
Brigham Young University
BYU ScholarsArchive

International Congress on Environmental
Modelling and Software

3rd International Congress on Environmental
Modelling and Software - Burlington, Vermont,

USA - July 2006

Jul 1st, 12:00 AM

Declarative modelling for architecture
independence and data/model integration: a case
study
Ferdinando Villa

Marcello Donatelli

Andrea-Emilio Rizzoli

Peter Krause

Sven Kralisch

See next page for additional authors

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for
inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

Villa, Ferdinando; Donatelli, Marcello; Rizzoli, Andrea-Emilio; Krause, Peter; Kralisch, Sven; and Van Evert, Frits, "Declarative
modelling for architecture independence and data/model integration: a case study" (2006). International Congress on Environmental
Modelling and Software. 286.
https://scholarsarchive.byu.edu/iemssconference/2006/all/286

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2006?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2006?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2006?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2006/all/286?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Presenter/Author Information
Ferdinando Villa, Marcello Donatelli, Andrea-Emilio Rizzoli, Peter Krause, Sven Kralisch, and Frits Van Evert

This event is available at BYU ScholarsArchive: https://scholarsarchive.byu.edu/iemssconference/2006/all/286

https://scholarsarchive.byu.edu/iemssconference/2006/all/286?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages

Declarative modelling for architecture independence and
data/model integration: a case study

Ferdinando Villa, University of Vermont. USA (ferdinando.villa@uvm.edu)

Marcello Donatelli, ISCI, Bologna, Italy
Andrea Rizzoli, IDSIA, Lugano, Switzerland

Peter Krause & Sven Kralisch, University of Jena, Jena, Germany
Frits K. van Evert, PRI, Wageningen, The Netherlands

Abstract: The need for integrating dynamic models with independently developed datasets and other models
has long been recognized. Only recently, advances in modelling technologies, knowledge representation and
protocols for remote communication of structured content have made this goal practical. The same advances
make it possible to decouple the representation of a model from its executable implementation in ways that
allow unprecedented levels of architecture independence and explicit, transportable model declaration. These
developments are crucial to the creation of repositories of models where the models' lifetime is not tied to that
of specific modelling paradigms, execution architectures, or storage technology. In this contribution, we
describe a case study involving the declarative representation of model structure in a web-based knowledge
base, its extraction through standard URLs as XML content, and the automated translation of the XML via
dedicated components into source code models to be compiled for three different target architectures. We
present the minimal declarative specification of the model interface and its key components, and discuss how
it can be translated into executable form. We also describe the advantages of linking of each model
component to explicit, external ontologies for matching model inputs and outputs to datasets and to other
models. The advantages of the declarative specification are discussed in the light of ongoing, large-
scale projects in agricultural and biodiversity modelling.

Keywords: Declarative modelling, ontologies, code generation, platform independent models

1. INTRODUCTION

Mathematical models provide a formal way to
express our knowledge on how observations can
be processed to infer new data. Models, like data,
always conform to a conceptualization. According
to Genesereth and Nilsson (1987) a
conceptualization is the objects, concepts, and
other entities that are presumed to exist in some
area of interest and the relationships that hold
them. Thus, a conceptualization capable of
describing scientific models requires, at minimum,
to express the notion of linkage between scientific
observations and their change in time and space by
causal relationships.
The set of abstractions that allows conceptualizing
and expressing those cause-effect relationships
and their results is the adopted modelling
paradigm, exemplified by notions like ordinary
differential equations, stock-and-flow, or
individual-based modelling.
Very often we speak of “models” without any
distinction between the model equations, the
implementation of the equations in a software code.
Sometimes, even complex software applications,
which include a graphical user interface a database
management system, are called “models”. This
confusion can be solved by the wording

