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Abstract: The need for integrating dynamic models with independently developed datasets and other models 
has long been recognized. Only recently, advances in modelling technologies, knowledge representation and 
protocols for remote communication of structured content have made this goal practical. The same advances 
make it possible to decouple the representation of a model from its executable implementation in ways that 
allow unprecedented levels of architecture independence and explicit, transportable model declaration. These 
developments are crucial to the creation of repositories of models where the models' lifetime is not tied to that 
of specific modelling paradigms, execution architectures, or storage technology. In this contribution, we 
describe a case study involving the declarative representation of model structure in a web-based knowledge 
base, its extraction through standard URLs as XML content, and the automated translation of the XML via 
dedicated components into source code models to be compiled for three different target architectures. We 
present the minimal declarative specification of the model interface and its key components, and discuss how 
it can be translated into executable form. We also describe the advantages of linking of each model 
component to explicit, external ontologies for matching model inputs and outputs to datasets and to other 
models. The advantages of the declarative specification are discussed in the light of ongoing, large-
scale projects in agricultural and biodiversity modelling.  
 

Keywords: Declarative modelling, ontologies, code generation, platform independent models  
 
 
1. INTRODUCTION 
 

Mathematical models provide a formal way to 
express our knowledge on how observations can 
be processed to infer new data. Models, like data, 
always conform to a conceptualization. According 
to Genesereth and Nilsson (1987) a 
conceptualization is the objects, concepts, and 
other entities that are presumed to exist in some 
area of interest and the relationships that hold 
them. Thus, a conceptualization capable of 
describing scientific models requires, at minimum, 
to express the notion of linkage between scientific 
observations and their change in time and space by 
causal relationships. 
The set of abstractions that allows conceptualizing 
and expressing those cause-effect relationships 
and their results is the adopted modelling 
paradigm, exemplified by notions like ordinary 
differential equations, stock-and-flow, or 
individual-based modelling. 
Very often we speak of “models” without any 
distinction between the model equations, the 
implementation of the equations in a software code. 
Sometimes, even complex software applications, 
which include a graphical user interface a database 
management system, are called “models”. This 
confusion can be solved by the wording 

declarative modelling, which has been used to 
identify a specification of models that is based on 
the semantics of the natural systems being 
modelled rather than the algorithms that calculate 
their changing states. As such, declaratively 
expressed models are independent on architectural 
and software details, and need to be implemented 
into working algorithms before they can be 
simulated. A domain specific case of declarative 
modeling is for instance given by the platform 
independent model at the base of UML, which 
needs a platform specific implementation to become 
a software. The implementation of a declarative 
model is then delegated to an algorithm, rather than 
a human programmer, and this brings in a number 
of advantages.  
First, the modeller can focus on the modelling 
details, rather than the implementation ones:  the 
modeller is forced into adopting tight, well-
reasoned, and usually better description paradigms 
compared to, e.g., the definition of a model implicit 
in a FORTRAN program. The main advantage, 
though, lies in the fact that declarative models only 
depend on the conceptualization (paradigm), and 
are thus easier to be exchanged and communicated 
as long as the basic conceptualization is agreed 
upon. In this paper we focus on the role of 
declarative specifications to provide portability and 



facilitate integration between independent, 
uncoordinated data and models. 
 
