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Abstract: There are inherent open problems arising when developing and running Intelligent Environmental 
Decision Support Systems (IEDSS). During daily operation of IEDSS several open challenge problems 
appear. The uncertainty of data being processed is intrinsic to the environmental system, which is being 
monitored by several on-line sensors and off-line data. Thus, anomalous data values at data gathering level 
or even uncertain reasoning process at later levels such as in diagnosis or decision support or planning can 
lead the environmental process to unsafe critical operation states. At diagnosis level or even at decision 
support level or planning level, spatial reasoning or temporal reasoning or both aspects can influence the 
reasoning processes undertaken by the IEDSS. Most of Environmental systems must take into account the 
spatial relationships between the environmental goal area and the nearby environmental areas and the 
temporal relationships between the current state and the past states of the environmental system to state 
accurate and reliable assertions to be used within the diagnosis process or decision support process or 
planning process. Finally, a related issue is a crucial point: are really reliable and safe the decisions proposed 
by the IEDSS? Are we sure about the goodness and performance of proposed solutions? How can we ensure 
a correct evaluation of the IEDSS? Main goal of this paper is to analyse these four issues, review some 
possible approaches and techniques to cope with them, and study new trends for future research within the 
IEDSS field. 

Keywords: Intelligent Environmental Decision Support Systems (IEDSS); Uncertainty Management in 
IEDSS; Spatial and Temporal Reasoning in IEDSS; Validation and verification of IEDSS. 

 

1. INTRODUCTION 
 
1.1 Complexity of Environmental Systems 
 
The increasing rhythm of industrialisation, 
urbanisation and population growth that our planet 
has faced for the last few hundred years has forced 
society to consider whether human beings are 
changing the very conditions that are essential to 
life on Earth. Environmental pollution, habitat 

destruction/fragmentation affects negatively the 
quality of water, air, and soil, and hence plant, 
animal and human life (Sydow et al. 1998), (El-
Swaify and Yakowitz, 1998). 
 
Whenever we attempt to tackle these issues, we 
are immediately confronted with complexity. 
There are at least three important reasons for this: 
 



 

• Inherent complexity of environmental 
systems. Environmental processes involve 
a huge amount of knowledge containing 
complex interactions between physical–
chemical, biological, ecological, social 
and economical processes. Also, they are 
stochastic, and, very often, are spatial and 
temporal dependent processes. 

 
• Uncertainty, or approximate knowledge. 

Some of the sources of this uncertainty 
can be tamed with additional data or 
further investigation. Such is the case of 
uncertainty arising from random 
processes or from deficiencies in 
knowledge (lack of data, unsuitable 
datasets, etc.). But in other cases 
uncertainty is insurmountable. This is the 
case for chaotic behaviour, or for self-
organisation processes. It is also typical 
of socio-ecological systems, which 
involve numerous players, each with their 
own goals. 

 
• Multiplicity of scales. Environmental 

problems have been associated 
traditionally with distinct spatial scales 
(i.e., local, national, global), each 
associated with specific timescales. 
However, interactions among these scales 
are becoming increasingly clear. 
Therefore, advocating a single 
perspective that encompasses everything 
in a system is becoming increasingly 
difficult —plus ineffective. 

 
The consensus is developing that, in order to 
account for these caveats, environmental issues 
must be considered in terms of complex systems. 
But not all environmental systems present the 
same level of complexity in terms of both the 
degree of uncertainty and the risk associated with 
decisions. If the degree of complexity is 
represented as a function of uncertainty, on one 
hand, and the magnitude or importance of the 
decision, on the other hand, then we might 
distinguish three levels of complexity (Funtowicz 
and Ravetz, 1993, 1999): 
 

• The first level of complexity would 
correspond to simple, low uncertainty 
systems where the issue at hand has 
limited scope. A single perspective and 
simple models would suffice to provide 
satisfactory descriptions of the system. 
With regard to water issues, this level 
corresponds, for example, to the 
evolution of oxygen in a pristine stream 

after a pulse input of assimilable organic 
matter. In the context of industrial 
processes, an example is the design of a 
single treatment operation where the 
input is perfectly defined. In these cases, 
the information arising from analysis may 
be used for more wide-reaching purposes 
beyond the scope of the particular 
researcher. 

 
• The second level would correspond to 

systems with a higher uncertainty degree, 
which will cause that simple models can 
no longer provide satisfactory 
descriptions. Acquired experience 
becomes then more and more important, 
and the need to involve experts in 
problem solving becomes advisable. In 
the case of water issues, this level would 
correspond to a general model of water 
quality, where the need arises to establish 
which factors are the most important. In 
the case of an industrial process, this level 
would correspond to the installation of a 
wastewater treatment plant, where goals 
for the quality of the output are well 
established but these can be reached 
through different schemes, and it is the 
responsibility of the designer to choose 
the most appropriate configuration. 

 
• The third level would correspond to truly 

complex systems, where much 
epistemological or ethical uncertainty 
exists, where uncertainty is not 
necessarily associated with a higher 
number of elements or relationships 
within the system, and where the issues at 
stake reflect conflicting goals. It is then 
crucial to consider the need to account for 
a plurality of views or perspectives. In the 
case of water issues, an example would 
be the problem of water quality in a 
stream catchment. Here, a variety of 
factors (economical, technical, ecological, 
etc.) are at play, and associated with each 
factor is a different set of goals. Thus, 
different kinds of expertise need to be 
taken into account. In the case of a 
industrial process, this level of 
complexity is associated, for instance, 
with the environmental aspects of 
wastewater treatments, which are 
discussed at the level of the company’s 
policy. Thus the problem is not the design 
of end of pipe installations for the 
treatment of specific outputs, but a more 
global view on the problem that would 



 

contemplate, for example, the installation 
of cleaner technologies in the production 
process itself. 

 
In this sense, it is important to realise that 
environmental problems are characterized by 
dynamics and interactions that do not allow for an 
easy division between social and biogeophysical 
phenomena. Much ecological theory has been 
developed in systems where humans were absent 
or in systems where humans were considered an 
exogenous, simple, and detrimental disturbance. 
The intricate ways in which humans interact with 
ecological systems have been rarely considered 
(Kinzig, 2001).  Embracing a socio-economical 
perspective implies accepting that all decisions 
related to environmental management are 
characterised by multiple, usually conflicting 
objectives, and by multiple criteria (Ostrom, 
1991). Thus, in addition to the role of experts, it 
becomes increasingly important to consider the 
role of wide public participation in the decision 
making processes. Experts are consulted by policy 
makers, the media, and the public at large to 
explain and advise on numerous issues. 
Nonetheless, many recent cases have shown, 
rather paradoxically, that while expertise is 
increasingly sought after, it is also increasingly 
contested (Ludwig, 2001). 
 
In our opinion, most environmental systems 
belonging to the second and third level cannot be 
only tackled with the traditional tools of 
mathematical modelling. To confront this 
complexity, a new paradigm is needed. Adopting it 
will require that we deal with new intellectual 
challenges.  
 
 
1.2 New Tools for a New Paradigm 
 
In the last decades, mathematical/statistical 
models, numerical algorithms and computer 
simulations have been used as the appropriate 
means to gain insight into environmental 
management problems and provide useful 
information to decision makers. To this end, a 
wide set of scientific techniques have been applied 
to environmental management problems for a long 
time and with good results.  
 
But most of these efforts were focused on 
problems that we could assign to the first level of 
complexity. Consequently, many complex 
environmental problems have not been effectively 
addressed by the scientific community.  However, 
the effort to integrate new tools to deal with more 
complex systems has led to the development of the 

so-called Environmental Decision Support 
Systems (EDSSs) (Guariso and Werthner, 1989), 
(Rizzoli and Young, 1997). 
 
EDSSs have generated high expectations as a tool 
to tackle problems belonging to the second and 
third levels of complexity. Thus in a recent review 
of the relevant literature in the topic, more than 
600 references were found (including journal 
articles, conference papers, and technical reports) 
during the 90s, with only 10 references in 1992 
and more than 150 references per year towards the 
end of the decade (Cortés et al., 2002). The range 
of environmental problems to which EDSSs have 
been applied is wide and varied, with water 
management at the top (25% of references), 
followed by aspects of risk assessment (11.5%) 
and forest management (11.0%). Equally varied 
are the tasks to which EDSSs have been applied, 
ranging from monitoring and data storage to 
prediction, decision analysis, control planning, 
remediation, management, and communication 
with society. It is not surprising then that three of 
the top ten most downloaded articles published in 
Environmental Modelling and Software in 
January-December 2001 deal with EDSSs. 
 
 
2. INTELLIGENT ENVIRONMENTAL 

DECISION SUPPORT SYSTEMS 
(IEDSS) 

 
Environmental issues belong to a set of critical 
domains where wrong management decisions may 
have disastrous social, economic and ecological 
consequences. Decision-making performed by 
IEDSSs should be collaborative, not adversarial, 
and decision makers must inform and involve 
those who must live with the decisions. What an 
IEDSS contributes is not only an efficient 
mechanism to find an optimal or sub-optimal 
solution, given any set of whimsical preferences, 
but also a mechanism to make the entire process 
more open and transparent. In this context, 
IEDSSs can play a key role in the interaction of 
humans and ecosystems, as they are tools designed 
to cope with the multidisciplinary nature and high 
complexity of environmental problems. 
From a functional point of view, and taking into 
account the kind of problem that the IEDSS 
solves, two kinds of IEDSS could be distinguished 
(and of course, most of the systems are in between 
these two categories): 
 

- Those which are controlling/supervising a 
process in real-time (or almost real-time), 
facing similar situations in a regular basis. 
They must guarantee robustness against 



 

noise, missing data, typos and any 
combination of input data. In general the 
end-user is responsible to 
accept/refine/reject system solutions. This 
responsibility can decrease (thus, 
increasing IEDSS confidence) over the 
time as far as the system is facing 
situations that were successfully solved in 
the past (real validation).  

- Those that give punctual support to 
decision-making. Mainly used to justify 
multi-criteria decisions of policy-makers 
(transparency) more than to make real 
decisions in a day-to-day basis. It is 
interesting for the end-user to play with 
what-if scenarios, to explore the response 
surface and the stability of the solution 
(how sensitive our decision is to small 
variations of the given weight and the 
value of the relevant variables), etc. The 

role of socio-cultural and economical 
issues limits the use of standard 
databases. Confidence can not be 
increased according to the results when 
facing similar situations, because these 
IEDSS are very specific and sometimes 
are only built to take (justify) one 
decision. 

 
 According with Fox and Das (2000), a decision 
support system is a computer system that assists 
decision makers in choosing between alternative 
beliefs or actions by applying knowledge about the 
decision domain to arrive at recommendations for 
the various options. It incorporates an explicit 
decision procedure based on a set of theoretical 
principles that justify the “rationality” of this 
procedure. 
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Figure 1. IEDSS conceptual components 

 

Thus, an IEDSS could be defined as: 
 

• R. Sojda (Sojda, 2002) defines the as 
systems using a combination of models, 
analytical techniques, and information 
retrieval to help develop and evaluate 
appropriate alternatives (Adelman 1992; 
Sprague and Carlson 1982); and such 
systems focus on strategic decisions and 
not operational ones.  More specifically, 

decision support systems should 
contribute to reducing the uncertainty 
faced by managers when they need to 
make decisions regarding future options 
(Graham and Jones 1988).  Distributed 
decision making suits problems where the 
complexity prevents an individual 
decision maker from conceptualizing, or 
otherwise dealing with the entire problem 
(Boland et al. 1992; Brehmer 1991). 



