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Abstract: When calibrating a (dynamic) model, one is often faced with a lack of information-rich data. With-
out such data, there is little hope in obtaining accurate parameter estimates. In order to improve the situation,
optimal experimental design for parameter estimation (OED-PE) can be employed. The main drawback of the
classical OED-PE methodology is that values for the model parameters need to be provided in order to obtain
an optimal design. If the values of the model parameters are highly uncertain, robust OED-PE should be pre-
ferred, yielding a design which guarantees a certain information content given the parameter uncertainty. This
approach adds another level of optimization to the design problem. For each proposed experiment (optimiza-
tion of the experimental degrees of freedom) an additional optimization covering the whole parameter domain
needs to be performed. In this work the maximin robust OED-PE technique will be illustrated with a simple
model describing substrate consumption based on Monod kinetics. The optimization problem consists of two
nested real-value genetic algorithms in which each fitness evaluation for the optimization of the experimental
degrees of freedom requires a full genetic algorithm optimization over the parameter domain.

Keywords: Genetic algorithms, real-coded, robust experimental design.

1 INTRODUCTION

When calibrating a (dynamic) model, one is often
faced with a lack of information-rich data. With-
out such data, there is little hope in obtaining accu-
rate parameter estimates and a model with sufficient
predicting power. In order to improve on the sit-
uation, a methodology called optimal experimental
design for parameter estimation (OED-PE) can be
employed. This technique allows searching for an
optimal experiment that will yield information-rich
data when actually performed. Finding this optimal
experiment involves an optimization of the available
experimental degrees of freedom (e.g. measure-
ment locations, experimental manipulations, ...).
The objective surface for this type of optimization
problems is known to contain many local minima.
Therefore it is advisable to use global optimization
algorithms (like genetic algorithms) in order to in-
crease the chance of finding the global minimum,
and thus the optimal experiment. However, em-
ploying genetic algorithms alone will not guarantee

the optimal experiment to be truly optimal. This is
caused by the fact that the design itself is dependent
on the parameter values of the model. This poses
a problem, since the final goal of optimal exper-
imental design for parameter estimation is to find
the true system parameters, or at least approximate
them. This issue is a fundamental one for non-linear
design problems and is the basis for the need for ro-
bust experimental design which tries to deal with
this parameter uncertainty.

2 MODEL DESCRIPTION

Throughout this paper a simple model of a fed-
batch reactor will be used for illustrative purposes.
This model describes substrate (S) consumption
and biomass (X) growth based on the well known
Michaelis-Menten or Monod kinetics:

µ (S) =
µmax × S

KS + S
(1)



in which the microbial growth rate µ
(
h−1

)
is

related to the substrate concentration S
(
g.l−1

)
and is characterized by a maximum growth rate
µmax

(
h−1

)
and a saturation constant KS

(
g.l−1

)
at which the growth rate is half of the maximum
growth rate.
The equations describing the substrate, biomass and
volume changes in the fed-batch reactor are given
by:

dX

dt
= (µ−Kd)×X − Qf

V
×X (2)

dS

dt
= − µ

Y
×X +

Qf

V
× (Sf − S) (3)

dV

dt
= Qf (4)

where Kd

(
h−1

)
is a constant decay rate, V (l) the

reactor volume and Y (gX/gS) a yield coefficient.
Qf

(
l.h−1

)
is the flow rate of a feed pump which is

switched on at a certain time tf (h) and adds sub-
strate with concentration Sf

(
g.l−1

)
to the reactor.
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Figure 1. Model simulation results and artifi-
cially generated measurements for substrate (S) and
biomass (X).

Figure 1 illustrates the dynamic behavior of the sub-
strate and biomass concentration in the reactor. The
reactor volume and initial concentrations of sub-
strate and biomass were taken to be 15 l, 6 g.l−1

and 0.5 g.l−1 respectively. The reactor is oper-
ated in batch mode until 6 h at which time a feed
pump with flowrate 2.4 l.h−1 and feed concentra-
tion 4 g.l−1 is switched on. The values of the other,
biomass related, parameters can be found in Table
1. This system and its parameters will be considered
the ”true” system and based on it, artificial data was
generated with a measurement interval of 5 minutes
and assuming a measurement error of 5 and 2 %
for biomass and susbtrate respectively [Baltes et al.,
1994]. These data are also shown in Figure 1.

Table 1. True parameter values used for data gen-
eration, lower and upper bounds and estimated pa-
rameter values resulting from a maximin robust ex-
perimental design. The 95 % confidence intervals
of the parameter estimates are also shown.

