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Abstract: Population-based search methods such as evolutionary algorithm, shuffled complex algorithm, 
simulated annealing and ant colony search are increasing used as automatic calibration methods for a wide 
range of water and environmental simulation models. However, despite the advances in computer power, it 
may still be impractical to rely exclusively on computationally expensive (time consuming) simulation for 
many real world complex problems. This paper proposed the use of meta-models to replace numerical 
simulation models for the purpose of calibration. Meta-models are essentially “model of the model”. The 
meta-model used in this study is the artificial neural network and, when coupled with genetic algorithm, 
forms a fast and effective hybridisation. The proposed evolutionary-based meta-model reduces the number of 
simulation runs required in the numerical model considerably thus making the automatic calibration of 
computationally intensive simulation models viable. The new approach was developed and tested in the 
calibration of a popular rainfall-runoff model, MIKE11/ NAM, applied to the Treggevaede catchment in 
Denmark. Both the calibration and verification results for single objective calibration indicate that the 
proposed method is able to achieve the same or better calibration performance compared to published studies 
using traditional population-based search methods and yet required only about 40% of the simulation runs on 
average. 
 
Keywords: evolutionary algorithms; meta-models; rainfall-runoff; artificial neural network; calibration 
 
 
 
1. INTRODUCTION 
 
Population-based search methods such as 
evolutionary algorithm (EA) (which includes 
genetic algorithms, evolutionary strategies, 
evolutionary programming etc), shuffled complex 
algorithm, and simulated annealing are powerful 
search algorithms that can be used for optimisation. 
These algorithms are increasing used as automatic 
calibration methods for a wide range of water and 
environmental simulation models, especially when 
there are a large number of calibration parameters 
and some, or all, of them are interacting with one 
another. However, the main weakness in using 
population-based search methods for automatic 
calibration is that they require a large number of 
fitness evaluation, thereby render them not suitable 
to calibrate computational intensive simulation 
models. It is not uncommon for large simulation 
models for run for up to an hour or more and with 
typical EA run requiring thousand (if not tens of 

thousands) of model evaluations, automatic 
calibration using EA for large simulation models 
may not be totally feasible.  
 
Currently, there are two main approaches to 
resolve the problem using EA for model 
evaluation and calibration. They are: (i) using 
faster EA algorithms; and (ii) using more 
computing power. The first approach exploits the 
flexibility of EA to develop more efficient 
techniques requiring less function evaluations and 
hence, less model evaluations. Typical methods of 
this approach are: hybridization of EA with some 
form of heuristics (Deb and Beyer, 2001; 
Keedwell and Khu, 2003); enhancement to EA 
operators (reproduction and selection) (Salami 
and Hendtlass, 2003; Liong et al., 2001). The 
second approach uses the inherent parallel 
computing capability of EA and allows 
simultaneous multiple model simulation on 
multiple processors. (Kohlmorgen et al., 1999; 
Rivera, 2001). 
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However, there is a third method that can be 
effectively and effortless coupled with EA to 
enable the calibration of large water and 
environmental simulation models. To reduce the 
computational cost of model evaluations/ 
simulations, surrogate evaluation tools, i.e. meta-
models, are used in place of the time consuming 
simulations. Meta-models, otherwise known as 
surrogate or approximate models, are essentially 
“model of the model” which may be used to 
approximate the simulation model. According to 
Emmerich et al. (2002), “a metamodel 
approximates a multivariate function using points 
that have already been evaluated…. and is 
considered to be a fast surrogate model to the exact 
evaluation model.” A variety of meta-models exist 
(e.g. design of experiments, response surface 
methodology, Taguchi design, kriging, neural 
networks, multivariate adaptive regression splines) 
and Simpson et al. (2001) provides a 
comprehensive review of the use of meta-models 
for engineering design.  
 