declarative modelling, which has been used to
identify a specification of models that is based on
the semantics of the natural systems being
modelled rather than the algorithms that calculate
their changing states. As such, declaratively
expressed models are independent on architectural
and software details, and need to be implemented
into working algorithms before they can be
simulated. A domain specific case of declarative
modeling is for instance given by the platform
independent model at the base of UML, which
needs a platform specific implementation to become
a software. The implementation of a declarative
model is then delegated to an algorithm, rather than
a human programmer, and this brings in a number
of advantages.
First, the modeller can focus on the modelling
details, rather than the implementation ones: the
modeller is forced into adopting tight, well-
reasoned, and usually better description paradigms
compared to, e.g., the definition of a model implicit
in a FORTRAN program. The main advantage,
though, lies in the fact that declarative models only
depend on the conceptualization (paradigm), and
are thus easier to be exchanged and communicated
as long as the basic conceptualization is agreed
upon. In this paper we focus on the role of
declarative specifications to provide portability and

facilitate integration between independent,
uncoordinated data and models.

2. DECLARATIVE MODELLING

The main tool to support declarative specification
of a model is a formal statement of the underlying
conceptualization. Such a statement is performed
by relating model entities (such as. variables,
equations, parameters) and their meaning (e.g. an
input variable is a temperature) to a set of primitive
concepts, which are shared as the common
understanding of the modelling domain. This is
done implicitly in our brain, when we read a set of
model equations, but it must be explicitly stated to
a machine.
In recent years, the use of ontologies (Gruber,
1993) has become commonplace to express formal
conceptualizations in mutually understandable
ways. Ontologies are expressed using common
representational languages such as XML and they
are optimized for web-based access and sharing. A
concept is expressed by its properties and the
values of the properties, and concepts are put in
relation by links, which themselves have properties
that take values.
Declarative modelling can be supported by
ontologies since they can provide, at the same
time, schemata for model declaration and meaning
for these schemata. Given an ontology describing
model concepts, instances are defined to
declaratively express specific models by referring
to concepts laid out in the ontologies. As an
example, an ontology may provide the definition of
the stock and flow concepts, and a model is
declared by defining specific stock and flow
variables with their names, initial states, and
equations. Such declaration contains enough
information to enable a software execution
environment to simulate the behaviour of the model
over a temporal and spatial extent.
Moreover, thanks to the rich meaning made
possible by current ontology frameworks, an
execution environment can be programmed to
properly connect models to data, and feed
quantities calculated by simulation to other models
in the same environment, without risking the error
resulting from matching inputs and outputs that
specify different natural-world entities.

2.1 The knowledge base

A database that contains both the ontology and
the instances that populate it is usually called a
knowledge base. Several storage options are
available to handle a knowledge base through
extensions to well-established database
technology. The knowledge base can contain
information on data, models, scientific workflows,
and, in general, on all the concepts that are relevant
to our modelling domain.

Storing a model in a knowledge base involves
expressing its logical structure by subdividing the
model into components and mapping each
component to a concept defined in the same
storage. As an example, a model may contain a
parameter that needs to be generated at each run
from a Weibull distribution with given parameters.
In order to enable its declarative specification, the
knowledge base must contain the definition of a
Weibull variate with the specification of the
parameters necessary to fully specify it. This
definition will capture the conceptual essence of
the distribution, and leave it to the software
execution environment the task to create the call to
an actual software routine that will produce the
values from a pseudo-random generator that can
simulate the distribution with the given parameters.
Sophisticated ontologies may provide enough
detail about the concept of a statistical distribution
to move from the “black box” concept illustrated
above to a more complete statement that can
actually inform an experimenter of what a Weibull
distribution, and ultimately a statistical distribution
in general, is and how it is useful in scientific
investigation. The more sophisticated the
ontologies, the more flexibility can be achieved in
integrating data and models from external sources,
and the less detail must be provided to software
execution environments in order to make them
capable to simulate models expressed in declarative
terms.

