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Abstract: Experimental data mining and image segmentation approaches are developed to add insight 
towards aerial image interpretation for defoliation survey procedures. A decision tree classifier generated with 
a data mining package, WEKA [Witten and Frank, 2005], based on the contents of a small number of training 
data points, identified from known classes, is used to predict the extents of regions containing different levels 
of tree mortality (severe, moderate, light and non attack) and land cover (vegetation and ground surface). This 
approach is applicable to low quality imagery without traditional image pre-processing (e.g., normalization or 
noise reduction). To generate the decision tree, the image is split into 20 × 20 pixel tiles and data points are 
created for each tile from peaks of smoothed histograms of red, green and blue colour channels, and their 
average.  Colour channel peaks are examined to verify that histogram peaks effectively represent tree 
mortality, and to select an initial small training data set. Next, two small training data sets are selected 
randomly, to model the real-world training data selection process. Decision trees are generated using these 
training sets and tested on the remaining data. Stratified cross-validation is then performed on the full dataset, 
for comparison. The classification accuracy is 75% for cross validation and 31-49% for smaller training data 
sets. Assigning lower penalties for less severe errors gives a weighted accuracy of 79% for cross validation, 
72% for manually selected and 48-65% for randomly selected training data. For comparison, the classification 
accuracy of the image segmentation method is 84%. Performance on small training sets still needs to be 
improved, although encouraging results were achievable with well identified heterogeneous training data. 

Keywords: Classifications, Data mining, Defoliation, Image segmentation 

1. INTRODUCTION 

The increasing availability of remote sensing and 
geographic data helps monitoring and management 
for maintaining the health of forest ecosystems, 
which is important for the protection of natural 
resources and the economy. Satellite imagery, a 
remote sensing technique, is convenient for large-
scale surveys, and has been used widely for land 
cover and habitat mapping using different 
applications [Friedl and Brodley, 1997; Kobler et 
al., 2006], but it has low resolution and it can be 
expensive to obtain timely imagery. Alternatively, 
aerial photography can provide higher resolution to 
allow monitoring of forest health and identification 
of tree species at an acceptable level of accuracy 
[Haara and Nevalainen, 2002]. White et al. [2005] 
investigated an automated interpretation method 
for detecting the red attack stage of trees attacked 
by the mountain pine beetle using satellite imagery, 
using aerial imagery for validation. However, not 

all studies are able to access such high quality data. 
In fact, environmental studies often deal with 
incomplete or poor quality data, as it is costly to 
obtain high quality data, and measurement relies on 
human observations that may be imprecise or 
uncertain. Hence, methods for processing poor 
quality data, perhaps involving statistics or 
knowledge discovery, can be advantageous. 

The central interior region of British Columbia has 
suffered from increasing populations of mountain 
pine beetle (Dendroctonus ponderosae) since 1994 
[White et al., 2005]. The British Columbia 
Ministry of Forests and Canadian Forest Service 
(BCMF and CFS) [2000] carries out annual 
defoliation surveys, where observers in small 
aircraft sketch infested regions on forest maps. 
Aerial surveying is said to be “not an exact 
science…as no matter what type of aircraft, the 
flying height, the weather, the survey map base, or 
the biological window, the survey is always going 



 

to be less than perfect”. The survey accuracy 
depends on the observers’ knowledge of the local 
forest and pests. Usually only estimates of current 
tree mortality are indicated, but experienced 
personnel can estimate damage intensities fairly 
accurately with help of a multi-stage sampling 
procedure including aerial photography, GPS point 
and ground plot data, to ensure accuracy by 
enabling cross-validation.  

The purpose of this study is to develop statistically 
and computationally driven methods using data 
mining and image segmentation, to add insight 
towards aerial imagery interpretation for the annual 
defoliation survey procedure. Data mining is used 
for knowledge discovery: the extents of infested 
regions and land cover are predicted using a 
decision tree classifier generated with a data 
mining package, WEKA [Witten and Frank, 2005], 
based on the contents of only a few known 
(training) data points that have been manually 
identified by an expert. Decision tree algorithms 
are considered suitable for remote sensing 
applications, since they are flexible and robust with 
respect to non-linear and noisy relations among 
input features and class labels, and prior 
assumptions regarding the distribution of input 
data are not required [Friedl and Brodley, 1997]. 
Typically, classification accuracy is tested in data 
mining projects by cross validation on as much 
data as possible, but this study takes a different 
approach. The classification tree is created from a 
small proportion of the data and tested on the rest 
of the data, to model the intended use of the 
system: for estimating tree mortality and land cover 
when complete ground truth is not available. The 
available image for this study has only low 
resolution (287 × 313 pixels), uneven lighting and 
varying scale, so the data mining approach is 
designed to be applicable to low quality imagery. It 
identifies patterns directly using the training data, 
thus traditional image preprocessing to normalize 
the image or remove noise is unnecessary. An 
image segmentation method is developed to 
compare with the data mining approach. This 
method uses manually-created pixel classification 
functions to detect attacked trees, then clusters 
pixels into regions, and estimates the tree mortality 
density in each region. 

