x<b. (2.3)

2.2.1 Sampling Distribution of r

Once these distributions were defined, we used the sampling distribution of r
to determine values for p, o, a, and 5. According to Kendall and Stuart (1969), “the
ordinates and distribution function of the correlation coefficient are not expressible in
terms of simple mathematical functions” (p. 389). Despite this limitation, Kendall
and Stuart (1969) state that “r tends to normality” as n increases. Additionally,

Kendall and Stuart (1969) give equations for both the mean,

E(r:) = p; {1 _0=e) o (%) } : (2.4)

2ni i

and variance,

Var(rs) = ((171_—_‘)?2) - (1 4 121—752) +0 (%) , (2.5)

of the sample correlation coefficient.

Figure 2.1 shows the effect that the size of the correlation coefficient and sample
size have on the sampling distribution of r. From this we see that as the sample
size increases, the variance decreases. This relationship gives greater strength to
studies with larger sample sizes, which in essence gives studies with a larger sample
size a greater weight in the final joint posterior distribution. We also see that as r
approaches —1 or 1, the variance also asymptotically approaches 0. This association
insures that the sampling distribution will not over reach the bounds of the correlation
coefficient (—1, or 1), while also giving greater weight to the studies that differ the

most from 0.
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n 1000 -1

Figure 2.1: Variance of the distribution of r with different n and r



2.2.2 Prior-Likelihood Combinations

In order to implement the MCMC algorithm, we first determined the complete
conditional distributions for p;. Using a GB as a likelihood distribution, we find the

complete conditionals of p; with a Uniform(—1,1) prior to be

m(pilr) o< f(rilp:) - 7(pi)
TR ()

thus

r; a;—1(1 _ r; Bi—1
o] < ][ [( ;(Bi,ﬁi)(zlaﬁﬂi—)l 1 . —l<r<l. (2.6)

Now using a TN(p, o, —1, 1) prior where p = 0 and ¢ = v/.4 we have

m(pilr) o< f(rilps) - w(pi)

B (1 + 1)1 — )it .
=11 { B(ai, ;)20 61 } e < :

thus

AT (). e e

Finally, combining the GB likelihood with a GB(«, 3, —1, 1) prior where oo = 2

and 0 = 2 we have

m(pilr) o< f(rilp:) - w(pi)

_ (ri + l)aifl(l — Ti)ﬁi*1 (pi + 1)271<1 _ pi>271 .
-1l { B(ay, 3;)200+01 } ' [ B(2,2) - 22421 ;

thus

r. ai=1(1 _ p)Bi—1
R R e e R S S RS 1)

15



The GB distribution is not parametrized by its mean and variance. Instead
this distribution is characterized by two shape parameters, o and 3. We desired to
have the mean of our likelihoods match the mean of the sampling distribution of
the correlation coefficient, which meant setting Equations (2.4) and (2.5) equal to the
expected value and variance of a GB distribution. To do this, we first found the mean
and variance of a GB distribution, with range —1 to 1. The mean of this distribution

can be expressed as,

E(r) = (2.9)

and the variance,
da3
(@+ 87+ 5+1)

(see Appendix A for a detailed walk-through).

Var(r) = (2.10)

With these equations, we were able to solve for a; and [3; by solving the system

of equations,

pi <1 @ —p?)> :ozZ: _@:

2nz az+/81
1 — p2)2 11p? 4oy 3
w(l_k PZ> = 2aﬁ . (2.11)
n; — 1 2n; (i + Bi)* (i + Bi + 1)

Using Maple™ we found for each «; and 3;

4n3 +8p*n? —8n% + 23 p'n — 27 p*n — p* + p?) (p* — p+2n)

B (
a=-1/8 (=14 p)n?(11p? +2n) ’

(2.12)

and

B=1/8 (—p6—|—23p6n—p5+23p5n—29p4n—|—54p4n2—I—p4—|—8p3n2+p3)+
(11 p% + 11 p%2 + 2 pn + 2n) n?
1/8(—27p3n+20p2n3—62p2n2+2p2n—|—4pn3—8pn2—16n3—|—8n4)' (2.13)

(11p2 4+ 11p2+2pn+2n)n?

These estimates for a; and 3; allowed us to generate a sample for each p; based
on the sampling distribution of r;, and give greater weight to the studies from Judge

et al. (2001) which had larger sample sizes. Using these values in an MCMC algorithm,
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we were able to draw 50,000 observations from each of the 312 studies. These samples
could then be combined to create a joint posterior distribution of p with an effective
sample size of 15,600,000.

Using the TN likelihood, the complete conditional distribution of p; with a
U(—1,1) prior is

m(pilri) oc f(rilpi) - m(pi)

50
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Now, using a TN(p, o, —1,1) prior where p = 0 and o = /.4 we have
m(pilri) oc f(rilp:) - m(p:)
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Finally, combining the TN likelihood with a GB(«, /3, —1,1) prior where oo = 2

and # = 2 we have
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thus

1. Ti—pi
Lo ()

m>_<p<m

Si Si

[pi]OCH (I)(

) o + D)(1 = pi)], —l<r<1. (2.16)

For the TN likelihood distributions above, we used (2.4) and (2.5) as estimates
of p; and s? respectively (omitting O(-)). We then used these estimates in an MCMC
algorithm to generate a sample of 50,000 from each of the 312 studies used in Judge
et al. (2001). This allowed us to create a joint posterior distribution from which we

could conduct our analysis.
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3. RESULTS

With the samples from the joint posterior densities, our task turned to determining
which candidate posterior distribution best described the relationship between job
satisfaction and job performance.

