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ABSTRACT

ZERO-INFLATED CENSORED REGRESSION MODELS:

AN APPLICATION WITH EPISODE OF CARE DATA

Jonathan P. Prasad

Department of Statistics

Master of Science

The objective of this project is to fit a sequence of increasingly complex zero-

inflated censored regression models to a known data set. It is quite common to find

censored count data in statistical analyses of health-related data. Modeling such

data while ignoring the censoring, zero-inflation, and overdispersion often results in

biased parameter estimates. This project develops various regression models that

can be used to predict a count response variable that is affected by various predictor

variables. The regression parameters are estimated with Bayesian analysis using a

Markov chain Monte Carlo (MCMC) algorithm. The tests for model adequacy are

discussed and the models are applied to an observed data set.
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1. INTRODUCTION

Psychosocial therapists have studied the “medical offset effect” of family therapy

and other forms of therapy service (Crane and Christenson 2007). The medical offset

is defined as the reduction in health care use due to a specific kind of psychosocial

intervention. A medical offset is considered to have occurred if the adjusted mean

utilization of health care is significantly lower when the psychosocial intervention is

present.

Morgan and Scovial (2007) examined medical offset in a large Episode of Care

(EoC) data set provided by CIGNA Behavioral Health. The EoC data provided

information on health care utilization in the form of the number of visits made by

patients to their psychotherapy care provider over a period of time. The EoC data

has a count response variable called number of sessions/visits and various predictor

variables including patient age, therapist type, procedure type, and region. The

procedure type indicated the nature of the psychosocial intervention: whether it was

individual therapy, family therapy, or a mixture of the two. It was anticipated that

involvement of family members would have a negative effect on the number of sessions,

and thus would be an example of medical offset due to family therapy.

As part of their study, Morgan and Scovial (2007) looked at the first EoC

of a patient during the study period for which they used ordinary Gaussian theory

regression and censored Weibull regression to relate the log of the number of sessions

to the predictor variables. Both statistical analyses might be suitable for the data set

given the fact that the data set has many observations (over 100,000), and given the

robust nature of Gaussian regression.

However, one concern with the ordinary Gaussian and censored Weibull models

is that they fail to thoroughly address the possible problems of one-inflation and

overdispersion that appear to be present in the count data (Figure 1.1). The Gaussian
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regression procedure also overlooks the censored aspect of the EoC data; that is, 18%

of the observations are known only as a lower limit. For example, even though the

data shows that a patient had five sessions, it is possible in certain known cases that

the patient’s therapy may have begun before the start of the study or may have

continued after the end of the study.

Figure 1.1: Box-plots of numbers of sessions by gender for the CIGNA EoC data.
Both groups have long tails and have medians close to one.

We will also look at the first EoC of a patient during the study period, but will

adjust the response variable to be Y = number of sessions - 1, so that standard models

for count data can be used. The adjusted response, Y , will change the EoC data from

being one-inflated to zero-inflated, for which statistical approaches are available.

We propose to analyze the EoC data using a zero-inflated censored Poisson re-

gression model (ZICP), a zero-inflated censored generalized Poisson regression model

(ZICGP), and a zero-inflated censored negative binomial regression model (ZICNB)

fitted via Bayesian methods to address the aforementioned problems. It is hoped that

doing so will produce a better fit and a more realistic model for session counts. This

in turn would provide better predictions of utilization for health care insurers. We

will also have unbiased evaluations of factors associated with medical offset, not the

biased evaluations that result from ignoring censoring.
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2. LITERATURE REVIEW

2.1 Models for Count Data

In experimental and observational studies in many disciplines, including public

health, economy, psychology, biology, and medicine, regression analysis is used to

model dependent variables that describe count data. A frequently used statistical

model for count data is the standard Poisson model. If Y follows a Poisson distribution

with parameter µ, where µ ≥ 0, then

f(y) = Pr{Y = y} =
e−µµy

y!
.

The mean, E(Y ), and variance, V ar(Y ), associated with the Poisson distribution are

E(Y ) = V ar(Y ) = µ.

A common Poisson regression model for a count response Yi is

Yi ∼ Poisson(µi),

where µi = exp(x
′
iβ), x

′

i is a vector of co-variates, and β is a vector of parameters.

For example, Aitkin, Anderson, Francis, and Hinde (1990) and Renshaw (1994) each

fitted the Poisson model to two different sets of auto insurance claims data.

In many real-life applications the counts include more zeros than expected un-

der the Poisson model (Lambert 1992 and Rodrigues-Motta, Gianola, Heringstad,

Rosa, Chang 2006). This condition, called zero-inflation, occurs because a single

Poisson parameter µ is often insufficient to describe the population (Bohning 1994).

Essentially, zero-inflation arises when one mechanism generates only zeros and an-

other process generates both zero and nonzero counts (Greene 1994). In general,

models that accommodate an excess of zeros are characterized by a parametric struc-

ture that models the zero and nonzero mechanisms separately. Zorn (1996) justifies
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this approach in terms of a dual regime data generating process: in the first stage, a

presence/absence model determines whether the count is zero or possibly nonzero; in

the second stage, a count model governs the actual magnitude of the count. Hence

the probability density function (pdf) of the model is

f(y) = ηγ0(y) + (1− η)f2(y), (2.1)

and the cumulative density function (cdf) is

F (y) = η + (1− η)F2(y), (2.2)

where η is the probability of the zero count in the presence/absence model, γ0(y) is

a zero indicator function for the presence/absence model, and f2(y) is the pdf of a

count random variable. This model (Equation 2.1) is often called a mixture model

and η is called the mixture proportion. A common mixture model is the zero-inflated

Poisson (ZIP) model where f2(y) is the Poisson pdf (Rodrigues-Motta et al. 2006).