2.2. Logical vs. procedural views

The declarative representation of a model can be
summarized into (1) reference concepts and
properties to define the identity of each modelled
entity, and (2) the properties that capture the
causal relationships. The first point is the easiest to
achieve, and familiar as embedded in common
software packages such as STELLA (Costanza,
1998) or Simile (Muetzelfeldt and Masseheder,
2003), where model entities (such as stocks and
flows) are laid out graphically. Yet, the second
point is harder and essential to the concept of
model, since the difference between data and
models is that the latter establishes causal
relationships among data.
Causality in conventional mo dels is usually
expressed through equations, defined to calculate
the value of variables. Equations, by naming the
values of other variables, implicitly define causal
relationships that are viewed as dependencies from
a processing point of view. An ontology-based
framework can make these dependency
relationships explicit, and add meaning to them by
means of specializing the kind of relation. So, for
example, a generic depends-on relationship can be
further specialized into a flows-into relationship
between a state variable and a flux variable (rate),
and the underlying software architecture may react

to that by understanding that the flux must be
integrated over time and added. The notion of
variable, so central to conventional approaches,
can similarly be enriched and made dependent on
the mo delled entity. For example, in an individual-
based paradigm, variables describe quantitative
traits of mo delled individuals, but maintain the link
to the individual, which is the main entity
considered. No conflicts need to exist between
paradigms, whose conceptual boundaries often
become blurred when a explicit knowledge-based
approach is used, particularly if notions of scale are
formally defined.

2.3. From to knowledge base to code

In order to perform a translation from a declarative
specification to a working software component, the
software infrastructure must share and understand
the conceptualization. The most sophisticated
systems can read explicit ontologies and infer the
simulation algorithms by reasoning on the contents
of the ontologies. Other, simpler systems can be
envisioned that are tied to one or a few specific
ontologies (such as one that defines notions like
the stocks and flows defined above) and produce
algorithms that calculate them in a high- or low-
level programming language, refusing to handle
any knowledge that can’t be interpreted in those
terms.
An XML schema (Sperberg-McQueen and
Thomson, 2000) can be seen as a relatively informal
ontology, where the meaning is suggested, if not
formally identified, by the names of the node
identifiers, and basic relationships are captured by
the structure of containment of nodes within other
nodes. This is the case discussed in this paper,
where the declarative structure is defined by means
of a formally specified XML schema.
The case studies discussed below all use the same
XML schema, which approximates an ontology of
stocks and flows, and translate the specification of
a model into three different high-level languages
that can be compiled and executed to simulate the
model. Figure 1 summarizes the process.
The knowledge base contains the ontology that
specifies the domain concepts and the model
concepts. The domain concepts represent the
entities (the variables and parameters), which are
used by the model concepts (the causal
relationship, expressed as equations) to describe
the model itself. Temperature is a concept,
airTemperature and
greenHouseTemperature are instance of
such concept which are also described via specific
attributes, and greenHouseTemperature =
airTemperature * k is a model concept.
These concepts can be expressed using the XML
Schema Definition Language (XSD), and the
instances of the concepts are XML files which can
be processed and translated into software

components targeting various modelling framework
platforms.

Figure 1. A schematic representation of the translation
from declarative representation to binary
implementations of models.

In the following paragraphs we illustrate a simple
model and then provide details of its automated
translation into system architectures available to
investigators worldwide, each targeting a different
modelling framework and programming language.

3. CASE STUDY

We present a model and show how it can be
declaratively represented and translated to three
different target architectures.
The case study is based on static models chosen
to represent two hierarchical levels: several simple
models, which depend solely on inputs, and a
model which uses the simple models to build a
composite model. Although the example is fairly
simple, it represents the type of hierarchical
structure that can be further expanded. We target a
fine granularity of discrete model units, assuming
that “users” may select the composite model,
whereas “modellers” may plug in and out different
simple models to study improvements in the
estimation. Note that this substitution process has
actually happened over the years with the
composite model structures, which are described
below.