 

• An intelligent information system that 
reduces the time in which decisions are 
made in an environmental domain, and 
improves the consistency and quality of 
those decisions (Haagsma and Johanns, 
1994), (Cortés et al., 2001). 

• Others definitions could be found in 
(D’Erchia et al, 2001). 

 
Decisions are made when a deviation from an 
expected, desired state of a system is observed or 
predicted. This implies a problem awareness that 
in turn must be based on information, experience 
and knowledge about the process. Those systems 

are built by integrating several artificial 
intelligence methods, geographical information 
system components, mathematical or statistical 
techniques, and environmental/health ontologies, 
and some minor economical components (see 
figure 1). 
 
This progression in complexity of the methods, 
and in the intensive use of knowledge usually 
required to develop an IEDSS corresponds to an 
increase in data required to support the models. 
See the Fig. 2, adapted from (Witakker, 1993). 
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Figure 2. Information and decision, knowledge and data 
 

 
2.1 IEDSS Development 
 
How a particular IEDSS is constructed will vary 
depending on the type of environmental problem 
and the type of information and knowledge that 
can be acquired. With these constraints in mind, 
and after an analysis of the available information, 
a set of tools can be selected. This applies not only 
to numerical models, but also to artificial 
intelligence (AI) methodologies, such as 
knowledge management tools. The use of AI tools 
and models provides direct access to expertise, and 
their flexibility makes them capable of supporting 
learning and decision making processes. Their 
integration with numerical and/or statistical 

models in a single system provides higher 
accuracy, reliability and utility (Cortés et al., 
2000). 
 
This confers IEDSSs the ability to confront 
complex problems, in which the experience of 
experts provide valuable help for finding a 
solution to the problem. It also provides ways to 
accelerate identification of the problem and to 
focus the attention of decision-makers on its 
evaluation. Once implemented, an IEDSS, like any 
knowledge-based system, has to be evaluated for 
what it knows, for how it uses what it knows, for 
how fast it can learn something new, and, last but 



 

not least, for its overall performance. Figure 3 schematically shows this methodology. 
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Figure 3. Flow diagram for development of an IEDSS 
 

Both the proposed IEDSS development procedure 
and the IEDSS architecture are general enough to 
be intended to cope with any kind of IEDSS 
deployment. 
 
Cortés et al. (2000) proposed an IEDSS 
architecture based on five steps (Figure 4): 
 

 The first step of the IEDSS (data 
interpretation) encompasses the tasks 
involved in data gathering and 
registration into databases. Original raw 

data are often defective, requiring a 
number of pre-processing procedures 
before they can be registered in an 
understandable and interpretable way. 
Missing data and uncertainty must be also 
considered in this level. Also, the 
knowledge discovery step including data 
mining techniques are included here 
providing the IEDSS with the 
environmental process knowledge. 

 The second step, diagnosis level, includes 
the reasoning models that are used to 



 

infer the state of the process so that a 
reasonable proposal of actuation can be 
reached. This is accomplished with the 
help of statistical, numerical and artificial 
intelligence models, which will use the 
knowledge previously acquired. 

 The third step, decision support level, 
establishes a supervisory task that entails 
gathering and merging the conclusions 
derived from AI knowledge models and 
numerical models. This level also raises 
the interaction of the users with the 
computer system through an interactive 
and graphical user-machine interface. 
When a clear and single conclusion can 
not be reached, a set of decisions ordered 

by their probability or certainty degree 
should be presented to the user. 

 In the fourth level, plans are formulated 
and presented to managers as a list of 
general actions or strategies suggested to 
solve a specific problem.  

 The set of actions to be performed to 
solve problems in the domain considered 
are the fifth and last step. The system 
recommends not only the action, or a 
sequence of actions (a plan), but a value 
that has to be accepted by the decision 
maker. This is the final step in the 
architecture that closes the loop. 
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Figure 4. IEDSS Architecture 



 

 

 
 
Although this IEDSS architecture is very nice 
there are inherent open problems arising when 
running such systems. During daily operation of 
IEDSS several open challenge problems appear. 
The uncertainty of data being processed is 
intrinsic to the environmental system, which is 
being monitored by several on-line sensors and 
off-line data. Thus, anomalous data values at data 
gathering step or even uncertain reasoning process 
at later levels such as in diagnosis or decision 
support or planning can lead the environmental 
process to unsafe critical operation states. At 
diagnosis step or even at decision support step or 
planning step, spatial reasoning or temporal 
reasoning or both aspects can influence the 
reasoning processes undertaken by the IEDSS. 
Most of Environmental systems must take into 
account the spatial relationships between the 
environmental goal area and the nearby 
environmental areas and the temporal 
relationships between the current state and the past 
states of the environmental system to state accurate 
and reliable assertions to be used within the 
diagnosis process or decision support process or 
planning process. Finally, a related issue is a 
crucial point: are really reliable and safe the 
decisions proposed by the IEDSS? Are we sure 
about the goodness and performance of proposed 
solutions? How can we ensure a correct evaluation 
of the IEDSS? 
 
Main goal of this paper is to analyse these four 
issues mentioned above, which are depicted in 
figure 1. Each one of the next sections is devoted 
to each one of these open challenges. 
 
 
3.   ABOUT UNCERTAINTY 

MANAGEMENT  
 
No matter the field of application being closed-
loop process control, diagnosis or more generally 
decision support systems; one has to deal with 
uncertainty. As soon as a real-life system is 
studied and analysed, uncertainty is indeed 
inherently present: information sources are not 
perfect (e.g., fouling of on-line sensors) and 
sometimes subjective (e.g., human judgement), 
unknown disturbances can affect the process 
dynamics, but also knowledge on a system is 
always partial and incomplete due to system 
complexity. Lack of information but also 
abundance of information leads to uncertainty (van 
Asselt and Rotmans, 2002). As a matter of fact, 
when dealing with environmental system, lack of 

information has been for a long time recognised as 
the main source of uncertainty but due to recent 
technical advances (in particular sensors 
development), there are now many situations 
where "the more we know, the more we don't 
know". M.B. Beck defines this paradigm for 
wastewater management as going from a "data 
poor, information rich" (i.e., few data available but 
they are well analysed) to a "data rich, information 
poor" situation (i.e., many data available, in fact 
too many and their interactions are not carefully 
analysed and/or understood – Beck, 1987). 
Moreover, environmental models are also wrong 
and known to be wrong (Morton, 1993). As a 
consequence, as stated in the early ages by the 
philosopher Socrates, "wisdom is to know that you 
don't know" and uncertainty management is surely 
of great importance when developing IEDSS. 
 
A general definition of uncertainty can be "any 
deviation from the unachievable ideal of 
completely deterministic knowledge of the 
relevant system' (Walker et al,. 2003). Other 
definitions exist to deal with incompleteness, 
vagueness, validity and inconsistency, the main 
sources of uncertainty (see for example 
Zimmermann, 2000) but the above definition has 
the advantage that it leads to clear different 
dimensions of uncertainty and for example for 
model-based decision support systems, the authors 
have defined: 
 

- The location of uncertainty – where the 
uncertainty manifests itself within the model 
complexity; 
- The level of uncertainty – where the 
uncertainty manifests itself along the spectrum 
between deterministic knowledge and total 
ignorance; 
- The nature of uncertainty – whether the 
uncertainty is due to the imperfection of our 
knowledge or is due to the inherent variability 
of the phenomena being described. 

 
Uncertainty has also several levels ranging from 
determinism and total ignorance: from 
determinism, statistical uncertainty is followed by 
scenario uncertainty, then recognised ignorance 
and total ignorance, the frontier between these two 
last items being defined as indeterminacy (Walker 
et al., 2003). 
 
Even though uncertainty is inherent, one does not 
have to reject it since there exist several ways to 
represent it and to integrate it into the reasoning 
process of an IEDSS. One idea is for example to 
attribute a confidence index to the source of 



 

information, but many other approaches exist in 
the literature among which the Bayesian theory, 
the Evidence Theory and the Possibility Theory. 
See for example some of the seminal papers about 
fuzzy sets and its application like (Zadeh,1965; 
Dubois and Prade, 1996), about Bayesian and 
evidence theory like (Dempster 1967; Shafer, 
1976).  
 
Main used approaches to represent and a manage 
uncertainty are Bayesian Belief networks, Causal 
networks, certainty factors derived from MYCN 
expert system, influence diagrams, and fuzzy 
logic. 
 
Representing uncertainty in a specific context 
leads to several questions, as pointed out in 
(Walley, 1996): 
 
- What are the interpretation, calculus and 

consistency of the uncertainty representation 
in each of the theories? 

- How to evaluate, combine and adapt the 
measures of uncertainty? 

- How to assess the consistency of the uncertain 
information? 

- How to use this measure in the decision taking 
process? 

 
Comparison of these approaches can be found in 
several papers and books among which (Klir and 
Folger, 1988; Smithson, 1989; Sheridan 1991; 
Krause and Clark, 1993) can be mentioned. In fact, 
the four theories differ in the calculus they use for 
defining, updating and combining measures of 
uncertainty, especially the rules they use to define 
conditional probabilities and expectations and how 
they model judgements of independence (Walley, 
1996). 
 
When used with environmental issues, uncertainty 
management is clearly a main issue. A deep review 
of these aspects of out of the scope of the present 
paper but as an illustration of the increasing 
interest, figure 5 presents the number of papers 
published per year for the last 15 years with 
"environment" "decision" and "uncertainty" in the 
title, abstract and/or keywords. One can notice a 
well pronounced increasing tendency with 
currently about 65 ISI papers published per year 
and this tendency should continue in the future. 

 

 
Figure 5. Number of scientific ISI publications dealing with "uncertainty", "environment" and "decision" in 

the title, abstract and/or keywords over the last 15 years 
 

 
 
4.  TEMPORAL REASONING  
 
The interest in the area of temporal reasoning, and 
also spatial reasoning is growing within the 
artificial intelligence field, as well as within the 

geographical information systems area. Probably 
this could be due to many application domains 
where temporal information, spatial information or 
both must be managed (Renz and Guesguen, 
2004). Most common domains related to artificial 
intelligence application are environmental systems 
and medicine/health-care applications. 



 

 
Some typical examples within the environmental 
systems field are the monitoring and on-line 
control of dynamic processes such as power 
stations control, wastewater treatment plants 
control, and the forecasting of some 
meteorological or seismic phenomena. Some 
applications in the medical domain are the 
monitoring of patients in an intensive care unit, or 
the diagnosis and/or the prognosis and cure of 
some medical diseases. Nevertheless, dealing with 
time and space it is not restricted to artificial 
intelligence or geographical information systems. 
Some tasks such as mobile networks, distributed 
systems, planning, database theory, archaeology, 
genetics, the design of hardware circuits, the 
analysis of concurrent programming, scheduling, 
jet plane control and autonomous robot navigation 
are also instances of temporal/space domains.  
  
