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Source Parameter Estimation of Atmospheric

Pollution from Accidental Gas Releases

P. Kathirgamanathan
Dept of Mathematics and Statistics, University of Jaffna, Jaffna, Sri Lanka

pkathirgamanathan@yahoo.co.uk

Abstract: This paper presents the development of an inverse model that may be used to estimate
the source term parameters for a polluting gas released into the atmosphere from a point above the
ground. The model uses measured pollution concentrations at observation sites on the ground as
well as meteorological data such as wind speed and cloud cover. The inverse model is formulated as
a least- squares minimisation problem coupled with the solution of an advection-dispersion equation.
The minimisation problem where the pollutants are released instantaneously is well-posed and
the source term is calculated with reasonable accuracy. However, the problem with a non-steady
extended release source is ill-posed; consequently, its solution is extremely sensitive to errors in
the measurement data. Tikhonov’s regularisation, which stabilises the solution process, is used to
overcome the ill-posedness of this problem and the regularisation parameter is estimated using the
properties of the non-linear L-curve, and Wahhba’s leaving-out-one lemma. Finally, the accuracy
of the model is examined by imposing normally-distributed relative noise into concentration data
generated by the forward model.

Keywords: Non-linear ill posed problem; Inverse air pollution model; Parameter estimation

1. INTRODUCTION

The analysis process for accidental gas re-
leases are categorised into 4 cases as follows
(Kathirgamanathan et al., 2001, 2003a, 2003b):
(1) instantaneous release from a known lo-
cation, (2) instantaneous release from an
unknown location, (3) extended release over
a period of time from a known location, (4)
extended release over a period of time from an
unknown location. In this paper we propose a
methodology for Case 4 where pollution orig-
inates from a point source with an extended
release over a period of time from an unknown
location. That is, we consider the problem
where the transport properties of the medium
are assumed to be known but the location and
release history of the pollution are unknown.

The methodology for estimating the loca-
tion and release rates of pollution sources is
based on the solution of an advection-dispersion
equation and a least squares technique. The
least squares technique optimises the agreement
between measured and model-predicted concen-

tration by varying the model input parameters
within reasonable ranges of uncertainties. In
the solution process, the unknown release rate
function is discretised into many components.
The relationship between the concentration of
pollution, C, and the discretised components
is linear and that between C and the loca-
tion parameters is non-linear. Therefore the
problem involves estimating both non-linear
and linear parameters. It has been shown
already (Kathirgamanathan et al., 2003) that
estimating linear parameters (release rates)
for given non-linear parameters (location) is a
linear ill-posed problem. Therefore estimating
release rates from a source of unknown location
is a non-linear ill-posed problem. This problem
is further complicated by inexact information.
In reality, the data contains measurement
errors, so the true solution will not fit the data.
Also the meteorological parameters are not
known exactly. In this model, these values are
assumed to be uniform and constant; however
in reality, they do vary in space and time and
are difficult to model accurately.



We shall use Tikhonov’s regularisation to
overcome the ill-posedness of the problem. In
this method, the sum of two components is
minimised: a norm of data misfit and a norm
of linear model parameters. Balancing the two
components is controlled by a regularisation
parameter. We solve the problem by construct-
ing an iterative procedure for the nonlinear
parameters, where at each iteration a linear
problem is solved. We have slightly modified
the L-curve criterion developed by Hansen
(1997) for linear ill-posed inverse problems to
our nonlinear problem. We use this criterion
as well as Wahhba’s (2000) ’leaving-out-one’
lemma to estimate the optimal value of the
regularisation parameter for this problem.