2. DECLARATIVE MODELLING 
 

The main tool to support declarative specification 
of a model is a formal statement of the underlying 
conceptualization. Such a statement is performed 
by relating model entities (such as. variables, 
equations, parameters) and their meaning (e.g. an 
input variable is a temperature) to a set of primitive 
concepts, which are shared as the common 
understanding of the modelling domain. This is 
done implicitly in our brain, when we read a set of 
model equations, but it must be explicitly stated to 
a machine.  
In recent years, the use of ontologies (Gruber, 
1993) has become commonplace to express formal 
conceptualizations in mutually understandable 
ways. Ontologies are expressed using common 
representational languages such as XML and they 
are optimized for web-based access and sharing. A 
concept is expressed by its properties and the 
values of the properties, and concepts are put in 
relation by links, which themselves have properties 
that take values. 
Declarative modelling can be supported by 
ontologies since they can provide, at the same 
time, schemata for model declaration and meaning 
for these schemata. Given an ontology describing 
model concepts, instances are defined to 
declaratively express specific models by referring 
to concepts laid out in the ontologies. As an 
example, an ontology may provide the definition of 
the stock  and flow concepts, and a model is 
declared by defining specific stock and flow 
variables with their names, initial states, and 
equations. Such declaration contains enough 
information to enable a software execution 
environment to simulate the behaviour of the model 
over a temporal and spatial extent.  
Moreover, thanks to the rich meaning made 
possible by current ontology frameworks, an 
execution environment can be programmed to 
properly connect models to data, and feed 
quantities calculated by simulation to other models 
in the same environment, without risking the error 
resulting from matching inputs and outputs that 
specify different natural-world entities. 
 
2.1 The knowledge base 
 

A database that contains both the ontology and 
the instances that populate it is usually called a 
knowledge base. Several storage options are 
available to handle a knowledge base through 
extensions to well-established database 
technology. The knowledge base can contain 
information on data, models, scientific workflows, 
and, in general, on all the concepts that are relevant 
to our modelling domain.  

Storing a model in a knowledge base involves 
expressing its logical structure by subdividing the 
model into components and mapping each 
component to a concept defined in the same 
storage. As an example, a model may contain a 
parameter that needs to be generated at each run 
from a Weibull distribution with given parameters. 
In order to enable its declarative specification, the 
knowledge base must contain the definition of a 
Weibull variate with the specification of the 
parameters necessary to fully specify it. This 
definition will capture the conceptual essence of 
the distribution, and leave it to the software 
execution environment the task to create the call to 
an actual software routine that will produce the 
values from a pseudo-random generator that can 
simulate the distribution with the given parameters.  
Sophisticated ontologies may provide enough 
detail about the concept of a statistical distribution 
to move from the “black box” concept illustrated 
above to a more complete statement that can 
actually inform an experimenter of what a Weibull 
distribution, and ultimately a statistical distribution 
in general, is and how it is useful in scientific 
investigation. The more sophisticated the 
ontologies, the more flexibility can be achieved in 
integrating data and models from external sources, 
and the less detail must be provided to software 
execution environments in order to make them 
capable to simulate models expressed in declarative 
terms. 
 
2.2. Logical vs. procedural views  
 

The declarative representation of a model can be 
summarized into (1) reference concepts and 
properties to define the identity of each modelled 
entity, and (2) the properties that capture the 
causal relationships. The first point is the easiest to 
achieve, and familiar as embedded in common 
software packages such as STELLA (Costanza, 
1998) or Simile (Muetzelfeldt and Masseheder, 
2003),  where model entities (such as stocks and 
flows) are laid out graphically. Yet, the second 
point is harder and essential to the concept of 
model, since the difference between data and 
models is that the latter establishes causal 
relationships among data.  
Causality in conventional mo dels is usually 
expressed through equations, defined to calculate 
the value of variables. Equations, by naming the 
values of other variables, implicitly define causal 
relationships that are viewed as dependencies from 
a processing point of view. An ontology-based 
framework can make these dependency 
relationships explicit, and add meaning to them by 
means of specializing the kind of relation. So, for 
example, a generic depends-on relationship can be 
further specialized into a flows-into relationship 
between a state variable and a flux variable (rate), 
and the underlying software architecture may react 



to that by understanding that the flux must be 
integrated over time and added. The notion of 
variable, so central to conventional approaches, 
can similarly be enriched and made dependent on 
the mo delled entity. For example, in an individual-
based paradigm, variables describe quantitative 
traits of mo delled individuals, but maintain the link 
to the individual, which is the main entity 
considered. No conflicts need to exist between 
paradigms, whose conceptual boundaries often 
become blurred when a explicit knowledge-based 
approach is used, particularly if notions of scale are 
formally defined. 
 