This paper proposed the use of meta-models to 
strategically replace numerical simulation models 
(the “Simulator”) for the purpose of calibration. 
The meta-model used in this study is the artificial 
neural network (ANN) and, when coupled with 
genetic algorithm (GA), forms a fast and effective 
hybridisation. This paper starts with an overview of 
meta-models and its applications in engineering, 
specifically water resources and environmental 
engineering. GA and ANN are subsequently 
described followed by two examples of effective 
usage of evolutionary-based meta-models for 
parameter estimation / calibration. Finally section 5 
will give concluding remarks and some discussions 
on future directions. 
 
 
2. META-MODELS 
 
Meta-models have been in existence for a fairly 
long period of time (Kleijen, 1975) and are widely 
used by the engineering design community to 
reduce the time require for full simulation. An 
extreme example is the use of meta-model in place 
of motor vehicle crash test simulations, where Ford 
Motor Company reports that one crash simulation 
on a full passenger car takes 36-160 hours (Gu, 
2001).  
 
The basic approach of using meta-model for design 
is as follows: 
• Select a multivariate mathematical function 

(meta-model) which can be used to approximate 
the “Simulator”; 

• Run the “Simulator” for a small number of runs; 

• Construct the meta-model and adjust the 
variables within the model to fit the run results 
from the simulator; 

• Once the adjustments are complete, the meta-
model is used in place of the “Simulator” for 
future evaluation of the new designs. 

The above approach requires certain modification 
if the “Simulator” is constantly changing, such as 
the case during calibration. The modifications are: 
• Make necessary adjustments by usually 

running the “Simulator” more times; and 
• A mechanism to update the meta-model. 
 
Regardless of the usage of meta-models, three 
steps are involved (Simpson et al., 2001): 
1. choosing an experimental design for 

generating data; 
2. choosing a mathematical model to represent 

the data; and 
3. fitting the model to the observed data. 
Each of the steps may have many options and the 
choice of option in each step give rise to different 
meta-models. For example, generating data using 
fractional factorial design and fitting the data onto 
a second order polynomial function using method 
of least squares regression gave rise to the meta-
model known as “response surface methodology”, 
while measured data may be fitted onto a network 
of artificial neurons using least squares with back-
propagation giving rise to “artificial neural 
network” as a meta-model. 
 
Meta-models have also been successfully applied 
to model a variety of water and environmental 
problems. Some examples are: the response 
surface method has been applied to predict 
numerical geophysical models (Tatang et al., 
1997), reconstruction and interpolation of effluent 
plume in an estuary (Riddle et al., 2004) and 
calibration of urban drainage model (Liong et al., 
1995); Kriging has been used to model spatio-
temporal pollutant deposit trend through the 
atmosphere (Haas, 1998), spatial distribution of 
heavy metals in a river basin (Ouyang et al., 
2002) and shallow water wave in an estuary 
(Gorman and Neilson, 1999); Artificial neural 
networks have been used to model the input-
output behaviour of wastewater treatment plants 
(Belanche et al., 1999), deforestation simulation 
(Mas et al., 2004), prediction of pollutant trends 
in urban areas (Lu, et al., 2004); and many others 
applications.  
 
 
3. EA-BASED META-MODELS 
 
3.1 Genetic Algorithm 
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One of the most common EA is the genetic 
Algorithms (GAs). GAs are computationally simple 
yet powerful search algorithms based on the 
mechanics of natural selection and natural genetics, 
which combines an artificial survival of the fittest 
with genetic operators from nature. GAs mimic the 
adaptation of natural species and genetically evolve 
to suit their environment over many generations. 
Using this analogy, a mechanism involving 
selection, crossover, and mutation can be used to 
evolve a population of potential solutions towards 
improved solutions.  
 
GAs are especially useful for complex optimisation 
problems where the analytical solutions are difficult 
to obtain and it has been used for water and 
environmental model optimisation and calibration 
since early 90s. However, one of the main obstacles 
when trying to apply GA in practical optimisation 
problems is the large number of function 
evaluations required.  
 