Before beginning this project, we believed that the fully Bayesian analysis would
have a smaller posterior standard deviation than 0.21, the standard deviation reported
in Judge et al. (2001). Our thought was that by using a true hierarchical model with
proper prior distributions, we could better describe each of the 312 study distribu-
tions, which would then reduce the overall posterior variance. In lieu of this, we
decided one way to determine the quality of a posterior distribution would be by
comparing standard deviations between each candidate distribution, and against the
standard deviation reported in Judge et al. (2001).

Table 3.1 lists the standard deviations for each of our six proposed distributions.
Not surprisingly, the Uniform prior distribution led to the largest posterior standard
deviation. The Uniform distribution included no meaningful prior information. Since
this distribution has no tails, it is easy to see that the Uniform prior will have a larger
variation than either the TN or the GB distributions.

The TN prior distribution had a lower standard deviation for both the TN and
the GB likelihood distributions than the GB prior distribution. The TN likelihood
had a smaller standard deviation than the GB likelihood when using a TN prior, but
not with the GB prior. Overall, using a TN for both prior and likelihood resulted in
the smallest standard deviation.

There are two standard deviations reported in Judge et al. (2001) which we
can use for comparison. The first is based solely on the correlation coefficients from
each of the 312 studies. The second is based on correlation coefficients corrected for

attenuation and statistical artifacts. It is difficult to say which of these measurements
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Prior
Uniform | TN GB
—~ | TN | 0.1983 | 0.1678 | 0.1930
~ | GB| 0.1914 | 0.1860 | 0.1877

Table 3.1: Standard deviations of the joint posterior distributions

is a better comparison for our purposes. The first uses uncorrected correlations to
determine the standard deviation of the distribution of r. These uncorrected corre-
lations were also used in our analysis. The second approach attempted to describe
the distribution of p (albeit incorrectly), which distribution we also attempted to de-
scribe. Since our analysis attempts to describe the distribution of p while using the
uncorrected correlations, it is little surprise that the standard deviations we found
fell between the standard deviations reported in Judge et al. (2001). Hence it is our
belief that based on the standard deviation criteria, our approach produces a better
estimate for distribution spread.

Figure 3.1 graphs each candidate posterior distribution. From this graph we no-
tice a few things. First, these distributions are not smooth and symmetrical. Hunter
and Schmidt’s model assumes a Normal posterior distribution, which is both smooth
and symmetrical. It is our belief that a posterior distribution which combines infor-
mation from different studies is unlikely to be either smooth or symmetrical. The
second thing that we notice is that our distributions are nearly identical to one an-
other. The lone exception to this is the TN prior/likelihood distribution. This tells
us that posterior distribution is primarily based on the actual data and not the prior
or likelihood distributions.

For the purpose of information, Table 3.2 reports the means from each of our
candidate distributions.

The next step in our analysis was calculating intervals for our posterior dis-
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Figure 3.1: Joint posterior densities for each likelihood-prior combination

Prior
Uniform | TN GB
—~ | TN | 0.1934 | 0.1606 | 0.1890
S [ aB 01875 |0.1813 | 0.1836

Table 3.2: Joint posterior means for each of the six distributions
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Prior
Uniform TN GB
—~ | TN | (-0.062,0.417) | (-0.053,0.346) | (-0.060,0.408)
~ | GB | (-0.058,0.407) | (-0.055,0.401) | (-0.055,0.402)

Table 3.3: Joint posterior 80% credibility intervals for each of the six distributions

tribution. Judge et al. (2001) present what they call a Bayesian credibility interval
for p which was calculated using Hunter and Schmidt (2004). In our analysis, we
calculated credibility intervals using the highest probability density of the posterior
distribution. Table 3.3 lists these intervals for each of our candidate distributions.
As can be seen, these intervals differ from those found in Judge et al. (2001) (Table
2.1). Whereas Judge et al. (2001) found their interval did not overlap 0 (and therefore
they conclude p is significantly different from 0), each of our intervals did encompass
0. This tells us that the relationship between job satisfaction and job performance is
slightly positive, but not distinguishable from 0.

Our intervals were also narrower than the interval found in Judge et al. (2001).
Judge’s interval was 0.54 units wide, while our intervals were about 0.45 units wide.

Once we had finished comparing the six distributions we first proposed in our
study, we decided to examine a Normal prior, Normal likelihood hierarchical model.
This was done to better replicate the model used by Hunter and Schmidt. We used
the same MCMC approach as described earlier, which differs from the methods used
by Hunter and Schmidt. The Hunter and Schmidt model does not view meta-analysis
as a hierarchical model; therefore, their resulting posterior distribution is conjugate
to a Normal distribution which can be summarized using formulae from Hunter and
Schmidt (2004). This approach does not allow each sample used in the analysis its
own distribution.

The resulting posterior distribution found using an MCMC algorithm can be
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seen in Figure 3.2. The mean of this distribution is 0.1929, with a standard deviation
of 0.1715, both of which are similar to the statistics found from our original posterior
distributions. We also observe from Figure 3.2 that the general shape of the Normal-
Normal posterior distribution is similar to those of our proposed distributions. The
Normal-Normal posterior distribution exhibits more jaggedness than our previous
posterior distributions. This jaggedness is a result of a smaller variability around p;
with the Normal-Normal model than in any of our alternative models.