3.1 The model

We use as example the models to estimate
reference evapotranspiration according to the FAO
approach (Allen et al., 1998). The composite model,
i.e. the Penman-Monteith equation, is then split
into a number of simpler models (Donatelli et al.,
2006a). The reference evapotranspiration model is:

ET0 =
1
λ

s Rn − G()+ Kt

VPD(ea ,es) ρ C p

ra
s + γ 1+ rc

ra
()

 (1)

Where:
ET0 = reference crop evapotranspiration

(mm d-1);
λ = latent heat of vaporization (MJ kg -1);
s = slope of the saturation vapour pressure-

temperature relationship (kPa °C-1);
Rn = net radiation (MJ m-2 d-1);
G = soil heat flux (MJ m-2 d-1);
Kt = unit conversion factor (86400 s d -1 for ET0

in mm d-1);
VPD = vapour pressure deficit of the air (kPa);
ea = actual vapour pressure (kPa);
es = saturation vapour pressure (kPa);
ρ = mean atmospheric density (kg m-3);
Cp = specific heat of the air (MJ kg -1 °C-1);
ra = aerodynamic resistance;
γ = psychrometric constant (kPa °C-1);
rc = canopy resistance.

While some of the above quantities are numerical
parameters , some others are obtained by simpler
models, which we list in Table 1. Those models will
be stored in the knowledge base and they will be
implemented according to a specific design,
language and platform by the tools of Figure 1.

Table 1: Discrete model units stored in the knowledge
base and implemented from their XML representation.

Simple models Symbol Explanation
DADSmith ρ Atmospheric density
DAVPRHFAO ea Actual vapour

 pressure
DSVPTetens es Saturation vapour

 pressure
DSVPDTetens s Slope of saturation

 vapour pressure
 deficit

DPsychrometric
Constant

γ Psychrometric
constant

DARFAO ra Aerodynamic
resistance

DVPDFAO VPD Vapour pressure
 Deficit
(requires es and ea)

DNRFAO Rn Net radiation
Composite
model

DRETFAO56 ET0 Reference
evapotranspiration

3.2. Principles of conversion

The conversion of a model from its declarative
format into a procedural form, ready to be compiled
and executed, can be automated, following a
principled approach.

In our case studies, the essential ingredients are a
set of XML schemata describing the Domain
Concepts and the Model Concepts used in the
formulation of our modelling exe rcise.
A model concept relies on the definition of entities
such as inputs, states, parameters and outputs. A
model is also characterised by its state transition
equation and output transformations. These model
concepts need to be mapped onto the domain
concepts to associate a meaning with them. For
instance, the model concept labelled Ra needs to be
mapped into the domain concept Net Radiation to
assume a numeric value characterised by a unit and
a dimension.
The conversion algorithm, implemented in the tools
of Figure 1, will then parse all the model concepts,
retrieving the data type information from the
domain concepts in order to create the interface of
the model component class in the target language
or modelling framework. The model classes are
implemented as components, exposing an interface
for their use in various contexts and environments.
The interface varies according to the target
framework, but in general it will include accessor
methods, to set input values and get outputs,
execution methods, to fire the model equations, and
test methods, including pre and post-conditions.
The code of the body of the methods is then
generated according to the content of the state
transition and output transformation equations.
In case the model is composite, some model
variables can be obtained by computing sub-
models. The XML schema of the model concepts
allow to specify such a condition and the
generated code for the model equation can refer
either to another declaratively generated code or to
a call to a binary component, implementing, for
instance, a specialised numerical routine.
Finally, we assume that the target modelling
framework complies to a pattern where the
simulation algorithm is separated from the model
equations. In other words, the model components
simply compute the rate of change of the state
variables and the output values at time t, while the
simulation algorithm takes care of using the state
and rate values to perform the numerical integration
(Rizzoli et al. 1998).
Note that in the case s tudy presented in this paper,
the model is static and therefore it does not make
use of state variables, the model will only need its
output transformations.

3.3. Conversion frameworks

The information provided in the XML file can be
used to generate code targeted either at a specific
framework, or to components with no dependency
to a specific framework and which can be used in
different frameworks via a wrapper class.
Although platform independent in principle, when
a reference to external to the knowledge base

binaries is needed, an attribute specifying the
target platform is added and selectively used by
different code generation applications. The
applications to generate code for the NET platform
make use of the classes in the System.CodeDom
namespace of the .NET 2 framework, whereas Java
code is generated using e.g. JAXB.