2. THE INVERSE MODEL

A Cartesian co-ordinate system (X, Y, Z)
is used with the X-axis oriented in the di-
rection of the mean wind, the Y -axis in
the horizontal cross-wind direction, and the
Z-axis oriented in the vertical direction. In
the estimation of the source term parameter
problem, the location and release rate of
the pollutant at source are not available,
but the concentration of pollutant distribu-
tion at some down-stream locations such as
P = (X0, Y0, 0), Q = (X0 + x1, Y0 + y1, 0), and
R = (X0 + x2, Y0 + y2, 0) are available, where
X0, Y0 are unknown and x1, x2, y1 and y2 are
known. Our goal here is to estimate the release
rate q(t) of the pollution and its location such
as X0, Y0 and H . Here, H is a height of the
source of a pollution from the ground. We
use the concentration measurements at the
down-stream location P , Q, R along with the
equation

C =
∫ t
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to estimate the source release rate and its
location.

2.1. The least-squares formulation

It is assumed that n + 1 concentration
values Ci = C(X0, Y0, 0, ti) are measured at

τ
0
 τ

1
 τ

m
 τ

m−1
 

t
0
 t

1
 t

n
 t

n−1
 0 

Source required time 

Measurement time 

Figure 1. Measurement time and source
required time.

the point (X0, Y0, 0) at equal time intervals
between t0 = τ0 and tn = τm. The simplest
way to proceed is to solve (1) on a mesh with
uniform spacing. We suppose that we wish to
determine the source release at times τ0 = 0,
. . ., τm = tn, where m < n (see Figure ), since
the number of parameters to be estimated
should be no greater than the number of data
points. Discretising (1) by the trapezoidal rule
gives the system of equations

c = A(p)q (2)

where c = [C(0), . . . , C(tn)]T , Aij =
K(ti, τj)βij , q = [q(τ0), . . . , q(τm)]T and p =
[X0, Y0, H ]T , and where βij is a quadrature
weight and the kernal

K(t, τ) =
e

[
− (X0−U(t−τ))2

4KX (t−τ) − Y 2
0

4KY (t−τ)− H2
4KZ (t−τ)

]
4π
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1
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3
2
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Generally, one solves inverse problems by min-
imising an objective function. Now the problem
for estimating the release rate q and the loca-
tion p is

minimise Z (q, p) = ‖A(p)q − c‖2
2, (3)

where A(p)q, c are vectors containing the es-
timated and measured concentrations respec-
tively, p is the vector of unknown non-linear
parameters identifying the source location, and
q is the vector of unknown linear parameters
identifying the source release rates. The esti-
mated concentrations are obtained from the so-
lution of the forward problem using estimates
of unknown parameter values.

Since the minimisation problem given in (3)
has a combination of linear q and non-linear
parameters p, we separate the solution process
into two steps. We find the non-linear param-
eter p by constructing an iterative procedure,
where at each iteration a linear sub-problem
is solved to estimate the linear parameter
q corresponding to that particular value of
p. We solved the same problem given in (3)
for a known value of p(Kathirgamanathan et



al., 2003). It was shown that the problem is
ill-posed and we therefore used Tikhonov’s
regularisation to solve the problem. This
means that the linear sub-problem inside the
nonlinear iteration is an ill-posed problem.

2.2. Regularized least squares

Tikhonov’s regularization replaces the ill-
posed problem with the well-posed problem
by imposing a bound on the solution. With
Tikhonov’s regularisation, we introduce the
regularised objective function

Z (q, p) = ‖A(p)q − c‖2
2 + λ2‖Lq‖2

2,

= φd + λ2φm, (4)

here, φd = ‖A(p)q − c‖2
2 is the residual norm

(or data misfit function), and φm = ‖Lq‖2
2 is

the solution norm. We will be interested in the
function Z(q,p) and its local and global minima
with respect to (q,p) for different values of the
regularisation parameter λ. Note that the ob-
jective function Z is the 2-norm of the following
system of equations[

A(p)
λL

]
q =

[
c
0

]
, (5)

where L is the regularisation operator and λ is
the regularisation parameter that controls the
relative strength of L, i.e. it compromises be-
tween the accuracy and the stability of the solu-
tion. The most common form of regularisation
operator is

‖Lq‖2 ≈
∫ tn

0

(
dNq

dτN

)2

dτ. (6)

The most popular choice for obtaining a smooth
solution is N = 2 (Skaggs, 1994).