µmax KS Y Kd

True 0.39 0.06 0.54 0.037

Lower bound 0.2835 0.0466 0.2313 0

Upper bound 0.4241 0.0788 0.6167 0.0675

Estimated 0.3857 0.0597 0.5327 0.0336

95% conf. int. 0.0025 0.0029 0.0054 0.0036

3 OPTIMAL EXPERIMENTAL DESIGN

3.1 Classical non-linear design

A successfull model calibration can only be
achieved when information rich data is available. It
would therefor be beneficial to design experiments
in such a way that the data which will be collected
from these experiments are as information-rich as
possible. In order to design an experiment, differ-
ent choices have to be made. It has to be decided
whether, where and how the system under study will
be manipulated and where, how and when measure-
ments will be performed on this system. The classi-
cal scheme of non-linear optimal experimental de-
sign is shown in Figure 2. An iterative search for
the optimal experiment is started based on an ini-
tial and insufficiently calibrated model. Using this
model, several different experiments are simulated
by varying the degrees of freedom within the appli-
cable constraints and calculating an objective value
or design criterion. The optimal experiment is found
when the selected design criterion is maximized or
minimized, depending on the chosen objective. The
final experiment is said to be locally optimal be-
cause its design was based on a model using certain
nominal parameter values. Once the optimal exper-
iment is found, it can be performed in reality, result-
ing in new data. Based on these data the model can
be recalibrated and the quality of the parameter es-
timates evaluated. If required, another iteration of
the design loop can be performed, potentially lead-
ing to an even better experiment. It is beyond the
scope of this paper to provide a detailed description
of each step in the procedure and the reader is there-
fore referred to Dochain and Vanrolleghem [2001]
for more details.

Probably, the most important aspect of the proce-
dure is the evaluation of the objective. For each of
the proposed experiments the information content
needs to be quantified. This can be achieved by cal-



Figure 2. Schematic representation of the opti-
mal experimental design procedure (adapted from
Dochain and Vanrolleghem [2001]).

culating a scalar property of the Fisher Information
Matrix (FIM):

FIM =
N∑

i=1

(
∂y(θ)i

∂θ

)T

×Q−1
i ×

(
∂y(θ)i

∂θ

)
(5)

This matrix quantifies the information content of
an experiment related to the model parameters in
the sense that it combines several aspects: on the
one hand the quantity (sum over N measurement
points) and quality (measurement error covariance
matrix Qi) of the data and on the other hand the
sensitivity of the model variables to the parameters
(∂y(θ)i/∂θ). In our case, these sensitivities are cal-
culated using a finite difference approximation, re-
quiring two model simulations for each considered
parameter. Since the FIM is inversely proportional
to the parameter estimation error covariance matrix,
its eigenvalues and eigenvectors directly relate to
the eigenvalues of the parameter estimation error
covariance matrix and thus to the shape, size and
orientation of the confidence region of the param-
eter estimates. Different scalar properties based on
FIM eigenvalues are used in order to quantify the in-
formation content of a certain experiment. The most
often used FIM property is its determinant or prod-
uct of its eigenvalues (D-optimal design, ψD (θ)).
This design criterion needs to be maximized in order
to minimize the overall volume of the confidence re-
gion of the estimated parameters. Maximization of
the design criterion can be achieved by an appropri-
ate choice of the experimental degrees of freedom

(Ψ):

ψD (θ) = arg

{
max
ψ ∈ Ψ det [FIM (θ, ψ)]

}
(6)

3.2 Robust experimental design

As was already mentioned above, the experimental
design procedure is an iterative one. Each iteration
and parameter estimation improves the knowledge
of the system parameters and this knowledge can
then be used to improve the quality of the next ex-
periment to be performed. Many authors acknowl-
edge the usefulness of this approach (e.g. Ford et al.,
1989; Walter and Pronzato, 1990; Atkinson, 2003).
However, some drawbacks are associated with this
technique. Firstly, it might not be possible to per-
form multiple (sequential) experiments on the same
system due to limitations in time or resources. Sec-
ondly, it is not guaranteed that the parameters will
converge to the ”true” values. These problems lead
to the development of robust experimental design
which tries to deal with the uncertainty associated
with the model parameters.
A very often used robust experimental design
method is the maximin design (MMD) approach. It
aims at determining the experiment ψMMD which
optimizes the worst possible performance for any
value of θ belonging to the parameter domain Θ
[Pronzato and Walter, 1988]:

ψMMD (θ) = arg{
max
ψ ∈ Ψ

[
min
θ ∈ Θ [det [FIM (θ, ψ)]]

]}
(7)

In other words, for a proposed design, find the pa-
rameters for which the D-optimal criterion value is
the lowest, i.e. this D-criterion value determines
the worst possible obtainable information content
for this specific design. Next, find the design which
maximizes this worst D-optimal criterion value.
For this technique, the prior information on the pa-
rameters is limited to the knowledge of the param-
eter domain Θ, i.e. the upper and lower bounds of
the parameters. This approach is only recently be-
ing applied to dynamic non-linear models due to the
computational burden introduced by the nested op-
timization.