2.3.  From to knowledge base to code 
 

In order to perform a translation from a declarative 
specification to a working software component, the 
software infrastructure must share and understand 
the conceptualization. The most sophisticated 
systems can read explicit ontologies and infer the 
simulation algorithms by reasoning on the contents 
of the ontologies. Other, simpler systems can be 
envisioned that are tied to one or a few specific 
ontologies (such as one that defines notions like 
the stocks and flows defined above) and produce 
algorithms that calculate them in a high- or low-
level programming language, refusing to handle 
any knowledge that can’t be interpreted in those 
terms.  
An XML schema (Sperberg-McQueen and 
Thomson, 2000) can be seen as a relatively informal 
ontology, where the meaning is suggested, if not 
formally identified, by the names of the node 
identifiers, and basic relationships are captured by 
the structure of containment of nodes within other 
nodes. This is the case discussed in this paper, 
where the declarative structure is defined by means 
of a formally specified XML schema. 
The case studies discussed below all use the same 
XML schema, which approximates an ontology of 
stocks and flows, and translate the specification of 
a model into three different high-level languages 
that can be compiled and executed to simulate the 
model. Figure 1 summarizes the process. 
The knowledge base contains the ontology that 
specifies the domain concepts and the model 
concepts. The domain concepts represent the 
entities (the variables and parameters), which are 
used by the model concepts (the causal 
relationship, expressed as equations) to describe 
the model itself. Temperature is a concept, 
airTemperature and 
greenHouseTemperature are instance of 
such concept which are also described via specific 
attributes, and  greenHouseTemperature = 
airTemperature * k is a model concept. 
These concepts can be expressed using the XML 
Schema Definition Language (XSD), and the 
instances of the concepts are XML files which can 
be processed and translated into software 

components targeting various modelling framework 
platforms.  
 

 
Figure 1. A schematic representation of the translation 
from declarative representation to binary 
implementations of models.  
 

 
In the following paragraphs we illustrate a simple 
model and then provide details of its automated 
translation into system architectures available to 
investigators worldwide, each targeting a different 
modelling framework and programming language. 
 
3. CASE STUDY 
 

We present a model and show how it can be 
declaratively represented and translated to three 
different target architectures.  
The case study is based on static models chosen 
to represent two hierarchical levels: several simple 
models, which depend solely on inputs, and a 
model which uses the simple models to build a 
composite model. Although the example is fairly 
simple, it represents the type of hierarchical 
structure that can be further expanded. We target a 
fine granularity of discrete model units, assuming 
that “users” may select the composite model, 
whereas “modellers” may plug in and out different 
simple models to study improvements in the 
estimation. Note that this substitution process has 
actually happened over the years with the 
composite model structures, which are described 
below. 
 
3.1 The model 
 

We use as example the models to estimate 
reference evapotranspiration according to the FAO 
approach (Allen et al., 1998). The composite model, 
i.e. the Penman-Monteith equation, is then split 
into a number of simpler models (Donatelli et al., 
2006a). The reference evapotranspiration model is: 
 



ET0 =
1
λ

s Rn − G( )+ Kt

VPD(ea ,es) ρ C p

ra
s + γ 1+ rc

ra
( )

 (1) 

Where:  
ET0 = reference crop evapotranspiration  

(mm d-1); 
λ = latent heat of vaporization (MJ kg -1); 
s   = slope of the saturation vapour pressure-

temperature relationship (kPa °C-1); 
Rn   = net radiation (MJ m-2 d-1); 
G = soil heat flux (MJ m-2 d-1);  
Kt  = unit conversion factor (86400 s d -1 for ET0 

in mm d-1); 
VPD  = vapour pressure deficit of the air (kPa); 
ea = actual vapour pressure (kPa); 
es = saturation vapour pressure (kPa);  
ρ  = mean atmospheric density (kg m-3); 
Cp = specific heat of the air (MJ kg -1 °C-1);  
ra  = aerodynamic resistance; 
γ  = psychrometric constant (kPa °C-1);  
rc  = canopy resistance. 
 

While some of the above quantities are numerical 
parameters , some others are obtained by simpler 
models, which we list in Table 1. Those models will 
be stored in the knowledge base and they will be 
implemented according to a specific design, 
language and platform by the tools of Figure 1. 
 
Table 1: Discrete model units stored in the knowledge 
base and implemented from their XML representation.  
 