2. DEFOLIATION IMAGERY 

Aerial imagery (Figure 1) was captured in Flathead 
Valley, Nelson Forest Region, in British Columbia, 
Canada, which suffers from mountain pine beetle 
attack. The studied aerial imagery is a low-

resolution photo (287 × 313 pixels), downloaded 
from the source website*.  

 
Figure 1. Location of the aerial image site, 
Flathead Valley, Nelson Forest Region, and 

original 70 mm photo [BCMF and CFS, 2000]. 

Over the mountain pine beetles’ one-year life 
cycle, tree foliage becomes chlorotic, then yellow, 
and finally fades to red. The BCMF and CFS 
[2000] define three levels for tree mortality caused 
by defoliators and bark beetles: severe (S), 
moderate (M), and light (L). This study adds extra 
classes for land cover: vegetation (V), ground 
surface (Surface) and non attack (Non); all classes 
are shown in Table 1. Figure 1 shows one L, one M 
and five S regions, identified by BCMF and CFS.  

Table 1. Tree mortality and land cover 
classification criterion. 

Bark beetles Defoliators

Severe (S) >30% of trees 
recently killed

Bare branch tips and completely 
defoliated tops. Most trees sustaining 
more than 50% total defoliation.

Moderate (M) 11-29% of trees 
recently killed

Pronounced discoloration. Noticeably 
thin foliage. Top third of many trees 
severely defoliated. Some completely 
stripped. 

Light (L) 1-10% of trees 
recently killed

Discoloured foliage barely visible from 
the air. Some branch tip and upper 
crown defoliation. 

Land cover 
classification

Vegetation (V)
Ground Surface 

(Surface)

Non attack (Non)

Regions where the ground surface is exposed.

Regions that are not included in tree mortality 
classifications, assumed to be non-attack regions.

Tree mortality 
Classification

Criterion

Criterion

Green regions that do not contain trees.

 

3. DATA MINING APPROACH 

To convert the image into a form suitable for 
analysis, it is divided into relatively large (20 × 20 
pixel) tiles (Section 3.1). This tile size reduced 
noise in histograms and represented relevant region 
characteristics better than smaller (10 x 10 pixel) 
tiles. Next, training data points are created from the 
                                                      
* Aerial imagery used by permission of B.C. Ministry of Forests 
and Canadian Forest Service [2000] from: 
http://ilmbwww.gov.bc.ca/risc/pubs/teveg/foresthealth/assets/ae
rial-1.jpg 
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peak values of smoothed histograms of red (R), 
green (G) and blue (B) colour channels, and their 
average (A). The histograms are smoothed by 
Singular Spectrum Analysis (SSA) [Golyandina et 
al., 2001; Fukuda and Pearson, 2006], which was 
found to provide better results than a Fourier 
transform low-pass filter. The analysis is improved 
by adding the difference between each pair of 
colour peak values (e.g., R-G) to each training data 
point. Lastly, a univariate decision tree is generated 
via WEKA and tested using three different sets of 
training data points to predict the rest of the 
imagery, followed by stratified cross-validation on 
the entire image (Section 3.2). The predicted 
classes are then overlaid on the image, to provide 
visual feedback on the classification results. 

3.1 Extraction of histograms 

Let L = {(n, m), n = 1, …, N, m = 1, …, M} be a 
2D lattice of pixels for an image, I, where n and m 
represent columns and rows respectively. The 
image, I, is divided into S = {(n/p, m/p), 1 � p � n, 
1 � p � m} tiles of p × p pixels. Here, I is defined 
by N=313, M=287 with p=20 (20 × 20-pixel tiles) 
to give S = (15, 14), a total of 210 regions. Colour 
frequency histograms HR, HB, HG and HA are 
extracted from the four colour channels in each Sp 
tile. Now, SSA [Golyandina et al., 2001] is applied 
to smooth each histogram. Each H is treated as a 
1D series of length Q=256, H = (f0, …, fQ-1), and 
transferred into a set of W-dimensional lagged 
vectors, Xi = (fi-1, …, fi+W-2)

T, where 1 � i � K = Q – 
W + 1 and W is the window length (W � Q/2); for 
this analysis, W=32. This procedure turns the H 
series into the W-trajectory matrix, X = 
[X1:…:XK]), which can be rewritten as 
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(3.1) 
(i+j= const). 