Figure 3.2 compares the posterior distributions of the Normal-Normal hierarchi-
cal model, a GB-GB hierarchical model, and the conjugate Normal model presented
by Hunter and Schmidt. As you can see, the Hunter-Schmidt model is quite different
from the hierarchical models. Since the Hunter and Schmidt posterior distribution is
normally distributed, it does not have the same skewness as any of the hierarchical
models. The Hunter-Schmidt model is also symmetric, and centered around 0.30,
whereas the hierarchical models are nonsymmetric and centered around 0.19.

From Figure 3.2 we also see the danger in Hunter and Schmidt’s claim that
we can arrive at the posterior distribution for correlations simply by correcting for
attenuation. This correction produced a distribution with a wider range and a sym-
metric shape compared to the narrow yet skewed distributions produced using a fully
Bayesian analysis.

We feel that skewness is an important facet of the relationship between job sat-
isfaction and job performance. Although the correlation between these two variables
is weak, there is a positive skewness to their relationship which speaks to the logical

existent relationship between satisfaction and performance.
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Figure 3.2: Comparing the Normal-Normal, GB-GB, and Hunter-Schmidt posterior
distributions
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4. CONCLUSION AND DISCUSSION

4.1 Discussion

Judge et al. (2001) produced the largest meta-analysis on the correlation be-
tween job satisfaction and job performance to date. Their methods were largely based
on the random effects model presented in Hunter and Schmidt (2004). These meth-
ods are presented by Hunter and Schmidt as Bayesian despite not utilizing a fully
Bayesian paradigm.

We proposed a fully Bayesian hierarchical model to verify the accuracy of
Judge’s results, and to improve the validity of his interpretations. Although our model
did not improve over one of the standard deviations found in Judge et al. (2001), we
believe that this hierarchical model is still an improvement over the current empirical
Bayesian model employed in meta-analysis in the business field. This fully Bayesian
approach more accurately incorporates information from previous studies by treating
these studies as a likelihood. A prior distribution for these data can then be formed
by eliciting expert opinion or by using noninformative distributions. This is made
possible by computers utilizing power statistical algorithms.

The work done by Hunter and Schmidt is still an important tool in conducting
meta-analysis, but should not be considered Bayesian. Their techniques would be
more accurately described as frequentist, and therefore interpretations of any results
should be done in a frequentist framework. The hierarchical Bayesian model allows
greater flexibility in model specification and in interpretation.

In our models we were also able to utilize the properties of the sampling distri-
bution of r. These properties inhibit the prior, likelihood, and posterior distributions
from reaching beyond the natural limits of the correlation statistic. By correcting

for attenuation, the Hunter and Schmidt model enables their statistics to go past the
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limits of correlations. The variance of the sampling distribution of r also allowed us
to more appropriately lend greater weight to studies with larger sample sizes.

In this project we proposed six possible prior/likelihood combinations. Through
the MCMC algorithm we were able to show that the resulting posterior distributions
were all very similar. In Figure 3.1 we see that five of these distributions are essentially
interchangeable.

Using these posterior distributions we were able to calculate credibility intervals
to compare to the intervals found in Judge et al. (2001). The intervals we calculated
encapsulated 0, which tells us that there is a reasonable probability that the correla-
tion between job satisfaction and job performance is 0. This differs from the result
found in Judge et al. (2001), which found this relationship to be significantly positive,
albeit very slightly.

This result goes against conventional wisdom which would believe that the more
satisfied employees are with their jobs, the more productive they will be. There are
likely dozens of reasons for such a relationship which we will not explore at this time.
We will speculate that the complexity of the satisfaction/performance relationship
does not lend itself to simple studies. Each of these variables are multifaceted and
complex.

We have also not been able to justify the use of an 80% credibility interval
found in the Hunter-Schmidt approach to meta-analysis. A standard used in interval
estimation has been to use at least a 90%, if not a 95% credibility interval. When
using a 90% credibility interval as opposed to the 80% credibility interval presented in
Judge et al. (2001), the given interval would no longer exclude 0, negating one of the
fundamental findings of Judge et al. (2001): that there exists a nonzero correlation
between job performance and job satisfaction. A justification for using an 80% interval
was neither given in Judge et al. (2001) nor Hunter and Schmidt (2004) and goes

against conventional statistical practices.
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Since the business audience to which this research is directed may be less com-
fortable with advanced statistical concepts, we propose that future meta-analytic
research use a uniform prior distribution and a TN likelihood distribution. These
distributions provide the simplest and most easily understood interpretations. For
more advanced researchers we would recommend the GB-GB model. This model will
allow a researcher to more intuitively express the weight that the prior distribution

will have in the analysis in a way similar to using a Beta prior.

4.2 Future Research

The purpose of this paper was mainly to introduce an approach to conduct a
modern Bayesian meta-analysis. Future research should examine the influence that
nondiffuse priors have on the posterior distribution. In our model we centered each
of our priors at 0 with a large variance. With a well-informed prior distribution we
would be able to reduce the posterior variance to produce even stronger results.

We were also limited in scope to a single data set. This prohibited us from
examining the behavior of each of these models in more extreme situations where
|r| > .8. It is our belief that the Hunter and Schmidt model will perform very poorly
when studying data in these ranges. The models we proposed will properly adjust
themselves as they approach —1 and 1 since our models were built on the sampling
distribution of r. Any future simulation should also vary the numbers of previous
studies used in an analysis.