Simple models Symbol Explanation 
DADSmith ρ Atmospheric density 
DAVPRHFAO ea Actual vapour  

 pressure 
DSVPTetens es Saturation vapour 

 pressure 
DSVPDTetens s Slope of saturation 

 vapour pressure 
 deficit 

DPsychrometric 
Constant 

γ Psychrometric 
constant 

DARFAO ra Aerodynamic 
resistance 

DVPDFAO VPD Vapour pressure 
 Deficit   
(requires es and ea) 

DNRFAO Rn Net radiation 
Composite 
model 

  

DRETFAO56 ET0 Reference 
evapotranspiration 

 
3.2. Principles of conversion  
 

The conversion of a model from its declarative 
format into a procedural form, ready to be compiled 
and executed, can be automated, following a 
principled approach.  

In our case studies, the essential ingredients are a 
set of XML schemata describing the Domain 
Concepts and the Model Concepts used in the 
formulation of our modelling exe rcise. 
A model concept relies on the definition of entities 
such as inputs, states, parameters and outputs. A 
model is also characterised by its state transition 
equation and output transformations.  These model 
concepts need to be mapped onto the domain 
concepts to associate a meaning with them. For 
instance, the model concept labelled Ra needs to be 
mapped into the domain concept Net Radiation to 
assume a numeric value characterised by a unit and 
a dimension.  
The conversion algorithm, implemented in the tools 
of Figure 1, will then parse all the model concepts, 
retrieving the data type information from the 
domain concepts in order to create the interface of 
the model component class in the target language 
or modelling framework. The model classes are 
implemented as components, exposing an interface 
for their use in various contexts and environments. 
The interface varies according to the target 
framework, but in general it will include accessor 
methods, to set input values and get outputs, 
execution methods, to fire the model equations, and 
test methods, including pre and post-conditions.  
The code of the body of the methods is then 
generated according to the content of the state 
transition and output transformation equations. 
In case the model is composite, some model 
variables can be obtained by computing sub-
models. The XML schema of the model concepts 
allow to specify such a condition and the 
generated code for the model equation can refer 
either to another declaratively generated code or to 
a call to a binary component, implementing, for 
instance, a specialised numerical routine. 
Finally, we assume that the target modelling 
framework complies to a pattern where the 
simulation algorithm is separated from the model 
equations. In other words, the model components 
simply compute the rate of change of the state 
variables and the output values at time t, while the 
simulation algorithm takes care of using the state 
and rate values to perform the numerical integration 
(Rizzoli et al. 1998). 
Note that in the case s tudy presented in this paper, 
the model is static and therefore it does not make 
use of state variables, the model will only need its 
output transformations. 
 
3.3. Conversion frameworks 
 

The information provided in the XML file can be 
used to generate code targeted either at a specific 
framework, or to components with no dependency 
to a specific framework and which can be used in 
different frameworks via a wrapper class.  
Although platform independent in principle, when 
a reference to external to the knowledge base 



binaries is needed, an attribute specifying the 
target platform is added and selectively used by 
different code generation applications. The 
applications to generate code for the NET platform 
make use of the classes in the System.CodeDom 
namespace of the .NET 2 framework, whereas Java 
code is generated using e.g. JAXB. 
 
3.3.1 To non-framework specific components 
 

The classes generated implement a design to build 
extensible components via the design pattern 
strategy (Mesketer, 2004), use extensible domain 
classes in the interface (Athanasiadis et al., 2006), 
implement interfaces also to facilitate the discovery 
of types and properties via reflection, and 
implement test of pre and post conditions (Meyer, 
1997).  An example implementation of this design is 
in Donatelli et al., (2006b).   
A model class, called “strategy”, includes the 
definition of parameters using the same type used 
to define variables in Domain Classes (VarInfo); the 
VarInfo values are static properties of the class. 
The IStrategy interface implemented by these 
classes contains the methods to run the model, test 
pre and post conditions, reset model outputs, and 
set parameters default values. The application 
Strategy Class Coder requires as inputs, besides 
the XML model representation, a class name and 
the namespace, and the domain class name used to 
instantiate the input output object of the 
IStrategy implementation. The composite model 
generated is associated with the simple strategies. 
 