3. OPTIMAL CHOICE OF λ

The non-linear problem (4) is different from
the linear problem in several ways. First, we
cannot use linear algebra alone to determine the
minima of Z. Second, the non-linear objective
Z may have more than one minimum for each
value of λ. In the course of our research we
developed a number of different algorithms,
each of which is applied to many test cases.
The implementation of all the algorithms has
a number of features in common. First, we
frequently have to determine local minima of
Z(q,p) for a given λ. In all our algorithms this

is done by exploiting the fact that some of the
variables, namely q, appear in (4) linearly and
hence can be determined using simple linear
algebra: for given values of p and λ we define
q(p, λ) as the value which minimizes Z(q,p).
This is computed in directly in MATLAB as the
least-squares solution of (4). For the computa-
tion of the local minimum of Z(q,p) closest to
a given point (q,p) we then relied exclusively
on MATLAB ’s routine lsqnonlin. However, this
is speeded up enormously because, after the
elimination of q using linear algebra, only three
non-linear variables (p = [X0, Y0, H ]) remain.

Let us now consider the numerical details of
the algorithm to solve (4). The solution is ar-
rived at through four steps. In the first step, we
find all or most of the local minimum of (4) for
a fixed value of λ when it is equal to its lowest
value in the sequence. This is done by solving
(4) many times, at each time with a different
initial value p = p0. We choose p0 randomly
using the MATLAB function rand within a se-
lected interval. There is one important reason
for solving (4) for a fixed lowest λ. Equation
(4) contains the error norm (φd) and the solu-
tion norm (φm) where the former is a non-linear
part and the latter is quadratic. Therefore, (4)
is almost quadratic if λ is large, and non-linear
if λ is small. We also found that the number of
local minima of (4) increases with the decreas-
ing values of λ. Therefore the number of local
minima of Equation (4) for the lowest value of
λ identifies all or most (say nl) of the L-curves
for this equation.

In the second step, we take each of the lo-
cal minima obtained from the first step as the
starting value to solve (4) for a sequence value
of λ from lowest to largest. That means solving
(4) nl (the number of local minima when λ is
equal to its lowest value) times for a sequence
values of λ. The idea behind this is to compute
all or most of the L-curve displaying the error
norm (or data misfit) versus the solution norm
for a sequence values of λ.

In the third step, for each λ, we pick a
point that gives the lowest function value to
construct the final L-curve. Finally, we smooth
the L-curve on a log-log scale by a spline curve
similar to the work done by Hansen (1997).
The fourth and final step is to pick the optimal
point on the curve. The optimal point on each
curve is calculated by examining the curva-
ture along the L-curve and using Wahhba’s
(Farquharson et al., 2000) ’leaving-out-one’
lemma to estimate the optimal value of the
regularisation parameter for this problem.



4. MODELLING APPLICATIONS

In this section, we present numerical cal-
culations to evaluate the accuracy of the
methods developed. To do so, we con-
sider an input of concentration data gen-
erated from a point source of strength q(t)
kg s−1 located at (0, 0, H) in the Cartesian
coordinate system. We simulate the con-
centration signals at downstream locations
P = (X0, Y0, 0), Q = (X0 + 30, Y0 + 30, 0) and
R = (X0 + 100, Y0 + 70, 0). We obtain concen-
tration signals by using the forward problem
(1) and true parameter values. In order to
simulate errors, we corrupt the concentration
signals by adding normally distributed random
noise. For illustrative purposes, Kx, Ky, Kz

and U are taken as 12, 12, 0.2113 and 1.8,
respectively. The purposes of this example is
to demonstrate the simultaneous estimation of
parameters X0, Y0, H , and the source release
function q(t)