3.2 Artificial Neural Networks 
 
Artificial neural network (ANN) is a computing 
paradigm designed to mimic natural neural 
networks in the biological brain. ANNs are 
commonly thought of as universal approximators 
for function mapping. Multilayer perceptrons (such 
as feed-forward backpropagation algorithms) and 
radial basis functions (RBF) are commonly used 
ANNs. In this study, the RBF neural network has 
been suggested because its simple structure enables 
learning in stages, gives a reduction in the training 
time. A standard RBF network has a feed-forward 
structure consisting of two layers, a nonlinear 
hidden layer and a linear output layer, and uses a 
Gaussian function as activation function to 
transforming inputs. Clustering identifies the centre 
point and radius (i.e., mean and standard deviation) 
of the Gaussian function in each unit of the RBF 
network.  
 
3.3 Integrating Meta-models with GAs 
 
As stated in the introduction, one possible way of 
overcoming the problem of time consuming 
simulation in EAs (including GA) is to use meta-
models in place of the simulation model. Many 
researchers, especially in engineering design, have 
examined strategies to integrate different meta-
models with GA (Giannakoglou et al., 2001; Poloni 
et al., 2000; Ong et al., 2003).  
 
The most direct way of integrating meta-models 
with GA is to replace the “Simulator” with the 
meta-model completely during evaluation of 
objective function in GA. However, in order to 
construct the meta-model, a small number of run of 

the “Simulator” is required. This is the 
experimental design mentioned in Section 2 and 
can be performed either using Taguchi method, 
Design of Experiments, response surface 
methodology or even using GA. Liong et al. 
(2001) detailed one such method using fractional 
fractorial design with central composite design to 
provide initial population for GA. Emmerich et al. 
(2002) used kriging as the meta-model and they 
found that Kriging provided the local error 
estimation which enable them to assess the 
reliability of the solutions. Giannakoglou et al. 
(2001) used radial basis function network as 
meta-model coupled with GA to optimise an 
airfoil shape design. Poloni et al. (2000) used a 
hybridisation of GA, ANN and local search 
method to optimise the design of a sailing yacht 
fin keel. The ANN acted as a surrogate model for 
3D Navier-Stokes simulation of the fin keel while 
cruising.  
 
Another potential usage of evolutionary-based 
meta-model is the evaluation of risk and 
uncertainty. Currently, different sampling 
approaches have been devised to perform fast and 
effective sampling. Monte-Carlo sampling (MCS) 
is commonly regarded as the most accurate 
approach but it requires thousands, if not tens of 
thousands, of model evaluation. Importance 
sampling, Metropolis algorithms, Latin 
Hypercube method etc., are fast alternatives but 
they are approximating the statistical properties of 
the MC samples. Recently, Khu and Werner  
(2003) proposed the use of meta-model (GA –
ANN) to select regions of interest for sampling. 
Their method required only about 10% of the 
MCS method.  
 
Despite the extensive works in evolutionary-based 
meta-models, little effort is place on overcoming 
the problem of “changing landscape”. During the 
process of optimisation, the region of GA search 
will constantly change, and it is reasonable to 
assume that the meta-model will have to be 
suitability modified to account for such changes. 
As the search progresses, more information on the 
objective function will be obtained, and suitable 
mechanism should be implemented to utilise this 
additional information and update the meta-
model. The example in the next section 
demonstrates such a scheme where a GA-ANN 
meta-model is used to calibrate a rainfall-runoff 
model and the meta-model is constantly but 
strategically updated with the latest information. 
4. CALIBRATION OF A RAINFALL-

RUNOFF MODEL 
 
A fast evolutionary-based meta-model using an 
innovative hybridisation of GA and RBF is 
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proposed for the automatic calibration of numerical 
simulation models. The GA is used to search for the 
optimal objective function in much the same way as 
any optimisation routine. The ANN is used to map 
(and adapt) to the response surface of the objective 
function and used as a fast surrogate for the NAM 
model at regular intervals. The concept of using 
RBF as surrogate models is not new. However, as 
the GA search progresses, the response surface of 
the objective function tends to change and 
therefore, the meta-model needs to be self-adapting 
to the changing landscape. 
The hybrid algorithm (GA-RBF) is presented below 
and illustrated in Figure 1: 
(1) Run GA for g number of generations of 

population size, p; 
(2) Train RBF to map the response surface using 

(g * p) points generated by GA; 
(3) Perform selection and reproduction in GA; 
(4) Evaluate the new GA population using the 

trained RBF instead of NAM; 
(5) Select m best individuals in the new population 

and evaluate the true fitness using the NAM 
model; 