The obtained trajectory matrix (3.1) is decomposed 
by the singular value decomposition (SVD) to 
provide i eigentriples (consisting of eigenvalues, 
principal components and right singular vectors). 
The eigentriples are grouped and reconstructed to 
form the smoothed histograms for each tile in S. 
Here, the first three eigentriples were used, to 
provide >75% of the original variance. 

Let h represent the smoothed histograms and hc = 
(in turn) hR, hG, hB, hA for each colour channel. 
Maximum values of each hc are then calculated for 
constructing training data points. The differences 
between each pair of values (e.g., maxhR – maxhG) 
are added to increase the number of attributes 
available for data mining. 

3.2 WEKA classification 

The J4.8 classifier from WEKA 3.4 [Witten and 
Frank, 2005], based on the C4.5 algorithm 
[Quinlan, 1993], is used to generate decision trees 
from a small number of training data points to 
predict tree mortality and land cover (class) for the 
rest of the image. Note that regions labelled as S 
are divided into five regions: S1 to S5, in 
decreasing order of size. Four experiments were 
performed, selecting training data with three 
different methods. 

1) Manually selected training data: To test if the 
patterns of colour channel peaks effectively 
represent tree mortality, tiles were examined to 
find similar patterns of maxhc values (colour 
patterns) and verify the connection between these 
colour patterns and tree mortality/land cover 
classes, then up to four of the most representative 
tiles in each class were manually selected as 
training data points, to produce a decision tree 
which was tested on the remaining data. 2) 
Randomly selected training data: To model the 
real-world training data selection process, first two, 
then three training data points were selected 
randomly from each class (S1 to S4, M, L, Surface, 
V and Non) to produce a decision tree, which was 
tested on the remaining data. 3) Stratified cross-
validation: To test the overall performance of the 
decision tree method, the entire dataset was tested 
using ten-fold stratified cross-validation, with S1-4 
combined into a single S class.  

Note that the S5 region is ignored as it only 
contains one tile, and L and M are also small, with 
four and two tiles respectively. The predicted class 
for each tile is overlaid on the imagery to allow 
visual interpretation of classification results 
(except for cross validation). To reduce the visual 
complexity of result images, the classes used 
internally are reduced to S, M, L, V, Surface and 
Non. Classification accuracy is presented as four 
numbers. Overall accuracy is the proportion of 
correct classifications when decision trees are 
tested on the entire dataset, including the training 
data used to create them. Excluding training set is 
the proportion of correct classifications when the 
training set is excluded from the test set. Weighted 
values weight different errors differently, giving a 
greater penalty for larger errors (e.g., Non 
misclassified as S) than for errors between adjacent 
classes (e.g., L misclassified as M).  

4. IMAGE SEGMENTATION APPROACH 

The image segmentation approach, in contrast to 
the single-pass tile-based data mining method, first 
attempts to detect whether individual pixels belong 
to attacked trees, then groups these attack pixels 



 

into regions, and finally quantifies the severity of 
the attack in each region. 

Let α represent the source image, such that α(x, y) 
represents the pixel at column x and row y of the 
image. Let αH(x, y), αS(x, y) and αV(x, y) represent 
the hue, saturation and value attributes of the pixel 
α(x, y). Hues lie in the range [0o, 360o), while 
saturations and values lie in the range [0%, 100%]. 

4.1 Pixel classification 

First, pixels are classified as to whether they are 
expected to correspond to attacked trees, using one 
of a number of manually-designed classifiers. The 
seven classifiers, with different hue, saturation and 
value criteria, are shown in Table 2. 