Research should also be done to examine the validity of correcting correlations
for reliability as proposed by Hunter and Schmidt (2004). A simulation could be
conducted to examine whether this technique overinflates a correlation statistic or

whether this is an appropriate adjustment.
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B. R CODE

See also the attached CD

B.1 Truncated Normal Likelihood

setwd("/Users/gradstudent/Documents/Masters Project/")
library(msm) #This library holds truncated normal distribution
functions library(MCMCpack) #Various MCMCM functions library(MASS)
library(mvtnorm) #multivariate normal library(xtable) library(sm)

library(boa) #boa.hpd() calculates credible intervals library(rgl) #3d

plots

###Read in data data<-read.csv(’data2.csv’) #names(data)

#k is the number of studies in our study k<-nrow(data)

#I just prefer little n for sample sizes data$n<-data$N N<-sum(data$n)

#Total sample size

#a and b are the bounds for correlations which will be used throughout

the program a<- -1 b<-1

#Formula for st.dev. of correlations found in The Advanced Theory of

Statistics s2<-(1-data$r~2)"2/(data$n-1)*(1+11*xdata$r~2/(2*data$n))

mu<-data$r*(1-(1-data$r~2)/(2*data$n))
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#H####HATN 1ikelihood, Uniform prior(-1,1)

#Posterior distribution of TN likelihood and U(-1,1)

gTNUnif<-function(x,mu=0,s2=1/3,k=1){

log(dnorm((x-mu) /sqrt(s2)))-log(pnorm((b-mu)/sqrt (s2))-pnorm((a-mu)/

sqrt(s2)))

}

t<-Sys.time() ###MCMC set up burn<-1000 length<-50000

rhoTNUnif<-matrix(0,ncol=k,nrow=(length+burn))

cand.sig<-.1

t<-Sys.time()

for(i in 2:(length+burn)){

#acc<-0 #Calculate the acceptance rate

#Update rhoUnif (i = 1,...,k), k=312 studies for(j in 1:k){

rhoTNUnif [i, j1<-rhoTNUnif [i-1,j] #This takes care of the else

condition for comparing the candidate value with the previous value

#Generate a candidate value from a normal distribution
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cand<-rnorm(1,rhoTNUnif [i-1,j],cand.sig)

if (cand<b&cand>a){ #Make sure that we’re within the

proper bounds for correlations

accept<-gTNUnif (mul[j],cand,s2=s2[j])-
gTNUnif (mu[j],rhoTNUnif [i-1,j],s2[j])

#Find the difference between the candidate and the previous value

u<-log(runif (1))

if (u<accept) {rhoTNUnif [i, jl<-cand}#;acc<-acc+1} #Test to accept or
reject the candidate value } } #if(i%%500==0){print(i)} #Keep track of
how many iterations have been completed } t<-Sys.time()-t t

#acc/(length+burn) #Calculate the acceptance rate

# ##Check mixing plots #plot(rhoTNUnif [-c(1:burn),23],type=’1") #
##Joint posterior density plot #dev.new()
#lines(density (rhoTNUnif [-c(1:burn),]),col=12)

#abline (v=c(boa.hpd (rhoTNUnif [-c(1:burn),],.05))) #95), Credible
interval # ##Descriptive statistics #mean(rhoTNUnif [-c(1:burn),])

#median (rhoTNUnif [-c(1:burn),]) #sd(c(rhoTNUnif[-c(l:burn),])) # #

########TN 1ikelihood, TN prior(0,sqrt(.2))

#Posterior distribution of TN likelihood and TN prior(0,sqrt(.4))

gTNTN<-function(x,mu=0,s2=1/3,k=1,sig=.2){
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log(dnorm((x-mu) /sqrt(s2)))-log(pnorm((b-mu)/sqrt(s2))-pnorm((a-mu)/
sqrt(s2)))+log(dnorm(mu/sig))
}

###MCMC set up burn<-1000 length<-50000

rhoTNTN<-matrix (0,ncol=k,nrow=(length+burn))

cand.sig<-.1

t<-Sys.time() for(i in 2:(length+burn)){

#acc<-0 #Calculate the acceptance rate

#Update rhoTN (i = 1,...,k), k=312 studies for(j in 1:k){

rhoTNTN[i, j1<-rhoTNTN[i-1,j] #This takes care of the else condition

for comparing the candidate value with the previous value

#Generate a candidate value from a normal distribution

cand<-rnorm(1,rhoTNTN[i-1,j],cand.sig)

if (cand<b&cand>a){ #Make sure that we’re within the

proper bounds for correlations

accept<-gTNTN(mu[j],cand,s2=s2[j])-gTNTN(mul[j],

rhoTNTN[i-1,3j],s2[j1)
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#Find the difference between the candidate and the previous value

u<-log(runif (1))

if (u<accept){rhoTNTN[i, jl<-cand}#;acc<-acc+1} #Test to accept or
reject the candidate value } } #if(i%%1000==0){print(i)} #Keep track
of how many iterations have been completed } t<-Sys.time()-t t

#acc/(length+burn) #Calculate the acceptance rate

# ##Check mixing plots #plot(rhoTNTN[-c(1:burn),23],type=’1’) #
##Joint posterior density plot

#plot(density (rhoTNTN[-c(1:burn),]),col=2)

#abline (v=c(boa.hpd (rhoTNTN[-c(1:burn),],.05))) #95), Credible interval
#boa.hpd (rhoTNTN[-c(1:burn),],.2) ##Descriptive statistics

#mean (rhoTNTN[-c(1:burn),]) #median(rhoTNTN[-c(1:burn),])

#sd(c(rhoTNIN[-c(1:burn),])) # #

#H######TN likelihood, Beta prior(2,2,-1,1)