3.3.1 To non-framework specific components

The classes generated implement a design to build
extensible components via the design pattern
strategy (Mesketer, 2004), use extensible domain
classes in the interface (Athanasiadis et al., 2006),
implement interfaces also to facilitate the discovery
of types and properties via reflection, and
implement test of pre and post conditions (Meyer,
1997). An example implementation of this design is
in Donatelli et al., (2006b).
A model class, called “strategy”, includes the
definition of parameters using the same type used
to define variables in Domain Classes (VarInfo); the
VarInfo values are static properties of the class.
The IStrategy interface implemented by these
classes contains the methods to run the model, test
pre and post conditions, reset model outputs, and
set parameters default values. The application
Strategy Class Coder requires as inputs, besides
the XML model representation, a class name and
the namespace, and the domain class name used to
instantiate the input output object of the
IStrategy implementation. The composite model
generated is associated with the simple strategies.

3.3.2 To JAMS

The Jena Advanced Modelling System (JAMS)
provides a framework for the development,
composition and application of distributed and
process oriented environmental models. JAMS
implements the system core which provides spatial
and temporal contexts in form of containers called
compound-components into which single
components can be embedded which implement the
calculation procedure of single more or less
complex processes. Each process component
defines in a declarative part what input it needs and
what output it provides followed by the process
implementation in which the calculation takes
place. The single process components are
implemented in knowledge libraries, which are
linked to JAMS during runtime.
The description of a model for the JAMS
environment is made by an XML file in which the
spatial and temporal contexts are defined by
compound component entries which contain the
process component entries in their correct order. In
the process entry the variables and parameters for
each component they need during runtime are
defined by their names and the provider (e.g.
another component or context) which is able to
deliver them:

<jamsvar name="airTempMax"
provider="HRUContext"
providervar="currentEntity.maxTemp"/>
 During runtime the XML file is parsed and the
components are processed by calling their run()
routine which contain the system independent
process implementation.

3.3.3 To ModCom

ModCom is a modelling framework that was first
described by Hillyer et al. (2003). Recent
developments, including a C# implementation, are
available online (Anonymous, 2006). A ModCom
simulation model consists of a number of
independent component models. The component
models of a composite model communicate through
input- and output-ports. Ports are discovered and
connected through the properties and methods of
the ISimObj interface which is implemented by all
component models.
In this study, ISimObj-derived classes were
generated for each of the simple component models
listed in Table 1, after which the composite model
was created by coupling instances of the simple
models using the port mechanism. The following is
a C# statement effectuating a single link between
two component models:

crop.Inputs[“airTempMax”].Data =
 metReader.Output[“airTempMax”].Data;

All prototype applications and sample files are
available at: http://craisci.icamodelling.it/codegen

4. DISCUSSION

While by no means trivial, the software aspects of
knowledge-based systems are well within reach,
and prototypes of knowledge-based modelling
systems are in use today. An immediate, yet
important advantage of declarative modelling is the
portable specification exemplified by the case
studies above, which yields uniformity of
representation to models that can be adapted to the
infrastructure of choice without a need to
coordinate with the model development. Such
models can be understood, extended and improved
collaboratively by groups working with different
architectures with no concern for technical detail.
On a higher-level vision, modelling at the
conceptual level allows users to employ a language
that is tailored to the knowledge domain of
reference, adding the necessary dynamic
information to the definition so obtained, and
letting the software infrastructure infer an
appropriate computing workflow. So-called domain
ontologies can reflect the terms and relationships
proper of different disciplines and make
disciplinary modellers feel at home while at the
same time allowing automated integration between

independently developed disciplinary data and
models.
In the longer-term, the vision for declarative
modelling merges with the more general one of a
Semantic Web (Antoniou and van Harmelen, 2004)
where model content, similar in structure to other
content available online such as data or text
documents, can be searched, retrieved and
simulated from the web with no more specialized
knowledge than it is currently necessary to access
any web page. The opportunity to achieve such a
vision lies in the formal expression of model
content according to homogeneous ontologies and
in the capability of associating specific
conceptualizations with ad-hoc infrastructure
capable of using it transparently.