In environmental domains the temporal features 
are very important. Temporal relationships 
between the current state and the past states of the 
environmental system constitute fundamental 
information to state accurate and reliable 
assertions to be used within the diagnosis process 
or decision support process or planning process. If 
these relationships are not taken into account, 
decisions proposed by an IEDSS would be not 
very reliable, and the environment could be 
damaged. Thus, temporal reasoning is a necessary 
component within IEDSSs. 
 
Within computer science, there are many 
techniques or formalisms which have been 
developed to deal with temporal reasoning 
including non-monotonic logics, modal logics, 
circumscription methods, chronological 
minimization methods, relation algebras and 
applications of constraint-based reasoning, but a 
generalised understanding across different 
domains of time/space does not exist. No formal 
general purpose methodology has been developed 
and proved to be useful for different spatio-
temporal calculi methods (Renz and Guesguen, 
2004). In fact, each one of the methodologies is 
commonly oriented to slightly different features of 
the time/space problem. This is why temporal 
reasoning within IEDSS is an open challenge to be 
deeply studied in the future. 
 
 
4.1 Relevant Work 
 
From a logical point of view, temporal features in 
automated reasoning have been widely studied 
within the field of Artificial Intelligence. For 
instance, the logic of time work by (van Benthem, 

1983); the work by Allen (Allen and Ferguson, 
1994; Allen 1984; Allen, 1983) about the temporal 
interval logic; or the work of temporal logic by 
(Ma and Knight 2001;Ma and Knight, 1994) and 
by (Shoham 1987); or the circumscriptive event 
calculus by (Shanahan, 1995). All these 
approaches model reasoning processes under 
temporal constraints, which can modify the truth 
of logic assertions. 
 
 
4.2 Approaches to Temporal Reasoning 
 
Formalisms developed to handle temporal 
reasoning share two main issues (Ligozat et al., 
2004): 
 

• The development of suitable 
representation languages or frameworks 
for temporal knowledge. Using these 
tools, the domain knowledge could be 
constructed. 

• The proposal of techniques and methods 
for managing and reasoning about that 
knowledge. In particular, the management 
and query answering of the domain 
knowledge. 

 
 Formalisms developed to manage temporal 
reasoning could be grouped as follows: 
 

• Theoretical-oriented models, which are 
basically, inspired by certain kind of 
logics or relation algebras. Outstanding 
models are the temporal interval logic by 
Allen (Allen, 1983), generalised intervals 
by (Balbiani et al., 2000), cyclic intervals 
(Balbiani and Osmani, 2000), partially 
ordered time model (Anger et al., 2000) 
or the INDU calculus (Pujari and Sattar, 
1999). They are highly concerned with 
the logical characterization of the models 
of a given calculus and especially worried 
about the consistency and computational 
cost of basic operations over the domain 
knowledge. 

• Practical-oriented models, which are 
more inspired by the application domains, 
and by the practical use of the models, 
such as in time series models and other 
mathematical models within statistics and 
in case-based reasoning (Sànchez-Marrè 
et al., 2005, Ma and Knight, 2003; Jaere 
et al., 2002). They are more concerned by 
the efficiency and accuracy of the queries 
to the domain knowledge.  

 
 



 

4.3 Featuring the Problem 
 
Continuous or dynamic or time-dependent or 
temporal domains commonly involve a set of 
features, which make them really difficult to work 
with, such as:  
 

• A large amount of new valuable 
experiences are continuously generated 

• The current state or situation of the 
domain depends on previous temporal 
states or situations of the domain 

• States have multiple diagnoses. 
 
Taking into account its major characteristics, 
temporal domains could be defined as those 
domains where the truth of the logic assertions 
(ak,ti) at a given instant time ti depends both on the 
truth of logic assertions at current instant time ti, 
and on the truth of logic assertions (ak,ti-∆ti) at a 
past time ti-∆ti. This is illustrated by figure 6. 
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a4,ti

a5,ti

titjti-∆ti ≤ <

a1,ti-∆ti

a2,ti-∆ti

a5,ti-∆ti

a2,ti
a4,ti

a5,ti

titjti-∆ti ≤ <  
 
Figure 6. True assertions along the time line in a 

temporal domain 
 
More formally, the domain could be considered as 
time dependent iff: 
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The huge complexity of environmental systems 
makes difficult modelling them with a theoretical-
oriented model, because many logic assertions 
should be stated and demonstrated before some 
reasoning mechanisms could be applied. On the 
contrary, practical-oriented models are mainly 
concerned by allowing effective and accurate 
reasoning capabilities, in order to make the 
appropriate decisions at the environmental system. 
This is the reason why practical-oriented models 
seem to be more adequate than theoretical-oriented 
models to cope with environmental systems.. 
 
Last years, Case-Based Reasoning (CBR) 
(Kolodner, 1993) has been started to use, as a 
promising framework to deal with temporal 
domains. Main reason is that CBR itself operates 

retrieving similar solutions within the past 
experiences (past time actions) to solve a new 
unseen problem. Thus, it could be easier to 
incorporate the temporal component to this kind of 
systems. For this reason, in the next section a new 
approach based on the concepts of temporal 
episodes is outlined. 
 
 
4.4 Case-Base Reasoning for Temporal 
Reasoning 
 
In CBR systems, this temporal reasoning in 
continuous or dynamical domains was not studied 
until recently. Ma & Knight (Ma and Knight 2003) 
propose a theoretical framework to support 
historical CBR, based on relative temporal 
knowledge model. Similarity evaluation is based 
on two components: non-temporal similarity, 
based on elemental cases, and temporal similarity, 
based on graphical representations of temporal 
references. Most related publications, such as 
those of (Jaczynski, 1997; Nakhaeizadeh, 1994) 
use temporal models with absolute references. 
(Jaere et al., 2002) use a qualitative model derived 
from the temporal interval logic from Allen. In 
(Likhachev et al., 2002; Rosenstein and Cohen, 
1999; Ram and Santamaria, 1997), several 
approaches are proposed in the field of mobile 
robots, emphasising the problem of the continuity 
of data stream in these domains. However, none of 
these give an answer for temporal episodes. In 
addition, they focused more on predicting 
numerical values, which can be described as time 
series, rather than on using the correlation among 
cases forming an episode. In (Sànchez-Marrè et 
al., 1999), a method for sustainable learning in 
continuous domains was proposed, based on a 
relevance measure. 
 
There was not any approach proposing a 
mechanism for explicit representation for both 
temporal episodes and isolated cases, and 
addressing the problem of overlapping temporal 
episodes. Also the feature dependency among 
isolated cases forming an episode are not 
addressed by main known approaches, and rather 
they provide temporal logic reasoning 
mechanisms, which cannot solve all related 
problems. This means that classical individual case 
retrieval is not very accurate, as the dynamic 
domain is structured as a temporally related stream 
of cases rather than in single cases. The CBR 
system solutions should be also dynamic and 
continuous, and temporal dependencies among 
cases should be taken into account. 
 



 

(Sànchez-Marrè et al., 2005) proposes a new 
framework for the development of temporal CBR 
systems: the Episode-Based Reasoning model. It is 
based on the abstraction of temporal sequences of 
cases, which are named as episodes. In this kind of 
domains, it is really important to detect similar 
temporal episodes of cases, rather than similar 
isolated cases. Thus, a more accurate diagnosis 
and problem solving of the dynamic domain could 
be done taking into account such temporal 
episodes of cases rather than only analysing the 
current isolated case.  
Working with episodes instead of single cases is 
useful in temporal domains, but also raise some 
difficult tasks to be solved, such as: 
 

• How to determine the length of an 
episode,  

• How to represent the episodes, taking into 
account that they could be overlapping, 

• How to represent the isolated cases, 

• How to relate them to form episodes,  
• How to undertake the episode retrieval,  
• How to evaluate the similarity between 

temporal episodes of cases, 
• How to continually learn and solve new 

episodes.  
 
This approach answers almost all of these 
questions, and proposes a new framework to 
model temporal dependencies by means of the 
episode concept. The Episode-Based Reasoning 
framework can be used as a basis for the 
development of temporal CBR systems. This 
framework provides mechanisms to represent 
temporal episodes, to retrieve episodes, and to 
learn new episodes. An experimental evaluation 
has shown the potential of this new framework for 
temporal domains.  
 
Main ideas can be summarised in figures 7 and 8. 
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Figure 7. Hierarchical three-layered memory structure 
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Figure 8. New and/or continued episodes arising from the current case 
 

 

5. GEOGRAPHICAL INFORMATION AND 
SPATIAL REASONING 

 
The design and use of GIS in natural resources 
research and management continues to proliferate 
throughout the world.  This has been concomitant 
with the increase in computing power that has 
allowed increasingly complex spatial and temporal 
relationships to be utilized.  Still, there appears to 
be potential for conceptual advancements.  After 
discussing the intricacies of understanding and 
defining spatial reasoning, we will visit some of 
the approaches used and address some of the open 
issues and research needs.  Our focus is on 
artificial intelligence methodologies and how they 
might link to GIS. 
 
 
5.1 Understanding Spatial Reasoning 
 
No single, concise definition exists for spatial 
reasoning.  Timpf and Frank (1997) suggested the 
following intuitive one: “…any deduction of 
information from a representation of a spatial 
situation.”  A definition is difficult to develop 
partly because spatial relationships are thorny to 
delineate in themselves, and because reasoning has 
many components.  We will examine both how to 
represent spatial relations and how to reason with 
and about them. 
 
An online resource for spatial reasoning with a 
bibliography containing thousands of references 
can be found at 
http://www.cse.iitk.ac.in/~amit/other/spatsites.html
, and we only will provide a cursory examination 
of some of the literature.  Hernandez and Mukerjee 
(1995) list five properties of physical space: it is 
continuous and homogenous, objects relate to each 
other in terms of proximity and overlap, an object 
exists only once, each location coincides with at 
most one object, and movement is only possible to 
adjacent locations.  They also differentiate several 
approaches to spatial reasoning, describing 
quantitative representations as those “expressed 
with respect to a predefined unit”, and qualitative 
ones as representing “only those features that are 
unique or essential.”  Golledge (1992) has shown 
that people, in general, do not perceive and do not 
readily relate to fundamental concepts of 
geography and spatial reasoning such as “nearest 
neighbor”.  So, developers of environmental 
decision support systems that incorporate spatial 
reasoning must take this in to account.  AI based 
interfaces might be of help.   

 
A great deal of research attention has been given 
to qualitative spatial reasoning (see Freska, 1991, 
for an early review) because much of what people 
perceive about their spatial environment is not 
quantitative, e. g., the goose was observed flying 
between the two wetlands.  This attention to 
qualitative aspects has many commonalities with 
yet unsolved issues in natural language processing, 
including nuance, context, and perspective.  
Robotics is another venue that has devoted 
attention to rapid and real-time processing of 
qualitative information to address problems of 
maneuvering through poorly understood 
environments.  See Moratz and Wallgrun (2003) 
for a review of some of the literature.  The blocks 
world and similar problems, so prevalent in early 
AI work, are often based on spatial reasoning and 
have been especially tied to search algorithms that 
examine large potential solution spaces.  These 
have typically had representations of space that are 
tied to quantifiable spatial dimensions.  As natural 
resource managers, we often think similarly, i.e., 
of spatial problems in regards to how they are 
represented in a GIS.  We are usually dealing with 
tightly controlled representations in terms of X, Y, 
and Z dimensions, map projections, and relative 
datums.  Still spatial representation and reasoning 
is not straightforward (Egenhofer 1989, Mark 
1999), and we wish to further explore spatial 
reasoning in terms of GIS and artificial 
intelligence.  How can we couple knowledge with 
spatial information and reasoning?  We will not 
confine this to how animals and humans perceive 
and move through their environment, but also how 
processes perceive, populate, and affect their 
environment.  We will also address the interaction 
of  biotic and abiotic factors.  Modelling of 
ecological processes within a spatial context has 
many indistinguishable features in common with 
spatial reasoning.  Finally, spatial and temporal 
reasoning share many commonalities, and often 
spatial problems must be represented in time steps 
or some other temporal framework. 
 