(6) Update RBF using the true fitness from (5); 
(7) Perform steps (3) to (6) until the stopping 

criterion is met. 
 
4.1  Application Example 
 
The proposed meta-model was adopted for 
calibration of the MIKE 11/NAM rainfall-runoff 
model applied to the Danish Tryggevaelde 
catchment. The calibration parameters used are the 
same as those in Madsen (2000). This catchment 
has an area of 130km2, an average rainfall of 710 
mm/year and an average discharge of 240 mm/year. 
The catchment is dominated by clayey soils, 
implying a relatively flashy flow regime. For the 
calibration, a 5-year period (1 Jan. 1984−31 Dec. 
1988) was used where daily data of precipitation, 
potential evapo-transpiration, mean temperature, 
and catchment runoff are available. For comparing 
the calibrate models, validation data covering the 
periods 1 Jan. 1979−31 Dec. 1983 and 1 Jan. 
1989−31 Dec. 1993 were used. The following two 
of objective functions are used in this study: 
 
Average Root Mean Squared-Error (RMSE) of low 
flow events: 
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Average Root Mean Squared-Error (RMSE) of 
peak flow events:  
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In Eqs. (1)−(2), Qobs,i is the observed discharge at 
time i, Qsim,i is the simulated discharge, Mp is the 
number of peak flow events, Ml is the number of 
low flow events, nj is the number of time steps in 
peak/low event no. j, and θ is the set of model 
parameters to be calibrated. Peak flow events 
were defined as periods with flow above a 
threshold value of 4.0 m3/s, and low flow events 
were defined as periods with flow below 0.5 m3/s. 
 
Preliminary optimisation runs showed that entire 
population converged around the global optimum 
after about 2000 model evaluations. Thus, for 
each test, a maximum number of model 
evaluations equal to 2000 were employed as a 
stopping criterion with the population size p=50 
and total number of generations G=40. In this 
work, floating point representation was used 
together with uniform crossover. The crossover 
rate used was 0.9 and mutation rate = 0.1. 
 
Sensitivity analysis was performed to provide 
some idea of the values of g and m to use and the 
values of g = 2 and m=15 was found to provide 
good results. Hence, the number of simulation 
runs for NAM model calibration using the hybrid 
method can be calculated by: p * g + m * ( G − g ) 
= 50 × 2 + 15 × ( 40 − 2 ) =670, which is 33.5% 
of the required GA run. 
 
4.2 Results and Discussions 
 
A total of 10 random calibration runs were 
perform for each objective function (Eqns. (1) and 
(2)) and the evaluated performance statistics of 
the GA and the hybrid method (GA-RBF) are 
shown in Tables 1. Tables 1 also shows the 
validation results of applying the calibrated 
parameter set to the two different validation 
periods. The hybrid method (GA-RBF) gave very 
close results to those from GA (in terms of best, 
worst and mean RMSE) but required only about 
40% of the GA simulation runs. Even though 
some of the calibration results indicated that GA-
RBF were be better than GA, mixed but 
comparable results were obtained for the 
validation data sets. The small standard deviation 
indicated the hybrid method is very stable and 
able to reproduce consistent results.  
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Figure 1: Flow chart of the evolutionary-based meta-model 
 

Table 1: Calibration and validation results for low flow and peak flow RMSE 

Calibration data 
(1984−1988) 

Validation data set 1 
(1979−1983) 

Validation data set 2 
(1989−1993)  