#Posterior distribution of TN likelihood and Beta prior(2,2,-1,1)
gTNBeta<-function(x,mu=0,s2=1/3,k=1,sig=.3,alpha=2,beta=2){

#log (dnorm((x-mu) /sqrt(s2)))-log(pnorm((b-mu)/sqrt(s2))-pnorm((a-mu)/
sqrt(s2)))+log(dnorm(mu/sig))

log(dnorm((x-mu) /sqrt(s2)))-log(pnorm((b-mu)/sqrt(s2))-pnorm((a-mu)/
sqrt(s2)))+(alpha-1)*log(mu-a)+(beta-1)*log(b-mu)

}
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###MCMC set up burn<-1000 length<-50000

rhoTNBeta<-matrix (0,ncol=k,nrow=(length+burn))

cand.sig<-.1

t<-Sys.time() for(i in 2:(length+burn)){

#acc<-0 #Calculate the acceptance rate

#Update rho (i = 1,...,k), k=312 studies for(j in 1:k){

rhoTNBetal[i, jl<-rhoTNBeta[i-1,j] #This takes care of the else

condition for comparing the candidate value with the previous value

#Generate a candidate value from a normal distribution

cand<-rnorm(1, rhoTNBetal[i-1,j],cand.sig)

if (cand<b&cand>a){ #Make sure that we’re within the

proper bounds for correlations

accept<-gTNBeta(mul[j],cand,s2=s2[j])-
gTNBeta(mu[j],
rhoTNBetal[i-1,j],s2[j]) #Find the difference between the candidate and

the previous value
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u<-log(runif (1))
if (u<accept){rhoTNBetal[i, jl<-cand}#;acc<-acc+1} #Test to accept or
reject the candidate value } } #if(i%%1000==0){print(i)} #Keep track

of how many iterations have been completed } t<-Sys.time()-t t

# ##acc/(length+burn) #Calculate the acceptance rate # ##Check mixing
plots #plot(rhoTNBeta[-c(1:burn),23],type="1’) # ##Joint posterior
density plot #lines(density(rhoTNBeta[-c(1:burn),]),col=13)

#abline (v=c(boa.hpd(rhoTNBeta[-c(1:burn),],.05))) #95), Credible
interval #boa.hpd(rhoTNBeta[-c(1:burn),],.2) ##Descriptive statistics
#mean (rhoTNBeta[-c(1:burn),]) #median(rhoTNBetal[-c(1:burn),])

#sd(c(rhoTNBetal[-c(1:burn),])) #

B.2 Generalized Beta Likelihood

setwd("/Users/gradstudent/Documents/Masters Project/")

library(msm) #This library holds truncated normal distribution
functions library(MCMCpack) #Various MCMCM functions library(MASS)
library(mvtnorm) #multivariate normal library(xtable) library(sm)
library(boa) #boa.hpd() calculates credible intervals library(rgl) #3d

plots

###Read in data data<-read.csv(’data2.csv’) #names(data)

#k is the number of studies in our study k<-nrow(data)

#I just prefer little n for sample sizes data$n<-data$N
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#a and b are the bounds for correlations which will be used throughout

the program a<- -1 b<-1

#Formula for st.dev. of correlations found in The Advanced Theory of
Statistics s2<-(1-data$r~2)~2/(data$n-1)*(1+11*xdata$r~2/(2*data$n))

mu<-data$r*(1-(1-data$r~2)/(2*data$n))

p<-data$r n<-data$n alphaR<-
- (1/8) % (4+n"3+8*p~24n"2-8%n"2+23*p~4*n-27*p~2*n-p~4+p~2) * (p~2-p+2+*n) /

((~1+p)*n~2* (11*p~2+2+*n))

betaR<-
(1/8) * (-p~6+23%p~6*n—p~5+23*%p~5*n-29%p~4*n+54*p~4*n~2+p~4+8*p~3*n"2-
27*p~3*n+p~3+20*p~24n"3-62%p~2*n"2+2*p~ 2*n+4*p*n~3-8*p*n~2-16*n"3+8*n"4) /

((11%p~3+11*p~2+2%p*n+2%n) *n"2)

########Beta 1ikelihood, Uniform prior(-1,1)

#Posterior distribution of TN likelihood and U(-1,1)
gBetaUnif<-function(x,p,n=1){ #

log(dnorm((x-mu) /sqrt(s2)))-log(pnorm((b-mu)/sqrt(s2))-pnorm((a-mu)/
sqrt(s2)))

aR<-

—(1/8) * (4+n"3+8*p~24n"2-8%n"2+23*p " 4*n-27*p~2*n-p~4+p~2) * (p~2-p+2+*n) /
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((~1+p)*n~2* (11*p~2+2+*n))

bR<-

(1/8) * (-p~6+23%p~6*n-p~5+23*%p~5*n-29%p~4*n+54*p~4*n~2+p~4+8*p~3*n"2-

27*p~3*n+p~3+20*%p~2*n"3-62%p”~2*n" 2+2%p~ 2*n+4*p*n~3-8*p*n~2-16*n"3+8

*n"4) / ((11xp~3+11%p~2+2%p*n+2%n) *n"~2)

(aR-1)*1log(x+1)+(bR-1)*1log(1-x)+1gamma (aR+bR) -1gamma (aR) -

lgamma (bR) - (aR+bR-1) *1og(2)