In our case we propose to implement this algorithm
by nesting two genetic algorithms. A schematic
overview of the implemented algorithm is shown in
Figure 3.



Figure 3. Schematic overview of the implemented
maximin algorithm for robust experimental design.

The inner loop GA is used to find the parameter set
which minimizes the D-optimal criterion (for a cer-
tain design). Each of the generated GA individuals
(representing different parameter combinations) re-
quires the calculation of a FIM D-optimal criterion
value and thus also a sensitivity analysis requiring
several model simulations.
The minimal D-optimal criterion value which is
found using the inner GA optimization can then be
used as the objective for the outer loop GA which
optimizes the experimental degrees of freedom. In
this way, the outer optimization loop finds the de-
sign which maximizes the worst performing experi-
ment.

4 GENETIC ALGORITHMS

A genetic algorithm (GA) can be considered as a
global optimization technique based on the genetic
processes of life. Over many generations, natural
populations evolve according to the principles of
natural selection and ”survival of the fittest”. The
mathematical analogon of these natural processes
was first developed by Holland [1975] and is de-
scribed in detail in many other texts (e.g. Gold-
berg [1989]; Michalewicz [1992]). In contrast to
the ”classical” optimization algorithms, GAs work
with populations of individuals and not single indi-
viduals, each representing a possible solution to a
given problem. Using processes like selection, mu-
tation and crossing-over, a population of individuals
is evolved until convergence. One way to describe
convergence is when the average fitness of all indi-
viduals in the population closely approaches or be-
comes equal to the fitness of the best individual.

The often used binary representation of GAs ex-
hibits some drawbacks when applied to multidi-
mensional, continuous problems requiring solutions
with high numerical precision. Therefore a real-
coded GA will be used here. The basic idea be-
hind real-coded GAs is that each variable of the op-
timization problem is represented by one real-value
gene in the GA chromosome. This representation is
particularly natural to describe optimization prob-
lems with variables in continuous domains. Ex-
amples of applications and in-depth information on
real-coded GAs can be found in the excellent review

of Herrera et al. [1998]. The use of real-coded GAs
makes it possible to use large or even unknown do-
mains for the variables while the precision is only
restricted to that of the computer on which the algo-
rithm is executed. Since real-coded GAs are based
on continuous variables, slight changes in the vari-
ables also cause slight changes in the objective func-
tion. This gives real-coded GAs the ability to locally
”fine-tune” the solution.

5 EXPERIMENTAL DESIGN RESULTS

5.1 Algorithm settings

Based on the above provided description of the fed-
batch reactor a robust experimental design using the
MMD approach was performed.
The experimental degrees of freedom considered
in this case are the time instances of 10 measure-
ments for both substrate and biomass (20 outer loop
optimization variables). For these measurements,
no repetitions are allowed and a minimal period of
5 minutes between two consecutive measurements
should be maintained. Further, it is assumed that all
measurements are conducted within a timespan of
10 h.
The target parameters for this design were: µmax,
KS , Y and Kd (4 inner loop optimization vari-
ables). The parameter search space was defined
by the lower and upper bounds shown in Table 1.
These bounds represent the 99 % confidence limits
obtained after model calibration based on a classical
D-optimal design (results not shown). This classical
design was performed on the model with parameters
values far from the true values. This step could have
been skipped in which case the parameter bounds
should have been derived from literature.
Both optimization loops of the MMD approach
were optimized using (nested) real-coded GAs. The
outer loop was responsible for the optimization of
the measurement time instances while the inner
loop dealt with the optimization over the parameter
space. Beside the population sizes, the settings of
both GAs were identical and are shown in Table 2.
More information about the specific GA operators
used can be found in Herrera et al. [1998]. Popu-
lation sizes were chosen to be 5 and 10 times the
number of optimization variables for the outer and
inner loop respectively.

5.2 Performing the experimental design

Once the algorithm settings were fixed, the ac-
tual optimization was started. Figure 4 shows a



Table 2. GA settings used for the minimax robust
experimental design.