GA GA−RBF GA GA−RBF GA GA−RBF 
Best RMSE 0.1345 0.1323 0.2065 0.1752 0.0986 0.1043 
Worst RMSE 0.1782 0.1697 0.2491 0.2516 0.1470 0.1519 
Mean 0.1543 0.1451 0.2215 0.2196 0.1217 0.1164 

Low 
Flow 
RMSE 
(m3/s) 

STD 0.0119 0.0110 0.0140 0.0210 0.0166 0.0159 
 

Best RMSE 1.1750 1.1687 1.1724 1.1836 1.0485 1.1325 
Worst RMSE 1.2378 1.2178 1.2564 1.2516 1.3945 1.3672 
Mean 1.2016 1.1966 1.2303 1.2165 1.2005 1.2386 

Peak 
Flow 

RMSE 
(m3/s) STD 0.0184 0.0175 0.0292 0.0227 0.0964 0.0798 

 
 

5 CONCLUSIONS 
 
This paper discusses the concept of meta-model 
and the integration between evolutionary 
algorithms and meta-models. It can be seen that 
there is significant advantage in using meta-models 
for water and environmental system simulation, 
design and calibration. However, one major 
problem for evolutionary-based meta-modelling is 
how to ensure that the meta-model is constantly 
relevant as the search progresses. To overcome this 
problem, a strategic and periodic scheme of 
updating the meta-model is proposed. 
 
A novel evolutionary-based meta-model, using 
genetic algorithm and radial basis function neural 
network with dynamic updating, for hydrological 
model calibration has been proposed in this paper. 
It has been shown that the proposed method 
performed more efficiently when compared to GA. 
The results indicated that the proposed method was 
able to reduce the required simulation runs to 40% 

of GA while achieving comparable calibration 
and validation results. The results provided us 
with confidence that the proposed method is 
indeed a viable method to reduce the computation 
effort required in calibrating rainfall-runoff 
models while constantly updating the meta-
model. The proposed methodology presents a 
viable option to calibration and optimise 
computationally intensive water and 
environmental simulation models. 
 
Work is currently undergoing to (i) test the 
proposed algorithm on known different functions, 
(ii) extend the work to multiple objective 
functions; and (iii) extend the scheme to become 
even more adaptive with the changing landscape. 
Jin et al. (2002) addressed the dynamic landscape 
issue using "fuzzy" error rules to determine the 
frequency and timing of fitness approximation 
and it may be possible to incorporate such method 
with the proposed algorithm. 
 



 6 

 
6 ACKNOWLEDGEMENTS 
 
The financial assistance from ABPmer Ltd to Yang 
Liu is greatly appreciated.  
 
7 REFERENCES: 
 
Belanche, L.A., J.J. Valdes, J. Comas, I.R. Roda 

and M. Poch. Towards a model of input-output 
behaviour of wastewater treatment plants 
using soft computing techniques. Env. 
Modelling & Software, 14, 409-419, 1999. 

Deb, K. and H.G. Beyer. Self-adaptive genetic 
algorithm with simulation binary crossover. 
Evolutionary Comp., 9(2), 197-221, 2001. 

Emmerich, M., A. Giotis, M. Ozdemir, T. Back and 
K. Giannakoglou. Metamodel-Assisted 
Evolution Strategies. Lecture Notes in 
Computer Sc. 2439, 361-370, 2002. 

Giannakoglou, K.C., A.P. Giotis, and M. Karakasis. 
Low cost genetic optimisation based on 
inexact pre-evaluations and the sensitivity 
analysis of design parameters. Inverse 
Problems in Engrg., 9, 389-412, 2001. 

Gorman, R. M. and C. G. Neilson. Modelling 
shallow water wave generation and 
transformation in an intertidal estuary. Coastal 
Engrg., 36(3), 197-217, 1999. 

Haas, T.C. Statistical assessment of spatio-temporal 
pollutant trends and meteorological transport 
models. Atm. Env., 32(11), 1865-1879. 1998. 