Fonseca et al. (2002) make a compelling argument 
and implementation for using standard inheritance-
based ontologies to handle not only aspects of 
granularity in spatio-temporal representations, but 
also for reasoning across granularities.  They 
recognize that processes and reasoning may be 
unique within, and among, levels of granularity.  
Bettini and Montanari (2002) provide a summary 
of the research needs in this important area and 
promote the linkage between GIS and AI.  A 



 

similar problem seems inherent to the nature of the 
indivisibility of polygons, along with the discreet 
nature of polygons and the inherent conflict in 
using them to represent continuous data across 
space.  This problem is typified in mapping soils 
and effectively discussed by McBratney (1992) 
and McBratney et al. (2002).  One approach they 
put forward is using fuzzy set theory and related 
methodology for classifying polygons. 
 
There are too many generic uses of GIS to list, but 
typical applications in natural resources include: 

 combining data from layers to form a new 
layer 

 pathway and nearest neighbor analysis 
 buffering 
 interpolation, kriging, and related analyses 
 modelling ecological processes/graphical 

representation of process outputs 
 locating objects that may be stationary or 

move over time 
 integration of processes at multiple scales 
 amalgamation (or the reverse) of objects or 

spaces (fields) 
 changing topology or attributes over time 

 
Although we will not address techniques readily 
available in most GIS software packages, we do 
not wish to minimize their importance to 
modelling.  Artificial intelligence can also be used 
as a basis for models themselves or as ways to 
communicate among model components, of which 
GIS could be one.  Artificial intelligence based 
software can be embedded within GIS, or vice 
versa.  We see the following as particularly fruitful 
avenues for both natural resource application and 
further research and development in a modelling 
context.  These all are potential areas where 
artificial intelligence and GIS can have a new or 
increasingly fruitful interface.   
 
 
5.1.1. Altering Attributes/Databases and 
Topology 
 
Models can be used to change the internal 
attributes of objects within a GIS, i.e., points, 
lines, and polygons, or cells.  For example, the 
output from a snowfall model might alter the 
surface color or surface elevation associated with 
particular polygons.  An alternative approach 
would be to have the model outside the GIS and 
have it alter a database held in common with the 
GIS.  It appears that this is the approach used Joy 
and Death (2004) in effectively linking a neural 
network and GIS for modelling aquatic species 
distributions in relation to specific stream reaches 
in New Zealand.  A slightly more intricate 

approach is where one layer’s attributes are altered 
by a process model requiring data inputs from 
other layers.  In such cases, autonomous agents 
within cells could be triggered by changing values 
in other cells.  GIS approaches that can alter the 
actual shape, location, or identity of polygons, 
lines, and points based on either external or 
internal models are also needed.  Doing this in 
iterative or recursive fashion can be 
computationally problematic if the number of steps 
is large.  Liangyi and Baoli (2002) use the terms 
tight and loose coupling, respectively, to describe 
actual internal integration versus external database 
connections of GIS with expert systems.  
However, those  terms have not be universally 
adopted.  We agree with Sauchyn (2001) that 
spatial modelling of soil processes within a 
geologic time scale could be an important 
contribution and recognize the potential pitfalls 
they describe related to losing granularity with 
such extrapolations over time and space.  We do 
not know of any spatial modelling efforts that have 
accomplished this. 
 
The work of Skidmore et al. (1991) and Skidmore 
et al. (1996) in connecting expert systems and GIS 
for mapping forest soils in Australia combines AI 
and spatial reasoning and is particularly impressive 
because they conducted empirical validation, 
something not done frequently enough.  They were 
unable to demonstrate a statistical difference in 
performance between the expert system and the 
mapping by experts, although accuracy of each 
approach was less than 75 percent.  However, it is 
unclear whether the soil experts used for system 
development were independent of the experts used 
for validation. 
 
5.2.  Kriging and Variants 
 
A key aspect of complex spatial representation of 
raster-based models is controlling how adjacent 
cells interact.  Does (should) the value of one cell 
depend on the value of adjacent cells?  The 
concept of a moving window has been commonly 
used in everything from wildlife habitat models to 
pedology to estimating land use change (Carroll 
1999; Guo et al. 2003, Schneider 2003).  GIS 
software can make this available internally.  We 
are not aware of work using encoded ecological 
knowledge (e.g., an expert system, machine 
learning) to control the moving window process, 
itself, or of work where kriging mechanisms 
encapsulate such knowledge. 
 
 
5.3.  Representing Change/Time 
Steps/Feedback Loops 



 

 
There are mechanisms for capture of changing 
conditions within GIS software, often as a kind of 
video representation of successive maps or images.  
These can be most useful for visualization of 
change.  The need to incorporate feedback loops in 
interdisciplinary ecological modelling can be 
crucial.  When needing to develop 
interdisciplinary models that are knowledge-based, 
the problem of how to incorporate feedback loops 
generally remains problematic.  Although 
Bayesian belief networks and influence diagrams 
(Jensen 2001) can be effective for interdisciplinary 
modelling, their inherent nature as directed acyclic 
graphs makes it nearly impossible to effectively 
incorporate feedback.  One current solution is to 
imbed the network within the loop control of some 
other program, but this is typically cumbersome.  
A second solution is to develop instances of a 
modular portion of the network, and allow those 
instances to operate in successive time steps.  This 
might work well for annual cycles of vegetation 
growth in relation to their abiotic environment, 
e.g., where cattails (Typha spp.) might trap snow 
and the resulting increased water levels may affect 
growth.  However, the approach does not work 
well for feedback triggered by either episodic or 
sporadic events.  Nor does it work well when the 
time steps are small and therefore likely numerous. 
 
 
5.4. Middleware, Blackboards, and 
Communication Protocols 
 
There are too many definitions of middleware to 
list.  The most generic can be described as 
software that provides an interface between other 
pieces of software (Brown et al. 2005), especially 
when distributed (Tripathi 2002).  With a recent 
National Science Foundation initiative in the 
U.S.A. 
(www.nsf.gov/od/lpa/news/03/fs03_nmi.htm), 
middleware has come to include a component of 
providing the interface for distributed computing 
over the Internet.  Armstrong et al. (2005) provide 
a GIS example.  Middleware seems to hold great 
promise for connecting distributed software, 
models, and databases, because spatial modelling 
tends to be intensive from both a computational 
and a data storage perspective.  Using middleware 
to connect artificial intelligence based process 
models with a GIS holds promise for 
computationally intense spatial models. 
 
Blackboards are an artificial intelligence method 
that have been around for two decades (Carver and 
Lesser 1992; Corkill 1991; Ni 1986).  Blackboard 
methodology allows entities that may or may not 

be intelligent agents to use cooperative distributed 
problem solving methods(Carver et al. 1991; 
Durfee et al. 1989) for solving common problems.  
Nute et al.(2004) used backboard methodology in 
their NED-2 decision support system for forest 
ecosystem management. 
 
Labrou and Finin (1997) provided one of the early 
communication protocols, KQML (Knowledge 
Query and Management Language), for message 
passing among agents, but it was never completely 
standardized in the computer science community.  
This has morphed into FIPA (Foundation for 
Intelligent Physical Agents) which has produced 
protocols for agent communication, management 
and message transport (www.fipa.org).  Such 
protocols are the foundation not only for agent 
communication, but provide the basis by which 
disparate spatial and temporal models could share 
information among themselves within an artificial 
intelligence structure.  Purvis et al. (2001) describe 
a system that combines neural networks and GIS 
via CORBA (Common Object Request Broker), 
another common protocol based on object oriented 
programming, not intelligent agent 
communication.  All such communication 
protocols could be exploited for managing both the 
embedding of GIS and AI, as well as 
implementing many aspects of multiagent systems. 
 
Rossier and Scheurer (2002), in an interesting turn 
for ecological scientists, describe a system for 
mobile network applications inspired by 
ecosystem principles.  Although not GIS-based, it 
does incorporate the middleware technology, 
blackboards, and FIPA protocols.  The system is 
based on self-regulation in populations of mobile 
agents, and conceptually can be related to 
ecological population concepts. 
 
 
5.5. Multiagent Systems 
 
The term, multiagent system, implies more than 
one agent interacting with each other within an 
underlying communication infrastructure and 
without a procedural control mechanism; and, the 
individual agents often are distributed and 
autonomous (Huhns and Stephens 1999.)  Scores 
of problems in natural resources are inherently 
distributed both temporally and spatially.  Many 
artificial intelligence-based methodologies, 
particularly those related to cooperative distributed 
problem solving and multiagent systems (Weiss 
1999) also are designed to address distributed 
problems.  Wooldridge (1999) stated that no 
single, accepted definition of an agent exists, 
although his writings have helped to overcome 



 

this.  We will accept the definition of an intelligent 
agent as a computer system based in artificial 
intelligence, that is autonomous, collects 
information about its environment (either virtual or 
real environment), and is capable of independently 
taking the initiative to react to that input as 
appropriate (Weiss 1999; Wooldridge 1999; 
Wooldridge and Jennings 1995).  This differs from 
objects, cellular automata, and individual based 
models which lack the inherent autonomous 
intelligence embedded within agents.  Anderson 
and Evans (1994) discuss the application of 
intelligent agents as an approach to modelling in 
natural resource management, stressing the need 
for autonomy and the ability of an agent to interact 
spatially and temporally with surrounding entities.  
They also underscore the equal importance of 
providing a satisfactory representation of the 
spatial world in which the agents are embedded.  
Although the belief-desires-intentions (BDI) agent 
architecture summarized by Wooldridge (1999) 
and Rao and Georgeff (1995) is not a requirement 
for this definition of an agent, it exemplifies the 
foundation upon which intelligent agents often are 
conceptualized and distinguished from non-
artificial intelligence based approaches.  For 
further clarification, we note that objects lack 
autonomy; cellular automata are not capable of 
movement; and individual based models are 
generally designed to represent biotic entities. 
 
A recent multiagent-GIS combination system of 
note is a crowd simulator (Moulin et al. 2003).  
Torrens and Benenson (2005) provide an excellent 
review of the differences between automata and 
agents, and they discuss geographic automata 
systems which are a hybrid combination for 
representing human objects interacting with their 
environment.  Similarly, Anderson (2002) reviews 
these differences and describes Gensim, a generic 
ecological modelling tool that incorporates 
interaction among agents, encompasses the 
definition of intelligent agents provided above, is 
domain independent, and can build and 
incorporate large number of agents in a spatial 
framework.  Brown et al. 2005 state that they 
“know of no implementation of an ABM [agent-
based model] embedded completely within a GIS 
environment.” 
  