Table 1: 10% noise in the measured signal
Estimated value ±

p True value Confidence interval
X0 150.00 162.00± 9.42
Y0 25.00 19.3 ± 6.83
H 12.00 11.1 ± 0.85

In this example we consider a set of data
which is corrupted by 10% of different random
noise. The results of the source parameter es-
timation are summarised in Table 1, and Fig-
ure . Listed in Table 1 are the true non-linear
parameter (location) values along with the re-
constructed (or estimated) values and their con-
fidence intervals. The L-curve that has lowest
function value is shown in Figure a. Figure b is
the curvature of the L-curve as a function of λ.
The peaks in the figure correspond to the cor-
ners on the L-curve (P1 & P2 in Figure a). The
Figure c illustrates the Wahhba’s (Farquharson
et al., 2000) ’leaving-out-one’ lemma (NGCV)
to estimate the optimal point on the L-curve,
where the lowest value of the NGCV function
is clearly indicated (P3 is a corresponding point
in Figure a). Figure d depicts the true error in
the solution as a function of λ. Here, the true
error refers to the difference between the recon-
structed and simulated (perfect) concentration
values. This plot is only possible if we know the
true concentration. Figure e depicts the error
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Figure 2. (a) non-linear L-curve, (b)
curvature vs regularisation parameter, (c)

NGCV vs regularisation parameter, (d) true
error vs regularisation parameter, (e) relative

error in q vs regularisation parameter, (f)
relative error in p vs regularisation parameter.



in q (release rates) as a function of λ. Figure
f depicts the error in the reconstructed location
p as a function of λ.

The results from further numerical simula-
tions and comparisons suggest that the corner
which is closer to the origin in the L-curve gives
the best approximate solution than other cor-
ners in the L-curve. Further we found that the
accuracy of the estimation decreases with the
following: (i) increasing noise in the data, (ii)
decreasing the size of the source function dis-
cretisation, (iii) regularisation, and (iv) increas-
ing distances between source and observation
sites.

In this paper we only considered data mea-
surements at three locations since it has been
already demonstrated (Kathirgamanathan
et al., 2001) that data from at least three
spatial locations are needed to reliably estimate
the parameters in the model. However, the
results from the numerical simulations suggest
that the error in the reconstructed parameter
values decreases only slightly as the number of
locations increases.

5. SUMMARY AND DISCUSSION

The goal of the work presented here is to
develop an inverse model capable of simultane-
ously estimating the location and release rate
of a pollutant gas from a point source. The
approach is based on a non-linear least squares
estimation using pollutant concentration mea-
surements on the ground. As the problem is
ill-posed, we apply Tikhonov’s regularisation
method to stabilise the solution. The problem
is non-linear and therefore we cannot use linear
algebra alone to determine the solution. Here
we develop an algorithm which we apply to
many test cases. In our algorithm we used the
fact that some of the parameters are linear
and hence can be determined using simple
linear algebra. For the computation of non-
linear parameters we then relied exclusively
on MATLAB’s routine lsqnonlin. This process
is speeded up enormously because, after the
elimination of linear parameters, only three
non-linear parameters remain.

A example given in the last section de-
scribes how the model is able to determine the
location and release rate of a pollution source,
and how factors such as noise in the data,
regularisation and the size of discretisation
affect the accuracy of the solution. The results
from these examples suggest that the inverse

model is capable of estimating the location
and the release rate of a pollution source to
a reasonable degree of accuracy. Four factors
affect the accuracy of the solution are (a) size
and randomness of noise in the data, (b) size
of discretization of the source function, (c)
regularisation, and (d) distance between source
and observation sites. From our observations it
can be noticed that the major factor induces
error in the reconstructed solution is the noise
in the data. Therefore we can conclude that
the total error in the solution mostly depends
on inaccuracies in the data.
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