Jin, Y., M. Olhofer and B. Sendhoff. A framework 
for evolutionary optimisation with 
approximate fitness functions. IEEE 
Transactions on Evolutionary Computation, 
6(5), 481-494, 2002. 

Keedwell, E. and S.T. Khu. More choices in water 
system design through hybrid optimisation. 
Proc. Int. Conf. on Comput. and Control for 
the Water Industry, pp. 257-264, 2003. 

Kleijnen, J.P.C. A comment on blanning’s 
metamodel for sensitivity analysis: The 
regression metamodel in simulation. 
Interfaces, 5(1): 21-23, 1975. 

Khu, S.T. and M.G.F. Werner. Reduction of 
Monte-Carlo simulation runs for uncertainty 
estimation in hydrological modelling. Hydrol. 
Earth Sys. Sc., 7(5), 680-692, 2003. 

Kohlmorgen, U., H. Schmeck and K. Haase. 
Experiences with fine-grained parallel genetic 
algorithms. Annals of Op. Res., 90, 203-219, 
1999. 

Lu, W.-Z., W.-J. Wang, X.-K. Wang, S.-H. Yan 
and J.C. Lam. Potential assessment of a neural 
network model with PCA/RBF approach for 
forecasting pollutant trends in Mong Kok 

urban air, Hong Kong. Env. Res., in press, 
2004. 

Liong, S.Y., J. ShreeRam and W.T. Chan. 
Catchment calibration using fractional 
factorial and central composite designs-
based response surface, J. Hydr. Engrg., 
121(8), 613-617, 1995. 

Liong, S.Y., S.T. Khu and W.T. Chan. Derivation 
of Pareto front with genetic algorithm and 
neural networks. J. Hydrol. Engrg., 6(1), 52-
61, 2001. 

Madsen, H. Automatic calibration of a conceptual 
rainfall-runoff model using multiple 
objectives, J. Hydrol., 235, 276-288, 2000. 

Mas, J.F., H. Puig,, J.L. Palacio and A. Sosa-
Lopez. Modelling deforestation using GIS 
and artificial neural networks. Env. 
Modelling & Software, in press, 2004. 

Ong, Y.S., P.B. Nair and A.J. Keane. 
Evolutionary optimisation of 
computationally expensive problems via 
surrogate modelling. AIAA J., 40(4), 687-
696, 2003. 

Ouyang, Y., J. Higman, J. Thompson, T. O’Toole 
and D. Campbell. Characterization and 
spatial distribution of heavy metals in 
sediment from Cedar and Ortega rivers sub-
basin. J. Contaminant Hydrol., 54(1-2), 19-
35, 2002. 

Poloni, C., A. Giurgevich, L. Onesti, and V. 
Pediroda. Hybridization of a multi-objective 
genetic algorithm, a neural network and a 
classical optimzer for a complex design 
problem in fluid dynamics. Comput. Methods 
in Applied Mech. and Engrg., 186, 403-420, 
2000. 

Riddle, A.M., R.E. Lewis and A.D. Sharpe. 
Environmental quality information processor 
(EQUIP). Env. Modelling & Software, 19(1), 
57-62. 2004. 

Rivera, W. Scalable Parallel genetic algorithm. 
Artificial Intel. Rev., 16, 153-168, 2001. 

Salami, M. and T. Hendtlass. A fast evaluation 
strategy for evolutionary algorithms. Applied 
Soft Comput., 2, 156-173, 2003. 

Simpson, T.W., J. Peplinski, P.N. Koch and J.K. 
Allen. Metamodels for computer-based 
engineering design: Survey and 
recommendations. Engrg. With Computers, 
17(2): 129-150, 2001. 

Tatang, M.A., W. Pan, R.G. Prinn and G.J. 
McRae. An efficient method for parametric 
uncertainty analysis of numerical 
geophysical models. J. Geophysical Res., 
102, 21925-21932, 1997. 

 

 


	A fast Evolutionary-based Meta-Modelling Approach for the Calibration of a Rainfall-Runoff Model
	

	tmp.1483582326.pdf.MYtLC