We will not review all the uses of agents that have 
been used in spatial modelling and GIS, but 
intelligent agents can be used to represent 
knowledge bases, pieces of software (Nute et al. 
2004), independent models, individual biotic 
organisms (Dumont and Hill 2001), environmental 
(abiotic and biotic) characteristics (Medoc et al. 
2004), geographic portions of landscape, human 

decision makers (Bousquet and Le Page 2004; Lei 
et al. 2005), and user interfaces (Nute et al. 2004).   
 
Spatial models in natural resources often also 
involve a temporal component.  In purely 
procedural programming approaches, modelling 
the simultaneous effects of processes on multiple 
entities or space is nearly impossible without 
massively parallel implementations.  However, 
using intelligent, autonomous agents, this 
limitation is overcome.  Multiple threaded 
architectures are becoming an increasingly 
common approach to implementing multiagent 
systems.  The software, DECAF (Graham and 
Decker 2000; Graham et al. 2001) is such an 
implementation; and, trumpeter swan (Cygnus 
buccinator) movements in seasonal time steps 
have been modelled within a multiagent 
framework using DECAF (Sojda 2002; Sojda et al 
2002). 
 
 
5.6.  Other Thoughts 
 
De Serres and Roy (1990) and Argemiro de 
Carvalho Paiva et al (in press) provide unique and 
interesting approaches to spatial reasoning for 
determining flow direction in rivers on remote 
imagery.  It is not clear if either effort was 
integrated with a GIS, but it is easy to envision 
such a coupling. 
 
It would also seem that the early innovative work 
of Folse et al. (1989) regarding animal movement, 
memory, and habitat use would lend itself 
exceedingly well to a combination of AI 
methodologies and GIS.  This could include agents 
to represent animals, with memory seeming to be a 
natural instantiation of a belief-desires-intention 
(BDI) architecture (Wooldridge 1999; and Rao 
and Georgeff 1995).  The related habitat use 
models could be represented using Bayesian belief 
networks, expert systems, or other AI methods that 
access the underlying habitat data and 
characterizations held in a separate database or 
that are integral to a GIS.  Movement could be 
modelled as agents in a spatial framework 
represented by a GIS, or  a GIS could simply be 
used to provide a final graphical depiction of the 
movement and habitat use. 
 
Many of the methodologies described could be 
used to address the issue of adjacent entities 
affecting a common resource, such as several 
moose (Alces alces) feeding on the same patch of 
willows (Salix spp.), or red-winged blackbirds 
(Agelaius phoeniceus) and sedge wrens 
(Cistothorus platensis )using the same bulrush 



 

(Scirpus sp.) stand, or the plants of several small 
pothole wetlands tapping a common shallow 
groundwater source.  Some such situations are 
based on significant biotic/abiotic feed back loops 
and are difficult spatial and temporal problems to 
model. 
 
 
 
 
6. EVALUATION OF IEDSS AND 

BENCHMARKING 
 
The evaluation of an IEDSS is still an open 
problem and no clear strategies are yet well 
established for facing one of the more critical 
phases of the development of an IEDSS. As a 
matter of fact, evaluation of the IEDSS is very 
important, since the later use of the system totally 
depends on the appropriateness of the 
recommendations it provides. Ensuring that the 
system is performing well is critical to its use in 
the future, and validation of the IEDSS is devoted 
to this topic. 
 
It seems that validation of an IEDSS could be 
understood, as a first approach, as the design of a 
set of tests which ensure good performance of the 
system.  For the specific case of IEDSS, good 
performance can be identified with the capacity of 
the system to provide the right recommendation in 
front of a certain scenario. There are generic 
approaches to validate IEDSS, such those 
described in (Sojda, 2006), but previous 
experiences in the development and evaluation of 
IEDSS for several domains mainly related to water 
such as operation of biological wastewater 
treatment plants (mainly activated sludge system) 
(Comas et al., 2003; Rodríguez-Roda et al., 2002; 
R-Roda et al., 2001),  conceptual design of 
complex and multi-criteria processes (Flores et al., 
2005), management of altered river basin to 
improve nutrient retention (Comas et al., 2003a),  
selection of the most adequate wastewater 
treatment for small communities (Comas et al., 
2003b; Alemany et al 2005), selection of industrial 
discharge limits, solids separation problems in the 
activated sludge system (slow dynamics) 
(Martínez et al., 2006a; Martínez et al., 2006b), 
drinking water treatment (Heller and Struss, 2002) 
and problems caused by algal bloom in water 
reservoirs (Struss et al., 2003)  seems to point out 
that evaluation has to be done for a rather specific 
application domain. We are convinced that this 
also applies to other environmental systems. It is 
probably more reasonable to think about specific 
validation protocols for different kinds of 
environmental systems, instead of trying to 

develop a general purpose protocol. Just consider 
that validation of an IEDSS oriented to support the 
control of a wastewater treatment plant probably 
needs quite different considerations than the 
validation of an IEDSS oriented to support 
migration of birds through a certain natural space.  
Indeed, even considering a specific environmental 
application domain, authors are not aware of 
standard validation protocols well established yet, 
except for some specific cases which will be 
presented below.  
 
Nevertheless, it is possible and useful to develop a 
general methodology for evaluating IEDSS. To do 
it, first thing is to identify the common elements to 
be considered for designing the generic evaluation 
schema of an IEDSS. Afterwards, the specific 
validation protocol for a given IEDSS could be 
designed following this general schema. It seems 
that this requires a clear, domain-independent, 
technology-independent definition of tasks and 
criteria. This paper is presenting a first approach to 
this topic. 
 
First of all it has to be taken into account that in an 
IEDSS two levels can be distinguished. So, for 
designing a standardized validation protocol it is 
first required: 
 

1- Identify the components of the IEDSS as 
well as their characteristics (e.g. models 
available, data sources – sensors, 
laboratories, observations, opinions, etc.- 
and data quality, knowledge based or soft 
computing reasoning, learning capability, 
user profile, system autonomy, 
open/limited situations faced, etc.).  

2- Identify the tasks performed by the 
IEDSS. As said before (see section 1), 
there are two main kinds of IEDSS that 
should be distinguished regarding its 
functionality: 
o Those which are controlling / 

supervising a process in real-time 
(or almost real-time) 

o Those that give punctual off-line 
support to decision-making.  

 
However, in both kinds of IEDSS, two main 
processes or tasks can be identified: 
 
o  “diagnosis”/situation assessment: based on 

observation, and oriented to determine 
“what is going on?” 

o  “recommendation”/therapy proposal: based 
on a specification of goals, determine “what 
can be done to achieve the goals given a 
certain diagnoses?” 



 

 
It seems reasonable to think about a two level 
validation process according to the different nature 
of the components and tasks related to an IEDSS. 
So, a general framework could be establishing 
different evaluation steps that should be fulfilled 
based on each IEDSS particularities. A simple 
proposal should be: 
 
a. Structural evaluation: related to the 

components of the system and their 
interaction 

i.  evaluate separately the performance of 
every component of the system 
(evaluation of rule-based systems, 
evaluation of reception of sensor 
signals, verification and robustness 
of software,  etc) 

ii. Identify the processes involved in the 
environmental system for performing 
either diagnosis or recommendations. 
It will be possible to define those 
processes as some interaction 
between a certain subset of the 
components of the system (reading 
some data from a sensor, then 
sending a query to a certain 
knowledge base, then start some 
approximate reasoning process etc) 

iii. For each one of the processes identified, 
evaluate the communication between 
the involved components.  

b. Functional evaluation: Evaluate the good 
performance of every task involved in the 
IEDSS.  

i. Identify the environmental processes 
involved in the environmental system 
for which the IEDSS has to provide 
intelligent support. 

ii.  According to these processes, design 
a representative set of scenarios 
(situations in the real target 
environmental system) to be 
presented to the IEDSS. Depending 
on the specificity of the IEDSS it will 
be important to include: 
a. real or simulated data 
b. noisy or erroneous data 
c. data from similar systems (to 

evaluate how easy will be to 
transfer or adapt the IEDSS to 
another environmental system) 

d. Benchmarks, which are 
addressed bellow, can also be 
considered at this point. 

iii. Ask the IEDSS to provide 
recommendations for those scenarios. 

iv. Evaluate the performance of the 
system. This step should include 
from classical multi-criteria 
numerical techniques (sensitivity 
analysis of variables and weights, …) 
to qualitative approaches such as 
cross validation with different users 
(even trough the web), periodical 
revision of learning outcomes, etc. 
Some specific criteria to be 
considered are: 
a.  The situation assessment 

(usually not unique) contains the 
expected /appropriate one  

b.  The situation assessment does 
not contain wrong/implausible 
explanations   

c.  The therapy proposal contains 
the 
expected/appropriate/cheapest 
ones 

d.  the therapy proposal does not 
contain wrong/implausible ones 

e. The system provides a 
justification/explanation for the 
solution. It is intuitive 

f. robustness w.r.t noisy/erroneous 
data  

g. The solutions can be reused for 
similar problems or sites. 

h. The transfer/adaptation to 
another system is easy 

 
If the environmental system is complex as usual, it 
is a hard task to identify the reduced set of 
scenarios to be used for evaluation that really 
guarantees a good representation of the whole 
system behaviour. 
 
Other criteria to be taken into account: 
- Modularity, easy extension if new knowledge is 

obtained 
- Monotonicity: more information leads to better 

results 
- Scalability to realistic problems, efficiency 
 
However, it is not easy to establish test cases for 
evaluating monotonicity, robustness, scalability, 
etc. So, in the evaluation, not only structural 
appropriateness of the system has to be evaluated, 
but especially the quality of the recommendations 
provided by the system. 
 
Validation of different types of IEDSS involves 
different requirements: 

 
In those IEDSS designed for providing punctual 
support, the role of socio-cultural and economical 



 

issues limits the use of standard databases. 
Comparison of the results is not always possible. 
Confidence can not be increased according to the 
results when facing similar situations, because 
these IEDSS are very specific and sometimes are 
only built to take (justify) one single decision. In 
this cases, the validation of steps 2.1, 2.2, 2.3  are 
possible, but 2.4  is more difficult. 

 
In the IEDSSs that control or supervise an 
environmental system in real time, diagnosis can 
be previously validated by designing different 
scenarios that cover the whole response surface, 
but it has to be taken into account that this may not 
be a trivial task. However, the consequences of the 
therapy proposal (or control strategy or suggested 
solution or recommendation) can not be simulated. 
In general the end-user is responsible to 
accept/refine/reject system solutions. This 
responsibility can decrease (thus, increasing 
IEDSS confidence) over the time as far as the 
system is facing situations that were successfully 
solved in the past (real validation). Although the 
IEDSS can be very specific for the target 
application, there could be similar processes and 
systems in the target domain to generate repository 
databases and scenarios, etc. In that case, a 
benchmark procedure could be developed. 
 
 
6.1 Benchmarking 
 
First a concise definition of "benchmark" and/or 
"benchmarking" should be stated.  An online 
dictionary provides [http://www.m-
w.com/dictionary] the following ones: 
 

• "benchmark: 2 a: a point of reference 
from which measurements may be made 
b: something that serves as a standard by 
which others may be measured or judged 
c: a standardized problem or test that 
serves as a basis for evaluation or 
comparison (as of computer system 
performance)" 

• "benchmarking:  the study of a 
competitor's product or business practices 
in order to improve the performance of 
one's own company."   