3.3.2 To JAMS  
 

The Jena Advanced Modelling System (JAMS) 
provides a framework for the development, 
composition and application of distributed and 
process oriented environmental models. JAMS 
implements the system core which provides spatial 
and temporal contexts in form of containers called 
compound-components into which single 
components can be embedded which implement the 
calculation procedure of single more or less 
complex processes. Each process component 
defines in a declarative part what input it needs and 
what output it provides followed by the process 
implementation in which the calculation takes 
place. The single process components are 
implemented in knowledge libraries, which are 
linked to JAMS during runtime. 
The description of a model for the JAMS 
environment is made by an XML file in which the 
spatial and temporal contexts are defined by 
compound component entries which contain the 
process component entries in their correct order. In 
the process entry the variables and parameters for 
each component they need during runtime are 
defined by their names and the provider (e.g. 
another component or context) which is able to 
deliver them: 

<jamsvar name="airTempMax"   
provider="HRUContext" 
providervar="currentEntity.maxTemp"/> 
 During runtime the XML file is parsed and the 
components are processed by calling their run() 
routine which contain the system independent 
process implementation. 
 
3.3.3 To ModCom 
 

ModCom is a modelling framework that was first 
described by Hillyer et al. (2003). Recent 
developments, including a C# implementation, are 
available online (Anonymous, 2006). A ModCom 
simulation model consists of a number of 
independent component models. The component 
models of a composite model communicate through 
input- and output-ports. Ports are discovered and 
connected through the properties and methods of 
the ISimObj interface which is implemented by all 
component models. 
In this study, ISimObj-derived classes were 
generated for each of the simple component models 
listed in Table 1, after which the composite model 
was created by coupling instances of the simple 
models using the port mechanism. The following is 
a C# statement effectuating a single link between 
two component models: 
 

crop.Inputs[“airTempMax”].Data = 
 metReader.Output[“airTempMax”].Data; 
 
All prototype applications and sample files are 
available at:  http://craisci.icamodelling.it/codegen 
 
4. DISCUSSION 
 

While by no means trivial, the software aspects of 
knowledge-based systems are well within reach, 
and prototypes of knowledge-based modelling 
systems are in use today. An immediate, yet 
important advantage of declarative modelling is the 
portable specification exemplified by the case 
studies above, which yields uniformity of 
representation to models that can be adapted to the 
infrastructure of choice without a need to 
coordinate with the model development. Such 
models can be understood, extended and improved 
collaboratively by groups working with different 
architectures with no concern for technical detail. 
On a higher-level vision, modelling at the 
conceptual level allows users to employ a language 
that is tailored to the knowledge domain of 
reference, adding the necessary dynamic 
information to the definition so obtained, and 
letting the software infrastructure infer an 
appropriate computing workflow. So-called domain 
ontologies can reflect the terms and relationships 
proper of different disciplines and make 
disciplinary modellers feel at home while at the 
same time allowing automated integration between 



independently developed disciplinary data and 
models.   
In the longer-term, the vision for declarative 
modelling merges with the more general one of a 
Semantic Web (Antoniou and van Harmelen, 2004) 
where model content, similar in structure to other 
content available online such as data or text 
documents, can be searched, retrieved and 
simulated from the web with no more specialized 
knowledge than it is currently necessary to access 
any web page. The opportunity to achieve such a 
vision lies in the formal expression of model 
content according to homogeneous ontologies and 
in the capability of associating specific 
conceptualizations with ad-hoc infrastructure 
capable of using it transparently.  
 
5. CONCLUSIONS 
 

The approach presented here illustrates a first step 
towards building a knowledge base of model and 
data content that can be used across 
infrastructures. 
The XML representation chosen is a first 
simplification of a platform independent model to 
be used for biophysical modelling, but it has been 
useful to approach an operational use of the 
knowledge base.  
Making this knowledge base homogeneous with 
the larger semantic web will provide services to 
modellers whose implications in terms of scientific 
sharing, integration, collaborative development and 
peer review we can only begin to envision.  
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