3

t<-Sys.time() ###MCMC set up burn<-1000 length<-50000

rhoBetaUnif<-matrix(0,ncol=k,nrow=(length+burn))

cand.sig<-.1

t<-Sys.time()

for(i in 2:(length+burn)){

#acc<-0 #Calculate the acceptance rate

#Update rhoUnif (i = 1,...,k), k=312 studies for(j in 1:k){

rhoBetaUnif [i,j]<-rhoBetaUnif[i-1,j] #This takes care of the else

condition for comparing the candidate value with the previous value
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#Generate a candidate value from a normal distribution

cand<-rnorm(1,rhoBetaUnif[i-1,j],cand.sig)

if (cand<b&cand>a){ #Make sure that we’re within the

proper bounds for correlations

accept<-gBetaUnif (data$r[j],cand,n=data$n[j])-
gBetaUnif (data$r[j],rhoBetalUnif [i-1,j],n=data$n[j])

#Find the difference between the candidate and the previous value

u<-log(runif (1))

if (u<accept) {rhoBetaUnif [i, jl<-cand}#;acc<-acc+1} #Test to accept or
reject the candidate value } } #if(i%%500==0){print(i)} #Keep track of
how many iterations have been completed } t<-Sys.time()-t t

#acc/(length+burn) #Calculate the acceptance rate

# ##Check mixing plots #plot(rhoBetaUnif[-c(1:burn),23],type="1’) #
##Joint posterior density plot #dev.new()

#lines(density(rhoBetaUnif [-c(1:burn),]),col=4)

#abline (v=c(boa.hpd(rhoBetaUnif [-c(1:burn),],.05))) #95% Credible
interval # ##Descriptive statistics #mean(rhoBetaUnif[-c(1:burn),])
#median(rhoBetaUnif [-c(1:burn),]) #sd(c(rhoBetaUnif[-c(1l:burn),])) # #
#cbind(sort(data$r) ,data$n[order(data$r)],s2[order(data$r)],
(1-data$r~2)"2)

#
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#u######Beta likelihood, TN prior(0,sqrt(.2))

#Posterior distribution of TN likelihood and TN prior(0,sqrt(.4))
gBetaTN<-function(x,p=0,n,sig=.5){

#log(dnorm((x-mu) /sqrt(s2)))-log(pnorm((b-mu)/sqrt (s2))-pnorm((a-mu)/
sqrt(s2)))+log(dnorm(mu/sig))

#p<-data$r[197] #n<-data$n[197] aR<-

—(1/8) * (4+n"3+8*p~2+n"2-8%n"2+23*p~4*n-27*p~2*n-p~4+p~2) * (p~2-p+2+*n) /

((=1+p)*n~2* (11*p~2+2+*n))

bR<-

(1/8) * (-p~6+23*p~6*n—p~5+23*%p~5*n-29%p~4*n+54*p~4*n~2+p~4+8*p~3*n"2-
27*p~3*n+p~3+20*%p~2*n"3-62%p~2*n"2+2%p~ 2*n+4*p*n~3-8*p*n~2-16*n"3+

8*n~4) /((11%p~3+11%p~2+2*p*n+2*n) *n"2)

(aR-1)*1log(x+1)+(bR-1)*1log(1-x)+1gamma (aR+bR) -1gamma (aR) -

lgamma (bR) - (aR+bR-1) *1log(2)+log(dnorm(p/sig))

###MCMC set up burn<-1000 length<-50000

rhoBetaTN<-matrix (0,ncol=k,nrow=(length+burn))

cand.sig<-.2
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t<-Sys.time() for(i in 2:(length+burn)){ #acc<-0 #Calculate the

acceptance rate

#Update rhoTN (i = 1,...,k), k=312 studies for(j in 1:k){
rhoBetaTN[i, jl<-rhoBetaTN[i-1,j] #This takes care of the else

condition for comparing the candidate value with the previous value

#Generate a candidate value from a normal distribution

cand<-rnorm(1, rhoBetaTN[i-1,j],cand.sig)

if (cand<b&cand>a){ #Make sure that we’re within the

proper bounds for correlations

accept<-gBetaTN(data$r[j],cand,n=data$n[j])-
gBetaTN(data$r[j] ,rhoBetaTN[i-1,j],n=data$n[j])

#Find the difference between the candidate and the previous value

u<-log(runif (1))

if (u<accept){rhoBetaTN[i, jl<-cand}#;acc<-acc+1} #Test to accept or
reject the candidate value } } #if (i%%400==0){print(i)} #Keep track of
how many iterations have been completed } t<-Sys.time()-t t

#acc/(length+burn) #Calculate the acceptance rate

# #par(mfrow=c(1,1)) ##Check mixing plots
#plot (rhoBetaTN[c(2200:2300),213],type=’1")

#plot(rhoBetaTN[,301] ,type=’1’) # # #apply(rhoBetaTN,2,mean) ##Joint
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posterior density plot #lines(density(rhoBetaTN[-c(1l:burn),]),col=3)
#abline(v=c(boa.hpd(rhoBetaTN[-c(1:burn),],.05))) #95} Credible
interval #boa.hpd(rhoBetaTN[-c(1:burn),],.2) ##Descriptive statistics
#mean(rhoBetaTN[-c(1:burn),]) #median(rhoBetaTIN[-c(1l:burn),])
#sd(c(rhoBetaTIN[-c(1:burn),])) # #head(rhoBetaTN)

#plot(rhoBetaTN[,303],type=’1") # #

########Beta likelihood, Beta prior(2,2,-1,1)

#Posterior distribution of TN likelihood and Beta prior(2,2,-1,1)
gBetaBeta<-function(x,p=0,n=1,alpha=2,beta=2){