 
In our opinion, one of the most promising research 
lines in IEDSS development is the definition of 
benchmarks to assess and evaluate their 
performance in a set of well-defined 
circumstances, and their capacity to react to new 
situations. This will also allow the creation of a 
better framework for comparison between 
IEDSSs. We are aware of no attempt to do this. 

This validation of an EDSS in the appropriate 
context may simplify the tuning tasks and help to 
enhance the system’s performance.  
 
We are not aware of the existence of 
benchmarking databases for environmental 
systems. It is very convenient to build one, but 
some formal aspects should be agreed before in 
order to build a database really useful for 
benchmark on environmental intelligent decision 
support systems.  
 
At present we can distinguish, at least, two 
different kinds of benchmarks: 
 
1. A set of scenarios for a given set of tasks, 

specifying: 
1- The input data 
2- The set of acceptable results (situation 

assessments/therapies) and a 
characteristic of unacceptable results  

 
One of the most famous benchmarks of this type is 
UCI repository 
(http://www.ics.uci.edu/~mlearn/MLRepository.ht
ml), within Artificial Intelligence field. These 
kinds of benchmarks are usually used to test 
whether a certain new technique is solving a 
known problem more efficiently, more quickly, 
with more accuracy... than the reference one. This 
kind of structure may be useful to build 
benchmarks for the diagnoses provided by an 
IEDSS in front of a certain set of scenarios. 
However, to evaluate the performance of an 
IEDSS, other criteria, as mentioned before, has to 
be taken into account, such as the quality and 
appropriateness of the suggested recommendation 
in front of a given scenario, the capacity of 
explaining why or how was the proposed solution 
found are more important aspects to be considered. 
The set of criteria mentioned before is a first 
proposal, but what really determines that an 
IEDSS is working well should also be identified.  
 
Anyway, building a repository for environmental 
data bases is a possibility to be studied and 
developed to generate a reference for evaluating 
new IEDSS. 
 
2. A prototypical simulator of a system with a 

predefined set of experiments to be evaluated 
specifying: 

     1. The characteristics of the simulated system 
       2. The conditional experiments to be 

simulated 
       3. Evaluation criteria to determine the success 

of the performed experiments 
 



 

As an example of this kind of benchmark, the 
IWA/COST simulation benchmark (Copp, 2002) 
is presented, although now there exists also a 
plant-wide benchmark: 

 
 It is used by the wastewater research community as a 
standardized simulation protocol to evaluate and 
compare different control strategies for a biological 
nitrogen removal process. It includes a plant layout, 
simulation models and parameters, a detailed 
description of the influent disturbances (dry weather, 

storm and rain events), as well as performance 
evaluation criteria to determine the relative 
effectiveness of proposed control strategies. 
 
The benchmark plant layout has a very well defined 
structure  and the models used for the simulation of 
the processes occurring in the plant, as well as basic 
operational conditions are provided within the 
benchmark description. (Figure 9) Henze et al., 1987) 
(Takács et al., 1991)  
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Figure 9. Lay-out of the IWA/COST benchmark plant. 
 

The default control strategy or any other proposed 
control strategies are evaluated for three different pre-
defined weather disturbance scenarios corresponding 
to dry weather, storm events and rainy days, 
respectively. In fact, the simulation process follows 
the protocol specified in (Coop, 2002) starting with 
150-day steady-state to obtain adequate initial state 
values, followed by 14 days with dry weather 
scenario, then apply the dry, rain or storm conditions 
for another 14 days. Only the last week of the 
simulation is used for plant performace evaluation. 
The control strategy performance is evaluated by 
applying several performance criteria to the 
simulation output. These criteria include those 
defined in the original benchmark description (Copp, 
2002) as well as the total operating cost index (TCI) 
proposed by Vanrolleghem and Gillot (2002).  
 

 
This is an example of a benchmark for designing 
control strategies on a specific environmental 
system. It doesn’t matter if the control strategies 
are manually proposed by an expert or they come 
from an IEDSS. In this sense it would be useful to 
evaluate if the treatment proposals (the 
recommendations) of a given IEDSS are right or 
not. In fact (3) (4) adds an extension of the 
IWA/COST simulation benchmark that allows the 
connection of an IEDSS and the benchmark to 
evaluate the IEDSS proposals. 
So, this second kind of benchmarks is clear useful 
for benchmarking the second kind of tasks 
performed by IEDSS, the treatment proposal. 
  
It seems clear that benchmarking has to be done 
for a rather specific application domain.  

 
Building a simulator for benchmarking an 
environmental system and providing a protocol to 
connect it to a IEDSS provides the possibility of 
evaluating the consequences of taking the decision 
recommended by the IEDSS either in the short, 
medium and long term. However, this has an 
enormous cost and very often, the development of 
the simulator can take more time than the 
development of the IEDSS itself. 
 
A cheaper strategy seems to build a finite set of 
representative scenarios together with the suitable 
recommendations, and evaluate which is the 
response of the IEDSS in front of them. Of course, 
the selection of the set of testing scenarios is 
critical to guarantee that solving correctly those set 
of situations ensures a good performance in 
general. For the case of wastewater treatment 
plants, this would be equivalent to build a set of 
scenarios representing dry weather, storm events 
and raining days together with a set of suitable 
control strategies for each one. This of course 
requires a good knowledge of the environmental 
system and a good knowledge of the suitable 
decisions to be taken in any case.  
 
This arises an interesting problem: If the 
environmental system is so well known that we are 
able to signal which are suitable decisions in front 
of every situation it is probably useless to build an 
IEDSS to control the system and the 
environmental system can probably be controlled 
by deterministic software. 
 



 

On the other hand, our impression is that 
benchmarks of type 1 are not very good for 
evaluating the long term effect of a control 
strategy on a dynamic system. This is one of the 
specific characteristic of environmental systems to 
be taken into account for designing good and 
useful benchmarks.  
 
It seems that benchmarks of type one would be 
useful for evaluating diagnoses and those of type 
two would be suitable for evaluating treatments, 
control strategies, or any action recommended by 
the IEDSS related with the DYNAMICS of the 
environmental system. 
 
However, the information included in a benchmark 
of type one may still be not enough for evaluating 
IEDSS performances. It is required a depth 
REFLEXION on the representation of the data in 
the benchmark. Will it be enough providing a set 
of scenarios together with the right 
recommendation for them? 
 
The following items must be evaluated: 
 

- The diagnosis is good 
- The proposed treatment is acceptable 
- The long term consequences of proposed 
treatment work well 

 
We should think about including all the 
information required to evaluate these 
characteristics in the benchmark. So, present 
representation of public repositories as UCI is 
probably not enough for evaluating the 
performance of IEDSS. 
 
Will this be enough independently of the technique 
used for inducing the knowledge used for building 
the IEDSS? 
 
 
7.     CONCLUSIONS AND FUTURE TRENDS 
 
Although the IEDSS architecture depicted in 
figure 3, or even other possible architectures are 
very nice, there are inherent open problems arising 
when running such systems. During daily 
operation of IEDSS several open challenge 
problems appear. The uncertainty of data being 
processed is intrinsic to the environmental system, 
which is being monitored by several on-line 
sensors and off-line data. Thus, anomalous data 
values at data gathering level or even uncertain 
reasoning process at later levels such as in 
diagnosis or decision support or planning can lead 
the environmental process to unsafe critical 
operation states. At diagnosis level or even at 

decision support level or planning level, spatial 
reasoning or temporal reasoning or both aspects 
can influence the reasoning processes undertaken 
by the IEDSS. Most of Environmental systems 
must take into account the spatial relationships 
between the environmental goal area and the 
nearby environmental areas and the temporal 
relationships between the current state and the past 
states of the environmental system to state accurate 
and reliable assertions to be used within the 
diagnosis process or decision support process or 
planning process. Finally, a related issue is a 
crucial point: are really reliable and safe the 
decisions proposed by the IEDSS? Are we sure 
about the goodness and performance of proposed 
solutions? How can we ensure a correct evaluation 
of the IEDSS? 
 
As said before, validation of an IEDSS is as 
critical as the construction itself to ensure right 
performance in real applications. Few works are 
devoted to this specific part of the IEDSS 
development. In this paper, an analysis about the 
different aspects to be evaluated in an IEDSS and 
the possible tools to be used for that task has been 
addressed. It has been elicited that thinking of a 
general schema for IEDSS validation is not easy at 
all and only some general guidelines have been 
exposed. Benchmarking may be a promising way 
to avoid other complex validation methods, but 
much work is to be done to find the right and 
successful structure of a benchmark oriented to 
IEDSS validation. 
 
Main goal of this paper have been to analyse these 
four issues mentioned above. Within the text it has 
been justified that these are really open problems 
and cutting edge tasks to be solved in the near 
future for a successful application of IEDSS. Main 
features involving each one of these problems 
have been outlined, and relevant work and 
possible approaches to tackle them have been 
discussed. Main conclusion after this analysis is 
that much work must be done within the artificial 
intelligence, computer scientists (GIS, statistical 
and mathematical modelling) and environmental 
scientists interdisciplinary community. 
 
In this paper it has been elicited that many open 
research lines requiring future efforts to solve the 
problems associated to the design and validation of 
real IEDSS. Any contribution to the following 
topics will greatly improve this field with great 
benefits on control and management of 
environmental systems: 
 
• New uncertainty management techniques 



 

• Techniques or tools to select the best 
uncertainty management tool for a concrete 
IEDSS 

• New reliable and practical approaches for 
modelling temporal reasoning within IEDSS 

• New reliable and practical approaches for 
modelling spatial reasoning and geographical 
information systems within IEDSS 

• Integration of spatial and temporal reasoning 
aspects within a common approach for 
IEDSS 

• Design of a general methodology of 
validation for IEDSS 

• Building of public benchmarks for 
environmental systems and processes 

 
 
8. ACKNOWLEDGEMENTS 
 
This research has partially been supported by 
Spanish project TIN2004-1368. 
 
 
9. REFERENCES 
 
Allen J. and G. Ferguson. Actions and Events in 

Interval Temporal Logic. The Journal of Logic 
and Computation, 4(5):531-579, 1994.  

Allen J. Towards a General Theory of Action and 
Time. Artificial Intelligence, 23:123-154, 1984. 

Allen J. Maintaining knowledge about temporal 
intervals. Communications of the ACM, 
26(11):832-843, 1983. 

Anderson, J. 2002. Providing a broad spectrum of 
agents in spatially-explicit simulation models: 
the Gensim approach.  pages 21-58, in: 
Gimblett, R., ed. Integrating Geographic 
Information Systems and Agent-based 
Modeling Techniques for Simulating Social and 
Ecological Processes. Oxford University Press. 
New York, New York. 

Argemiro de Carvalho Paiva, J., and M. 
Egenhofer. in press. Robust inference of the 
flow direction in river networks. Algorithmica  

Armstrong, M. P., M K. Cowles, and S. Wang. 
2005. Using a computational grid for 
geographic information analysis: a 
reconnaissance.  The Professional Geographer 
57(3):365-375. 

Beck M.B. Water quality modelling: A review of 
the analysis of uncertainty, Water Resour. 
Res. 23(8), 1393-1442, 1987. 