Table 2. Pixel classification methods. 
Method Hue criterion

Saturation 
criterion

Value 
criterion

A H < 24o S > 20% V > 50%
B H < 54o S > 10% -
C H < 54o S > 20% V > 50%
D H < 24o S > 20% V > 50%
E H < 24o S > 20% V > 39%
F - S < 10% -
G 245o < H < 305o S > 20% V > 50%  

Equation 4.1 shows how this step produces a 
detection matrix, D, for the A classifier: 
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4.2 Region detection and tree mortality 
quantification  

Next, a new matrix, E, is created. Each cell in E 
contains the sum of all values within 10 cells of the 
corresponding value in D: E(x,y) = �D(x’,y’), 

�
�(x-x’)2+(y-y’)2  < 10. A threshold, τ, is defined 

as 10% of the maximum value in E: τ  = max(E) / 
10. This threshold is then applied to E to produce 
R, which is equal to 1 where the corresponding 
element in E is greater than τ. 
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Now, a connected component analysis is 
performed to extract connected groups of nonzero 
elements in R, which represent possible infested 
regions. Let CT(n) represent the count of pixels in 
the nth connected component, and CA(n) the count 
of detected attack pixels in the component (i.e., 
pixels for which D(x, y) = 1). Let CR(n) equal the 
proportion of attacked pixels in region n. 

)(
)(

)(
nC
nC

nC
T

A
R = . (4.3) 

Regions are classified as severely attacked if CR(n) 
� 0.3, moderately attacked if CR(n) � 0.2, lightly 
attacked if CR(n) � 0.1, and non-attack otherwise. 

5. PATTERNS OF COLOUR CHANNEL 
HISTOGRAM PEAKS 

Plotting colour channel histogram peaks for 
manually selected similar tiles (Figure 2) identified 
nine distinct colour patterns from the six classes (S, 
M, L, Non, V and Surface). The Non tiles contain 
three distinct patterns (Figure 2a, b, and g), visible 
in the image as yellow green, light green and grey. 
S tiles show two patterns: reddish yellow (S1 and 
S2, Figure 2e) and grey (S3 and S4, Figure 2f).  

Figure 2. Colour channel histogram peaks, 
showing distinct patterns. 

These results reflect the heterogeneous nature of 
Non and S regions. Interestingly, the use of only 
four values from each relatively large tile 
successfully describes the colour changes that take 
place over time during the process of tree 
infestation and mortality. The sequence may start 
from light green Non (Figure 2a), which has a high 
green peak, and red and blue peaks at zero. Next, 
red is added, as seen from yellow green Non 
(Figure 2b), which overlaps with L (Figure 2c). 
Then, blue is added as the class changes to M 
(Figure 2d). During the S stage, the blue peak 
drops to zero, and the red peak becomes higher 
than the green peak (Figure 2e). Red, green, blue, 
and average peaks are similar in S3/S4 (Figure 2f), 
as well as grey Non (Figure 2g), appearing flat 
when plotted, although S3/S4 tiles have a slightly 
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lower blue peak. These tiles only appear in the top 
quarter of the image, suggesting that the greyness 
may be due to light conditions and distance from 
the photographer, although another possibly is a 
high concentration of long-dead trees, which are 
known to appear grey, but marked Non because 
only recent attack is labelled [BCMF and CFS, 
2000]. Structures of M (Figure 2d), V (Figure 2h), 
S3/S4 (Figure 2f) and Surface (Figure 2i) have 
similar patterns, but different ranges of peak 
intensities. There is an overlap between Surface 
and V, which may cause some misclassification. As 
S and Non tiles are heterogeneous due to poor 
lighting in the imagery, training data sets must 
contain samples from each different variant of S 
and Non for classification to be successful. 

6. CLASSIFIED IMAGERY AND 
CONFUSION MATRICES 

Classification figures of accuracies and confusion 
matrices are shown in Table 3, and images with 
overlaid prediction results are shown in Figure 3.  

Table 3. Confusion matrices for test results. 

Detected S M L V Surf Non Detected S M L V Surf Non
S 23 7 S 33 20
M M 2 6
L L 15 4 49
V 11 V 1 13 9

Surface 4 Surface 4
Non 33 2 4 2 154 Non 7 77

Detected S M L V Surf Non Detected S M L V Surf Non
S 35 3 45 S 38 82
M 1 2 1 M 2 11
L 5 3 26 L 6 2 27
V 6 5 V 9 5

Surface 4 4 4 Surface 4 4 4
Non 15 1 80 Non 12 2 32

Weighted x-validation 79.4%
With cross-validation 74.6%

Weighted accuracy 82.2%

Cross validation on full image
Actual value

Training accuracy 80.0% Overall accuracy

Excluding training set
Weighted accuracy

Weighted w/o train set

55.4%

49.0%
75.7%

72.0%

54.2%

49.1%
68.2%

64.8%

36.3%

31.1%
52.1%

48.2%

Weighted accuracy

Weighted w/o train setWeighted w/o train set

Weighted accuracy
Overall accuracy

Excluding training setExcluding training set

Overall accuracy

Two training data pointsThree training data points

Colour pattern analysis

Actual valueActual value

Actual value

 