5. CONCLUSIONS

The approach presented here illustrates a first step
towards building a knowledge base of model and
data content that can be used across
infrastructures.
The XML representation chosen is a first
simplification of a platform independent model to
be used for biophysical modelling, but it has been
useful to approach an operational use of the
knowledge base.
Making this knowledge base homogeneous with
the larger semantic web will provide services to
modellers whose implications in terms of scientific
sharing, integration, collaborative development and
peer review we can only begin to envision.

6. ACKNOWLEDGEMENTS

This publication has been partially funded under
the SEAMLESS integrated project, EU 6th
Framework Programme for Research, Technological
Development and Demonstration, Priority 1.1.6.3.
Global Change and Ecosystems (European
Commission, DG Research, contract no. 010036-2).
F. Villa is also funded by the US National Science
Foundation (grant 0225676, ITR-SEEK).

6. REFERENCES

Allen, R.G., L.S. Pereira, D. Raes, M. Smith. 1998.
Crop evapotranspiration: Guidelines for
computing crop water requirements. Irr. &
Drain. Paper 56. UN-FAO, Rome, Italy.

Anomymous, 2006. ModCom [Online].
http://www.modcom.wur.nl (verified on
February 6, 2006).

Antoniou, G. van Harmelen F. 2004. A Semantic
Web Primer. MIT Press, Cambridge, MA.

Athanasiadis I., A. Rizzoli, M. Donatelli, L. Carlini.
2006. Enriching software model interfaces using
ontology-based tools. In: Proc. of the iEMSs
Congress, Vermont, USA, July 2006.

Costanza, R. Duplisea, D., Kautsky, U. 1998.
Introduction to Special Issue Ecological

Modelling on modelling ecological and
economic systems with STELLA. Ecological
Modelling, Vol. 110, No. 1, pp. 1-4.

Donatelli M., G. Bellocchi, L. Carlini. 2006a. Sharing
knowledge via software components: models
on reference evapotranspiration. European
Journal of Agronomy , Vol. 24, No. 2, pp 186-192

Donatelli M., L. Carlini, G. Bellocchi. 2006b. A
software component for estimating solar
radiation. Environmental Modelling and
Software. Vol. 21, No. 3, pp 411-416

Genesereth, M. R., and Nilsson, N. J. 1987. Logical
Foundations of Artificial Intelligence. San
Mateo, CA: Morgan Kaufmann Publishers.

Gruber, T.R. 1993. A translation approach to
portable ontology specifications. Knowledge
Acquisition, Vol. 5, No. 2, pp. 199-220.

Hillyer, C., J. Bolte, F. van Evert, and A. Lamaker.
2003. The ModCom modular simulation system.
European Journal of Agronomy , Vol. 18, No. 3-
4, pp. 333-343.

Mesketer, S. J., 2004. Design Patterns in C#.
Addison – Wesley, Boston, MT, USA, pp. 247-
256

Meyer, B. 1997 Object-oriented software
construction, 2nd edition. Prentice Hall, Upper
Saddle River, NJ, USA,

Muetzelfeldt, R., J. Massheder. 2003. The Simile
Visual Modelling environment. European
Journal of Agronomy , Vol. 18, No. 3-4, pp. 345-
358.

Rizzoli A.E., J.R. Davis, D.J. Abel . 1998. Model and
data integration and re-use in environmental
decision support system. Decision Support
Systems, Vol. 24, No. 2, pp. 127-144.

Sperberg-McQueen, C. M. and H. Thompson.
2000. XML schema [Online],
http://www.w3.org/XML/Schema (verified on
February 23, 2006).

	Brigham Young University
	BYU ScholarsArchive
	Jul 1st, 12:00 AM

	Declarative modelling for architecture independence and data/model integration: a case study
	Ferdinando Villa
	Marcello Donatelli
	Andrea-Emilio Rizzoli
	Peter Krause
	Sven Kralisch
	See next page for additional authors
	Presenter/Author Information

	278_Villa_1.PDF