Attribute Value
Outer loop pop. size 100
Inner loop pop. size 40

Replacement % 10%
Selection scheme Roulette wheel

Scaling Linear (multiplier: 1.2)
Crossover probability 0.8

Crossover operator BLX-α (α = 0.5)
Mutation probability 0.01

Mutation operator Non-uniform

small extract of the evolution of the objective value
(det[FIM ]) as a function of the evaluation num-
ber. This figure shows the evaluation of 4 individu-
als from the outer loop optimization (measurement
schemes). Each of these individuals represents a
certain measurement scheme for which the fitness
is calculated based on the endresult of a full in-
ner loop GA evaluation (parameter space). For one
outer loop individual, the corresponding inner loop
optimization is indicated by a two-way arrow. It can
clearly be seen from this section of the figure that
the inner loop GA is able to minimize the objective
according to the MMD requirements without con-
vergence problems. A factor which strongly influ-
ences the convergence behavior was found to be the
population size. It is therefore important to make
an appropriate choice for this value, in this case 10
times the number of optimization variables proved
to be useful. However, further increasing this value
might be advisable but would result in excessive cal-
culation times.
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Figure 4. Extract of the evolution of the D-criterion
value during the nested GA optimization.

The optimization converged after approximately
3000 outer loop individual evaluations, each requir-
ing approximately 1000 inner loop individual eval-
uations (i.e. 1000 FIM evaluations). At the optimal

measurement instances found after optimization (D-
optimal criterion value: 1.87×1024), the virtual data
was sub-sampled and used for calibration. The op-
timal measurement instances are shown in Figures
5 and 6 for substrate and biomass respectively to-
gether with model simulations using the ”true” pa-
rameter values. It can be seen that the measurements
are spread out over a broad region, as was expected
for a robust design. In this way, data with high in-
formation content is guaranteed for all systems de-
scribed by parameters within the investigated pa-
rameter space.
The results of the calibration based on the optimal
measurement time instances are shown in Table 1.
This shows that the calibrated parameter values are
close to the true values and that the confidence re-
gions are quite small.

 0

 1

 2

 3

 4

 5

 6

 7

C
on

ce
nt

ra
ti

on
 (g

.l-1
)

S simulated

MMD

0 2 4 6 8 10
Time (h)

Figure 5. Overview of the optimal measurement
times for substrate for the tested design criteria in-
cluding the model simulations using the ”true” val-
ues.
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5.3 Computational burden

As already mentioned, the optimization algorithm
converged after approximately 1.0 × 106 objective
evaluations (3000 outer loop evaluations, each re-
quiring approximately 1000 inner loop individual
evaluations). Each of these objective evaluations
corresponds to one FIM calculation and sensitiv-
ity analysis requiring two model simulations for
each considered parameter. In this case, 4 param-
eters were considered. Therefore each FIM calcula-
tion required 8 model simulations. Taking this into
account, the entire optimization required approxi-
mately 8.0×106 model evaluations. On a 3.0 GHz
Pentium 4 machine this resulted in a calculation
time of approximately 2.5 days. Therefore, appli-
cations of these techniques will remain, for now,
limited to relatively simple models. Larger models
can only be considered when the calculations, espe-
cially related to the inner loop, could be accelerated.
One possibility would be to replace the numerical
finite difference sensitivity analysis approximation
by its analytical solution. Another solution would
be to use or develop more efficient global optimiza-
tion techniques.

6 CONCLUSION

This paper has shown that the difficult optimiza-
tion problem related to robust optimal experimental
design could be solved by nesting two real-coded
genetic algorithms. An outer loop GA is respon-
sible for the optimization of the experimental de-
grees of freedom while an inner loop GA deals with
the optimization over the parameter space. An il-
lustration with a model describing substrate con-
sumption based on Monod kinetics was given. Even
with this simple model, computational requirements
were large. It was found that the GA population size
plays a crucial role in finding the right balance be-
tween convergence behavior of the GA and compu-
tational demand. Future applications to more com-
plicated models will only be feasible when the cal-
culations related to the inner loop are accelerated.
This could be accomplished by decreasing the inte-
gration time of the differential equations by using
more efficient integrators. Another way to decrease
the computational burden of the inner loop would
be to replace the finite difference approximation of
the sensitivity calculations by a more efficient tech-
nique, e.g. the direct differential method [Atherton
et al., 1975]. When these improvements are still not
adequate, it might be appropriate to use hybrid op-
timization algorithms in which a genetic algorithm
is only used to pinpoint regions that are likely to

contain a minimum. These regions could then be
explored by a faster converging local optimization
algorithm to quickly determine the minimum.
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