#log(dnorm((x-mu) /sqrt(s2)))-log(pnorm((b-mu)/sqrt(s2))-pnorm((a-mu)/
sqrt(s2)))+log(dnorm(mu/sig))

#log(dnorm((x-mu) /sqrt(s2)))-log(pnorm((b-mu)/sqrt(s2))-pnorm((a-mu)/
sqrt(s2)))+(alpha-1)*log(mu-a)+(beta-1)*log(b-mu)

aR<-

—(1/8) * (4#n"3+8*p~24n"2-8*n"2+23*p~4*n-27*p~2*n-p~4+p~2) * (p~2-p+2%*n) /
((-1+p)*n~2% (11%p~2+2%n))

bR<-

(1/8) % (-p~6+23%p~6*n-p~5+23*%p~5*n-29%p~4*n+54*p~4*n~2+p~4+8*p~3*n"2-
27*p~3*n+p~3+20*p~2*n"3-62*p " 2*n" 2+2*p~ 2*n+4*p*n~3-8*p*n~2-16*n" 3+

8*n"4)/ ((11%p~3+11%*p~2+2*p*n+2*n)*n"~2)

(aR-1)*1log(x+1)+(bR-1)*log(1-x)+1gamma (aR+bR) -1gamma (aR) -

lgamma (bR) - (aR+bR-1)*1og(2)+(alpha-1)*log(p-a)+(beta-1)*log(b-p)

45



###MCMC set up burn<-1000 length<-50000

rhoBetaBeta<-matrix(0,ncol=k,nrow=(length+burn))

cand.sig<-.3

t<-Sys.time() for(i in 2:(length+burn)){

#acc<-0 #Calculate the acceptance rate

#Update rho (i = 1,...,k), k=312 studies for(j in 1:k){

rhoBetaBetal[i, jl<-rhoBetaBeta[i-1,j] #This takes care of the else

condition for comparing the candidate value with the previous value

#Generate a candidate value from a normal distribution

cand<-rnorm(1, rhoBetaBetal[i-1,j],cand.sig)

if (cand<b&cand>a){ #Make sure that we’re within the

proper bounds for correlations

accept<-gBetaBeta(data$r[j],cand,n=data$n[jl)-
gBetaBeta(data$r[j],rhoBetaBetal[i-1, j],n=data$n[j])

#Find the difference between the candidate and the previous value
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u<-log(runif (1))
if (u<accept) {rhoBetaBetal[i, jl<-cand}#;acc<-acc+1} #Test to accept or
reject the candidate value } } #if (i%%300==0){print(i)} #Keep track of

how many iterations have been completed } t<-Sys.time()-t t

# ##acc/(length+burn) #Calculate the acceptance rate # ##Check mixing
plots #plot(rhoBetaBeta[c(1000:1100),23],type="1’) # ##Joint posterior
density plot #lines(density(rhoBetaBetal[-c(1:burn),]),col=1)

#abline (v=c(boa.hpd(rhoBetaBeta[-c(1:burn),],.05))) #95% Credible
interval #boa.hpd(rhoBetaBetal[-c(1l:burn),],.2) ##Descriptive
statistics #mean(rhoBetaBetal[-c(1:burn),])

#median(rhoBetaBeta[-c(1:burn),]) #sd(c(rhoBetaBetal[-c(1l:burn),])) # #

B.3 Normal Likelihood

setwd (’ /Users/gradstudent/Documents/Masters Project/Code/’)

library(msm) #This library holds truncated normal distribution functions
library (MCMCpack)

library (MASS)

library(mvtnorm)

library(rgl)

library(xtable)

library(sm)

library(boa)

data<-(read.table("faculty.dat",col.names=c(’rating’)))$rating

#H#######Beta 1ikelihood, Beta prior(2,2,-1,1)
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gNN<-function(x,p=0,sd,sd.p=.3){

#1og (dnorm( (x-mu) /sqrt (s2)))-log(pnorm((b-mu) /sqrt (s2))-
pnorm((a-mu) /sqrt(s2)))+log(dnorm(mu/sig))
#log(dnorm((x-mu) /sqrt (s2)))-log(pnorm((b-mu) /sqrt(s2))-

pnorm((a-mu)/sqrt(s2)))+(alpha-1)*log(mu-a)+(beta-1)*log(b-mu)

dnorm(x,mean=p,sd=sd,log=T)+dnorm(p,mean=0,sd=sd.p,log=T)

}

###MCMC set up
burn<-1000

length<-50000

rhoNN2<-matrix(0,ncol=k,nrow=(length+burn))

cand.sig<-.03

t<-Sys.time()

for(i in 2:(length+burn)){

#acc<-0 #Calculate the acceptance rate

#Update rho (i = 1,...,k), k=312 studies
for(j in 1:k){
rhoNN[i, jl<-rhoNN[i-1,j] #This takes care of the else

#condition for comparing the candidate value with the previous value
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#Generate a candidate value from a normal distribution

cand<-rnorm(1l, rhoNN[i-1,j],cand.sig)

if (cand<b&cand>a){ #Make sure that we’re within the
proper

bounds for correlations

accept<-gNN(mulj],cand,s2[jl)-gNN(mul[j],
rhoNN[i-1,3],s2[j])

#Find the difference between the candidate and the previous value

u<-log(runif (1))

if (u<accept){rhoNN[i, jl<-cand}#;acc<-acc+1}

#Test to accept or reject the candidate value

}

}

#if (i%%300==0) {print (i)} #Keep track of how many iterations have been
completed