The classification accuracy on the test set is 75% 
for cross validation and 31-49% when using 
smaller training data sets.  Weighted accuracy 
figures are 79% for cross validation, 72% for 
manually selected training data and 52-68% for 
randomly selected training data. The best data 
mining results were obtained using the full image 
data, with all classes classified well except S (41% 
recall). The next best results were from the colour 
channel pattern analysis (Figure 3A), which 
detected V and Surface correctly (100%), although 
S (59%) was often misclassified as L or Non, and 
Non (48%) was often misclassified as L or S. This 
could be due to the similarity between S1/S2, L, 
and yellow green Non classes (the classifier selects 
the middle ground class L between the extremes of 

S and Non), or perhaps the gaps between large 
S1/S2 regions are bridged by L, as also seen from 
one space between an M and an S3/S4 region 
classified as M, but further investigation is 
required. As training tiles are added from the top of 
the image (especially grey Non, Figure 2g, and 
S3/S4, Figure 2f), misclassification of Non and S 
in that region is reduced. For the same reason, V 
and Surface tiles had 100% recall in this test. 

Tree mortality 
classification 

A. Colour pattern 

 Severe 

 Moderate 

 Light 

 Vegetation 

 Ground surface 

   Non-attack  

 

B. Three training data 
points 

C. Two training data 
points 

  

D. Image segmentation 
approach 

E. Original 
classification 

  
Figure 3. Prediction result overlay images. 

Manually classified regions of tree mortality from 
E appear as thick outlines in A-C. 

The test using two training data points (Figure 3C) 
classified Surface (100%) and V (69%) tiles 
satisfactorily, though S (68%) tiles were often 
misclassified as Non and most Non tiles were 
misclassified. Classification improved when three 
training data points were used (Figure 3B), with 
much better separation of S and Non regions (Non 
recall improved from 20% to 50%). Both results 
classified both top corners, which appear grey in 
the original image, as S, and the three-point 
analysis confused several S3/S4, V and Surface 
tiles. This may be due to the similarities in their 

 

S1

S4 

S3 

S2

S5 



 

colour patterns, as previously discussed. 
Performance on L and M tiles was poor, with only 
training data classified correctly. 

Overall, all tests had significant misclassification 
between S and Non due to the heterogeneity of 
Non regions and aerial photography conditions, as 
previously discussed. Performance on small 
training sets still needs to be improved, although 
encouraging results were achievable with well 
identified heterogeneous training data. 

Figure 4 shows the best decision tree, for colour 
pattern analysis, with 9 leaves and a size of 17. For 
classifying the aerial imagery, the blue histogram 
peak appears most important, followed by red and 
green. Grey (A) peaks were not found to be 
important alone, but R-A (red peak minus grey 
peak) was used to distinguish between Non, M and 
S. 

Blue ≤ 1 Blue > 1

R ≤ 154:
V (h)

R > 56:
S (f)

R ≤ 56:
M (d)

R-A > -5

R-A ≤ -5:
 Non (g)

R > 105R ≤ 105

G > 60:
 Low (c)

G ≤ 60:
 Non (b)

R-G > 0:
S (e)R-G ≤ 0

R > 1R ≤ 1:
Non (a)

R > 154:
Surface (i)

 

Figure 4. Decision tree for colour pattern analysis. 

The image segmentation approach (Figure 3) 
detected regions marked by the BCMF and CFS 
[2000] as infested (S, M, L classes) with 84% 
accuracy, and identified three regions that had not 
been flagged by the human observer but appear 
infested on the image. The only serious 
misclassification occurred in the top right-hand 
corner of the image, where two large S regions 
were classified as M and only partly located. 

7. CONCLUSIONS 

The cross-validation test and image segmentation 
method provided the best classification accuracy. 
Results with small training data sets need to be 
improved, although the rate at which classification 
accuracy improves with the addition of well 
identified heterogeneous training data is 
encouraging for further investigation. 

In future, more image features will be considered, 
and techniques such as hybrid decision trees, which 
Friedl and Brodley [1997] found to provide higher 
classification accuracy, will be investigated. 
Higher quality input data (e.g., higher resolution, 
overhead angle, even lighting) will improve results. 
The (generic) data mining approach can be applied 

to other image classification problems, and will be 
used to produce better initial pixel classification 
rules for the image segmentation method, while 
image analysis techniques will be used to provide 
richer data points for the data mining approach. 
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