Belanche, Ll., Valdés, J.J., Comas, J., R-Roda, I. 
and Poch M, Towards a Model of Input-
Output Behaviour of Wastewater Treatment 
Plants using Soft Computing Techniques, 
Environmental Modelling & Software, 14(5), 
409-419, 1999. 

Belanche, Ll., Valdés, J.J., Comas, J., R-Roda, I. 
and Poch, M., Prediction of the Bulking 
Phenomenon in Wastewater Treatment Plants, 
Artificial Intelligence in Engineering, 14(4), 
307–317, 2000. 

Brown, D. G., R. Riolo, D. T, Robinson, M. North, 
and W. Rand. 2005. Spatial process and data 
models: toward integration of agent-based 
models and GIS. Journal of Geographic 
Information Systems 7:24-47. 

Bousquet, F., and C. Le Page. 2004. Multi-agent 
simulations and ecosystem management: a 
review. Ecological Modelling 176:313-332. 

Cabanillas, D., Comas, J., Llorens, L., Poch, M., 
Ceccaroni, L. and Willmott, S. 
Implementation of the STREAMES 
environmental decision-support system. In: 
Pahl-Wostl, C., Schmidt, S., Rizzoli, A.E. and 
Jakeman, A.J. (eds.), Complexity and 
Integrated Resources Management, 
Transactions of the 2nd Biennial Meeting of 
the International Environmental Modelling 
and Software Society, iEMSs, Osnabruck 
(Germany), 2004. ISBN 88-900787-1-5. 

Carroll, C., W. J. Zielinski, and R. F. Noss. 1999. 
Using presence-absence data to build and test 
spatial habitat models for the fisher in the 
Klamath Region, U.S.A. Conservation 
Biology 13(6):1344-1359. 

Carver, N., Z. Cvetanovic, and V. Lesser.  1991.  
Sophisticated cooperation in FA/C distributed 
problem solving systems.  pages 191-198 in; 
Proceedings of the Ninth National Conference 
on Artificial Intelligence.  AAAI Press.  
Menlo Park, California. 

Carver, N., and Lesser, V. 1992. The Evolution of 
Blackboard Control Architectures CMPSCI 
Technical Report 92-71, Department of 
Computer Science, Univ. Massachusetts-
Amherst. 

Corkill, D. D. 1991. Blackboard Systems. AI 
Expert 6(9): 40-47. 

Comas J., Rodríguez-Roda I., Poch M., Gernaey 
K.V., Rosen C. & Jeppsson U. Demonstration 
of a tool for automatic learning and reuse of 
knowledge in the activated sludge process. 
Water Science & Technology, In press 
(2006a). 

 Comas J., Rodríguez-Roda I., Poch M., Gernaey 
K.V., Rosen C. & Jeppsson U.Extension of 
the IWA/COST simulation benchmark to 
include expert reasoning for system 
performance evaluation. Water Science & 
Technology, In press (2006b). 

Comas J., Llorens E., Martí E., Puig M.A., Riera 
J.L., Sabater F, Poch M. Knowledge 
Acquisition in the STREAMES Project: The 
Key Process in the Environmental Decision 



 

Support System Development. AI 
Communications, 16(4), 253-265, 2003a.   

Comas J., Alemany J., Poch M, Torrens A., Salgot 
M. and Bou J. Development of a knowledge-
based decision support system for identifying 
adequate wastewater treatment for small 
communities. Water Science & Technology 48 
(11-12), 393-400, 2003b. 

Comas J., Rodríguez-Roda I., Sànchez-Marrè M., 
Cortés U., Freixó A., Arráez J. & Poch M. A 
knowledge-based approach to the 
deflocculation problem: integrating on-line, 
off-line, and heuristic information. Water 
Research 37, pp. 2377-2387, 2003c. 

Cortés, U., Sànchez-Marrè, M., Comas, J., 
Rodríguez-Roda, I. And Poch, M. 
Unpublished results, 2002. 

Cortés, U., Sànchez-Marrè, M., Sangüesa, R., 
Comas, J., R-Roda, I., Poch, M. and Riaño, D. 
Knowledge Management in Environmental 
Decision Support Systems. AI 
Communications. 14(1), 3-12 2001.  

Cortés, U., M. Sànchez-Marrè, L. Cecaronni, I. R.-
Roda, and M. Poch, Artificial Intelligence and 
Environmental Decision Support Systems, 
Applied Intelligence, 13(1), 77–91, 2000. 

Dempster A.P. Upper and lower probabilities 
induced by a multivalued mapping, Annals of 
Mathematical Statistics, 38, 325-339, 1967.  

D’Erchia, F., C, Korschgen, M. Nyquist, R. Root, 
R. Sojda, and P. Stine. 2001. A framework for 
ecological decision support systems: building 
the right systems and building the systems 
right. U.S. Geological Survey, Biological 
Resources Division, Information and 
Technology Report USGS/BRD/ITR-2001-
0002. 

De Serres, B, and A. G. Roy. 1990. Flow direction 
and branching geometry at junctions in 
dendritic river networks. Professional 
Geographer 42(2):194-201. 

Dubois D. and Prade H. What are fuzzy rules and 
how to use them, Fuzzy Sets and Systems, 84, 
169-185, 1996.  

Dumont, B. and D. R. C. Hill. 2001. Ecological 
Modelling 141:201-215. 

Durfee, E. H., V. R. Lesser, and D. D. Corkill.  
1989.  Cooperative distributed problem 
solving.  pages 84-147 in: Barr, A., P. R. 
Cohen, and E. A. Feigenbaum, eds.  The 
Handbook of Artificial Intelligence, Vol. IV.  
Addison-Wesley.  Reading, Massachusetts. 

Egenhofer, M. J. 1989. A formal definition of 
binary topological relationships. Lecture 
Notes in Computer Science 37:457-472. 

El-Swaify, S.A. and Yakowitz, D.S. (Eds). 
Multiple objective Decision Making for Land, 

Water, and Environmental Management. 
Lewis Publishers, 1998.  

Flores X., Bonmati A., Poch M., Rodríguez-Roda 
I. & Bañares-Alcántara R. Selection of the 
Activated Sludge Configuration during the 
Conceptual Design of Activated Sludge Plants 
Using Multicriteria Analysis. Industrial & 
Engineering Chemistry Research, 44(10), 
3556- 3566 (2005). 

Fox, J. and Das, S. Safe and sound. Artificial 
Intelligence in Hazardous Applications, 
AAAI Press / The MIT Press , 2000. 

Freska, C. 1991. Qualitative spatial reasoning.  
pages 361-372 in: Mark, D.M., and A. U. 
Frank, eds. Cognitive and linguistic aspects of 
geographic space. Kluwer Academic 
Publishers.  Dordrecht, Netherlands. 

Funtowicz, S.O. and Ravetz, J. R.: Science for the 
post-normal age, Futures 25(7), 739-755, 
1993 

Funtowicz, S.O. and Ravetz, J.R. Post-Normal 
Science – an insight nom maturing, Futures 
31(7), 641-646, 1999 

Graham, J. R. and Decker, K. S.  2000. Towards a 
distributed, environment-centered agent 
framework. pages 290-304 in: Jennings, 
Nicholas R. and Y. Lesperance, eds. 
Proceedings of the Sixth International 
Workshop on Agent, Theories, Architectures, 
and Languages (ATAL-99).  Springer-Verlag.  
Berlin, Germany.   

Graham, J. R., D. McHugh, M. Mersic, F. 
McGreary, M. V. Windley, D. Cleaver, and K. 
S. Decker.  2001.  Tools for developing and 
monitoring agents in distributed multiagent 
systems. Lecture Notes in Computer Science 
1887:12-27.  

Guariso, G. and Werthner H., Environmental 
Decision Support Systems. Ellis Horwood-
Wiley, New York, 1989. 

Guo, Y., P. Gong, and R. Amundson. 2003. 
Pedodiversity in the United States of America. 
Geodema 117:99-115. 

Haagsma, I.G. and Johanns, R.D. Decision support 
systems: An integrated approach. In 
Environmental Systems Vol. II. Zannetti, 
P.(Ed.),pp.205-212, 1994. 

U.Heller, P.Struss. Consistency-Based Problem 
Solving for Environmental Decision Support. 
Computer-Aided Civil and Infrastructure 
Engineering 17 (2002) 79-92.  

Huhns, M. N., and L. M. Stephens.  1999.  
Multiagent systems and societies of agents.  
pages 79-120 in: Weiss, G.,  ed.  Multiagent 
systems.  MIT Press.  Cambridge, 
Massachusetts. 

Jaczynski M. A Framework for the Management 
of Past Experiences with Time-Extended 



 

Situations. In Proc. of the 6th Int. Conference on 
Information and Knowledge Management 
(CIKM'97), pages 32-39, Las Vegas, Nevada, 
USA, November 1997. 

Jaere M, A. Aamodt, and P. Shalle. Representing 
Temporal Knowledge for Case-Based 
Reasoning. In Proc. of the 6th European 
Conference, ECCBR 2002, pages 174-188, 
Aberdeen, Scotland, UK, September 2002. 

Jensen, F. Bayesian networks and decision graphs.  
Springer-Verlag.  New York, New York.  268 
pages, 2001. 

Kinzig, A. Bridging Disciplinary Divides to 
Address Environmental and Intellectual 
Challenges, Ecosystems, 4, 709-715, 2001. 

Klir G.J. and Folger T.A. Fuzzy sets, uncertainty 
and information. Prentice-Hall, Englewood 
Cliffs N.J., 1988.  

Krause P. and Clark D. Representing uncertain 
knowledge. Kluwer, Dordrecht, 1993. 

Labrou, Y. and T. Finin 1997.  A proposal for a 
new KQML specification.  Technical Report 
TR CS-97-03.  Computer Science and 
Electrical Engineering Department, University 
of Maryland Baltimore County.  Baltimore, 
Maryland.  42 pages. 

Lei, Z., B. C. Pijanowski, K. T. Alexandridis, and 
J. J. Olson. 2005. Distributed modeling 
architecture of a multi agent-based behavioral 
economic landscape (MABEL) model. 
Transactions of the Society for Modelling and 
Simulation International 81: 503-515. 

Likhachev M, M. Kaess and R. C. Arkin. Learning 
Behavioral Parameterization Using Spatio-
Temporal Case-Based Reasoning. Procc. of 
IEEE Int. Conference on Robotics and 
Automation (ICRA 2002), 2002. 

Ludwig D., The Era of Management Is Over, 
Ecosystems,4, 758-764, 2001 

J. Ma and B. Knight. A Framework for Historical 
Case-Based Reasoning. In Procc. of 5th Int. 
Conference on Case-Based Reasoning 
(ICCBR'2003), pages 246-260, LNCS2689, 
2003. 

J. Ma and B. Knight. Reified Temporal logic: An 
Overview. Artificial Intelligence Review, 
15:189-217, 2001. 

J. Ma and B. Knight. A General Temporal Theory. 
The Computer Journal, 37(2):114-123, 1994.   

Mark, D. M. 1999. Spatial representation: a 
cognitive view.  pages 81-89, in: Maguire, D. 
J., M. F. Goodchild, D.W. Rhind, and P. 
Longley, eds.  Geographical Information 
Systems: Principles and Applications, v.1. 
Longman Scientific & Technical.  Harlow, 
Essex, England. 