}

t<-Sys.time () -t

t

plot (rhoNN[-c(1:burn),23],type="1")

dev.set ()

lines(density(rhoNN[-c(1:burn),]))
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for(i in 1:k)
rhoNN2[,i]<-rnorm((length+burn) ,mean=(mul[i]*.372)/(.372+s2[i])

,8d=(.3"2xs2[i])/(.372+s2[1]))

B.4 Summary Statistics

##Plot joint posteriors for each distribution

setwd(’/Users/gradstudent/Documents/Masters Project/statthesis/’)

#Plot Joint Density Distributions

pdf (’ jointDensities.pdf’)
plot(density(rhoTNTN[-c(1:burn),]),col=2,1lwd=1,main=" ",xlab="r")
lines(density(rhoTNUnif [-c(1:burn),]),col=1,1lwd=1)
lines(density(rhoTNBeta[-c(1:burn),]),col=3,1lwd=1)
lines(density(rhoBetaUnif [-c(1:burn),]),col=4,1lwd=1)
lines(density(rhoBetaTN[-c(1:burn),]),col=5,1lwd=1)
lines(density(rhoBetaBeta[-c(1:burn),]),col=6,1lwd=1)

legend (’topright’,legend=c(’TN-Unif’,’TN-TN’,’TN-GB’,’GB-Unif’,’GB-TN’,
’GB-GB’) ,co0l=1:6,1ty=1,1wd=2)

dev.off()

##Plot joint posterior for N-N distribution
pdf (’normalnormal.pdf’)
plot(density(rhoNN[-c(1:burn),],bw=.03),col=1,1lwd=1,main="",xlab="1r")

dev.off ()
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plot(n)
for(i in 1:15)

abline(v=1i,col=1i,lwd=2)

lines(xxx<-seq(-1,1,length=100) ,dnorm(xxx,mean=.3,sd=.21) ,type=’1")

dev.set ()

lines(density(rhoNN[-c(1:burn),]))

for(i in 1:k)
rhoNN2[,i]<-rnorm((length+burn) ,mean=(mul[i]*.372)/(.372+s2[i]),

sd=(.3"2*s2[1])/(.372+s2[i]))

plot(density(rhoNN2[-c(1:burn),]))
lines(density(rhoNN[-c(1:burn),]),col=2)
lines(density(rhoTNTN[-c(1:burn),]),col=3)

1s()

#Calculate the means for each posterior
meanTNUnif<-mean (rhoTNUnif [-c(1:burn),])
meanTNTN<-mean (rhoTNTN [-c(1:burn),])

meanTNBeta<-mean (rhoTNBeta[-c(1:burn),])

meanBetaUnif<-mean(rhoBetaUnif[-c(1:burn),])
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meanBetaTN<-mean (rhoBetaTN[-c(1:burn),])
meanBetaBeta<-mean(rhoBetaBeta[-c(1:burn),])
meanNN<-mean (rhoNN[-c(1:burn),])

meanNN2<-mean (rhoNN2[-c(1:burn),])

cbind (meanTNUnif ,meanTNTN,meanTNBeta,meanBetaUnif ,meanBetaTN,meanBetaBeta,

meanNN, meanNN2)

#Calculate the SD for each posterior
sdTNUnif<-sd(c(rhoTNUnif [-c(1:burn),]))
sdTNTN<-sd (c (rhoTNTN[-c(1:burn),]))
sdTNBeta<-sd(c(rhoTNBeta[-c(1:burn),]))
sdBetaUnif<-sd(c(rhoBetaUnif [-c(1:burn),]))
sdBetaTN<-sd(c(rhoBetaTN[-c(1:burn),]))
sdBetaBeta<-sd(c(rhoBetaBeta[-c(1:burn),]))
sdNN<-sd (¢ (rhoNN[-c(1:burn),]))

sdNN2<-sd (c (rhoNN2[-c(1:burn),]))

cbind (sdTNUnif ,sdTNTN, sdTNBeta,sdBetaUnif,sdBetaTN, sdBetaBeta, sdNN,sdNN2)

#Calculate alph level Credible intervals for each posterior
alph<-.2
hpdTNUnif<-boa.hpd (rhoTNUnif [-c(1:burn),],alpha=alph)
hpdTNTN<-boa.hpd (rhoTNTN [-c(1:burn),],alpha=alph)
hpdTNBeta<-boa.hpd(rhoTNBeta[-c(1:burn),],alpha=alph)
hpdBetalUnif<-boa.hpd(rhoBetaUnif [-c(1:burn),],alpha=alph)

hpdBetaTN<-boa.hpd(rhoBetaTN[-c(1:burn),],alpha=alph)
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hpdBetaBeta<-boa.hpd(rhoBetaBeta[-c(1:burn),],alpha=alph)
hpdNN<-boa.hpd (rhoNN[-c(1:burn),],alpha=alph)

hpdNN2<-boa.hpd (rhoNN2[-c(1:burn),],alpha=alph)

credInt80<-cbind (hpdTNUnif ,hpdTNTN,hpdTNBeta,hpdBetaUnif ,hpdBetaTN,
hpdBetaBeta,hpdNN, hpdNN2)
credInt95<-cbind (hpdTNUnif ,hpdTNTN,hpdTNBeta,hpdBetaUnif ,hpdBetaTl,

hpdBetaBeta,hpdNN, hpdNN2)

#Varv and mean for the sampling distribution of r
(1-meanTNTN"2) "2/ (N-1)* (1+11*meanTNTN"2/ (2x*N) )

meanTNTN* (1- (1-meanTNTN"2) / (2x%N) )
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