Martínez M., Rodríguez-Roda I., Poch M., Cortés 
U. & J. Comas. Dynamic reasoning to solve 

complex problems in activated sludge 
processes: a step further in decision support 
systems. Water Science & Technology, In 
press (2006a). 

Martínez M., Sànchez-Marrè M., Comas J. & 
Rodríguez-Roda I. Case-based reasoning, a 
promising tool to face solids separation 
problems in the activated sludge process. 
Water Science & Technology, In press 
(2006b). 

Medoc, J., F. Guerrin, R. Courdier, and J. Paillat. 
2004. A multi-modelling approach to help 
agricultural stakeholders design animal wastes 
management strategies in the Reunion Island. 
Transactions of the Environmental Modelling 
and Software Society 2(1):460-467. 

Moratz, R., and J. O. Wallgrun. 2003. Spatial 
reasoning about relative orientation and 
distance for robot exploration. Lecture Notes 
in Computer Science 2825:61-74. 

Morton A. Mathematical models: Questions of 
trustworthiness, Brit. J. Phil. Sci. 44, 659-674, 
1993. 

Moulin, B., W. Chaker, J. Perron, P. Pelletier, J. 
Hogan, and E. Gbei. 2003. MAGS Project: 
multi-agent geosimulation and crowd 
simulation. Lecture Notes in Computer 
Science 2825:151-168. 

Nakhaeizadeh G. Learning Prediction of Time 
Series: A Theoretical and Empirical 
Comparison of CBR with Some Other 
Approaches. In Proceedings of the Workshop 
on Case-Based Reasoning, pages 67-71, AAAI-
94. Seattle, Washington, 1994. 

Nii, H. P. 1986b. Blackboard Systems: Blackboard 
Application Systems, Blackboard Systems 
from a Knowledge Engineering Perspective. 
AI Magazine 7(3):82-106. 

Nute, D., W. D. Potter, F.  Maier, J. Wang, M. 
Twery, H. M. Rauscher, P. Knopp, S. 
Thomasma, M. Dass, H. Uchiyama, A. 
Glende. 2004. NED-2: an agent-based 
decision support system for forest ecosystem 
management. Environmental Modelling and 
Software 19:831–843.  

Olsson, G., H. Aspegren, and M.K. Nielsen, 
Operation and Control of Wastewater 
Treatment – A Scandinavian Perspective over 
20 years, Water Science & Technology, 
37(12), 1–13, 1998. 

Ostrom, E. Governing the commons: the evolution 
of institutions for collective action. 
Cambridge University Press. 1991 

Poch M., Comas J., Rodríguez-Roda I., Sànchez-
Marrè M. & Cortés U. Designing and building 
real environmental decision support systems. 
Environmental Modelling and Software, 
19(9), pp. 857-873 (2004). 



 

Purvis, M. K., Q. Zhou, S. J. S. Cranefield, R. 
Ward, R. Raykov, and D. Jessberger. 2001. 
Spatial information modelling and analysis in 
a distributed environment. Environmental 
Modelling and Software 16:439-445. 

Ram A and J. C. Santamaría. Continuous Case-
Based Reasoning. Artificial Intelligence, 90:25-
77, 1997. 

Rao, A. S. and M. P. Georgeff.  1995.  BDI agents: 
from theory to practice.  pages 312-319 in: 
Proceedings of the First International 
Conference on Multiagent  Systems.  AAAI 
Press.  Menlo Park, California. 

Renz J. and Guesguen H.W. Guest editorial: 
spatial and temporal reasoning. AI 
Communications 17(4):183-184, 2004. 

Rizzoli, A.E. and Young, W.Y. Delivering 
Environmental Decision Support Systems: 
software  tools and techniques. Environmental 
Modelling and Software 12(2-3):237-249, 
1997. 

Rodríguez-Roda I., J. Comas, J. Colprim, M. Poch, 
M. Sànchez-Marrè, U. Cortés, J. Baeza and  J. 
Lafuente, A hybrid supervisory system to 
support wastewater treatment plant operation: 
implementation and validation, Water Science 
& Technology, 45(4-5), 289-297, 2002. 

Rodríguez-Roda, I., J. Comas, M. Poch, M. 
Sànchez-Marrè and U. Cortés, Automatic 
Knowledge Acquisition from Complex 
Processes  for the development of 
Knowledge-Based Systems, Industrial 
Engineering  Chemistry Research, 40, 3353–
3360, 2001. 

R-Roda I., Sànchez-Marrè M., Comas J., Cortés U. 
& Poch M.Development of a Case-Based 
System for the Supervision of an Activated 
Sludge Process.  Environmental Technology, 
22, pp. 477-486 (2001). 

Rosenstein M. T. and P. R. Cohen. Continuous 
Categories for a Mobile Robot. IJCAI-99 
Workshop on Sequence Learning, pages 47-53, 
1999. 

Rossier, D. and R Scheurer. 2002. An ecosystem-
inspired mobile agent middle ware for active 
network management. Lecture Notes in 
Computer Science 2521:73-82. 

Sànchez-Marrè M., U. Cortés, M. Martínez, J. 
Comas y I. Rodríguez-Roda. An Approach for 
Temporal Case-Based Reasoning: Episode-
Based Reasoning. 6th International Conference 
on Case-Based Reasoning (ICCBR’2005). 
LNAI-3620, pp. 465-476. Chicago, USA, 2005. 

Sànchez-Marrè M., U. Cortés, I. R.-Roda and M. 
Poch, Sustainable case learning for continuous 
domains. Environmental Modelling  &  
Software 14:349-357, 1999. 

Sànchez-Marrè, U. Cortés, J. Lafuente, I. R.-Roda, 
and M. Poch., DAI-DEPUR: a Distributed 
Architecture for Wastewater Treatment Plants 
Supervision. Artificial Intelligence in 
Engineering, 10(3), 275-285, 1996. 

Sauchyn, D. J. 2001.  Modeling the hydroclimatic 
disturbance of soil landscapes in the Southern 
Canadian Plains: the problems of scale and 
place. Environmental Monitoring and 
Assessment 67(1–2):277–291.  

Schneider, A., K. C. Seto, C. E. Woodcock. 2003. 
Temporal patterns of land cover change in 
Chengdu, China, 1978-2002. International 
Geoscience and Remote Sensing Symposium 
5:3365- 3367. 

Shafer G. A mathematical theory of evidence, 
Princeton, USA, Princeton University Press, 
1976.  

Shanahan M.A. Circumscriptive Calculus of 
Events, Artificial Intelligence, 77(2):249-384, 
1995.  

Sheridan F.K.J. A survey of techniques for 
inference under uncertainty. Artificial 
Inteligence Review 5, 89-119, 1991  

Shoham Y. Temporal Logics in AI: Semantical 
and Ontological Considerations, Artificial 
Intelligence, 33: 89-104, 1987. 

Smithson M. Ignorance and uncertainty. Springer, 
Berlin, 1989.  

Sojda, R. S. Empirical evaluation of decision 
support systems: needs, definitions, potential 
methods, and an example pertaining to 
waterfowl management. Environmental 
Modelling and Software. In Press, 2006. 

Sojda, R. S. 2002. Artificial intelligence based 
decision support for trumpeter swan 
management. PhD Dissertation. Colorado 
State University. Fort Collins, Colorado. 183 
pages. 

Sojda, R. S., J. E. Cornely, and L. H. Fredrickson. 
2002. An application of queuing theory to 
waterfowl migration. in: Rizzoli, A. E., and A. 
J. Jakeman. eds. Integrated Assessment and 
Decision Support: Proceedings of the First 
Biennial Meeting of the International 
Environmental Modelling and Software 
Society 1(2):232-238. 

Struss P, M. Bendati, E. Lersch, W. Roque, P. 
Salles.  Design of a Model-based Decision 
Support System for Water Treatment. 
Proceedings of the 18th International Joint 
Conference on Artificial Intelligence (IJCAI 
03): Environmental Decision Support 
Systems, pages 50-59, Acapulco, Mexico. 
August 10, 2003. ISBN 0127056602. 

Sydow, A., Rosé, H., and Rufeger. Sustainable 
development and integrated assessment. 
Ercim News (34), 32. 1998. 



 

Timpf, A., and A. U. Frank. 1997. Using 
hierarchical spatial data structure for 
hierarchical spatial reasoning. Lecture Notes 
in Computer Science 1329:69-83. 

Tripathi, A. 2002. Challenges in designing next-
generation middleware systems. 
Communications of the Association of 
Computing Machinery 45(6):39-42. 

Torrens, P. M., and I. Benenson. 2005. Geographic 
automata systems. International Journal of 
Geographic Information Science 19(4):385-
412. 

Turon C., Alemany J., Comas J.,   Bou J. and Poch 
M. Optimal maintenance of constructed 
wetlands using an environmental decision 
support system. Water Science & Technology, 
51(10), 109-117, 2005. 

van Asselt M.B.A. and Rotmans J. Uncertainty in 
integrated assessment modelling: from 
Positivism to Pluralism, Clim. Change 54, 75-
105, (2002). 

van Benthem J. The Logic of Time, Kluwer 
Academic, Dordrecht, 1983. 

Walker W.E., Harremoës P., Rotmans J., van der 
Sluijs J.P., van Asselt M.B.A., Janssen P. and 
Krayer von Krauss M.P. Defining uncertainty 
– A conceptual basis for uncertainty 
management in model-based decision support, 
Integrated Assessment 4(1), 5-17, 2003. 

Walley P. Measures of uncertainty in expert 
systems, Artificial Intelligence 83, 1-58, 1996. 

Weiss, G.  1999.  Prologue: multiagent systems 
and distributed artificial intelligence.  pages 1-
23 in: Weiss, G., ed.  Multiagent systems: a 
modern approach to distributed artificial 
intelligence.  MIT Press.  Cambridge, 
Massachusetts. 

Wittaker A.D. Decision support systems and 
expert systems for range science. In Decision 
Support Systems for the Management of 
Grazing Lands: Emerging Lands, edited by 
J.W. Stuth and B.G. Lyons, pp. 69–81, 1993. 

Wooldridge, M.  1999.  Intelligent agents.  pages 
27-77 in: Weiss, G., ed.  Multiagent systems: 
a modern approach to distributed artificial 
intelligence. MIT Press.  Cambridge, 
Massachusetts. 

Wooldridge, M. and N. R. Jennings.  1995.  
Intelligent agents: theory and practice.  
Knowledge Engineering Review 10(2):115-
152. 

Zadeh L. Fuzzy Sets, Information and Control 8, 
338-353, 1965. 

Zimmermann H.-J. An application-oriented view 
of modeling uncertainty, European Journal of 
Operational Research 122 (2), pp. 190-198, 
2000. 

 


	Brigham Young University
	BYU ScholarsArchive
	Jul 1st, 12:00 AM

	Uncertainty Management, Spatial and Temporal Reasoning, and Validation of Intelligent Environmental Decision Support Systems
	Miquel Sànchez-Marrè
	Karina Gibert
	Rick Sojda
	Jean-Philippe Steyer
	Peter Struss
	See next page for additional authors
	Presenter/Author Information


	Microsoft Word - AITENV'06-IPP-W10-format-iEMSs06.doc