Another common problem in regression with count data is that the data may

exhibit greater variation than the Poisson distribution. This is referred to as overdis-

persion. Various models have been proposed in the literature to deal with overdis-

persion. One such alternative to the standard Poisson model is the negative binomial

(NB) model derived from a continuous mixture of Poisson distributions where the

mixing distribution of the Poisson counts is a gamma distribution. The NB, also

known as a gamma-Poisson (mixture) model, has the pdf:

f(y) =
Γ(y + k)

Γ(y + 1)Γ(k)
pk(1− p)y (2.3)
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where k > 0, 0 ≤ p ≤ 1,

E(Y ) =
k(1− p)

p
, and

V ar(Y ) =
k(1− p)

p2
=
E(y)

p
.

For use in regression, Ismail and Jemain (2007) suggest the reparametrization of

Equation 2.3 with

φ =
1

k
, and

µ =
1− p
φp

,

such that

f(y) =
Γ(y + 1

φ
)

Γ(y + 1)Γ( 1
φ
)

(
1

1 + φµ

) 1
φ
(

φµ

1 + φµ

)y
, (2.4)

where φ is the overdispersion parameter. The mean of the model is E(Y ) = µ and

the variance is V ar(Y ) = µ + µ2φ (Ismail and Jemain 2007). As φ approaches zero,

f(y) approaches the Poisson pdf in the limit. If φ > 0, the variance will exceed the

mean, and thus the distribution allows for overdispersion.

To accommodate zero-inflation as well as overdispersion, f2(y) in Equation 2.1

could be the NB pdf (Equation 2.4). The resulting model is called the zero-inflated

negative binomial (ZINB) (Rideout, Hinde, Demetrio 2001).

The generalized Poisson (GP) regression model is another alternative to the

standard Poisson model to deal with overdispersion. One parametrization (Famoye

and Wang 2004) of the GP is

f(y) =

(
µ

1 + αµ

)y
(1 + αy)y−1

y!
exp

[
−µ(1 + αy)

1 + αµ

]
. (2.5)
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The mean of the GP model is E(Yi) = µi, the variance is V ar(Yi) = µi(1 + αµi)
2,

and α is the dispersion parameter (Famoye and Wang 2004). When α = 0 the model

reduces to a standard Poisson. For α > 0, the GP model represents count data with

overdispersion.

To accommodate zero-inflation as well as overdispersion, f2(y) in Equation 2.1

could be the GP pdf (Equation 2.5). The resulting model is called the zero-inflated

generalized Poisson (ZIGP).

2.2 Censoring

Count data are often censored. Censoring occurs when the starting and ending

times of the study result in partial information for some of the counts. For example,

in the EoC data some of the patients had either begun their visits prior to the start

of study or were continuing past the end of study. Hence, for these patients we only

have the information captured during the study period. If no censoring has occurred

for the ith patient, the count is Yi = yi. However, if censoring occurs for the ith

patient, we know only that Yi ≥ yi.

To estimate parameters of a count distribution when there is censoring, consider

the count distribution f(yi;θ) and the censoring count distribution g(zi; Γ). For every

individual i, actual count and censoring count are drawn. Censoring occurs if zi < yi.

The likelihood function, used in either maximum likelihood or Bayesian esti-

mation of the parameters, is

L(θ|y) =
n∏
i=1

f(yi;θ)1−δiS(yi;θ)δi , (2.6)
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where δi is the censoring indicator such that

δi =

 1 if censored,

0 otherwise,

and S(yi;θ) is the survival function. For a discrete count distribution, the survival

function is

S(yi;θ) = F (Yi ≥ yi) = 1− F (yi − 1;θ), (2.7)

where F (yi) is the cdf of the count model. Models for count data that are censored

will be referred to as ZICP, ZICGP, and ZICNB.

2.3 Bayesian Inference

Bayesian inference is based on Bayes Theorem (Gelman, Carlin, Stern, and

Rubin 2004) which states that the conditional probability for events A given B is

related to the conditional probability of B given A by

P (A|B) =
P (B|A)P (A)

P (B)
.

To use this theorem for parameter estimation, the idea is to substitute the parameter

vector θ and data y for events A and B to get

π(θ|y) =
f(y|θ)π(θ)

f(y)
(2.8)

where

f(y) =

∫
. . .

∫
f(y|θ)π(θ)dθ. (2.9)
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In Equation 2.8, π(θ) is called the prior pdf of θ and π(θ|y) is called the posterior

pdf.

Bayesian methodology has been around since the 18th century, but extensive

use was not possible until recently due to the difficulty in computation. For example,

f(y) (Equation 2.9), often referred to as the normalizing constant, is not easily

calculated, even for simple situations.

A common approach in dealing with difficult computation in Bayesian analysis

is the use of the Metropolis-Hastings (MH) algorithm. MH is a Markov chain Monte

Carlo (MCMC) method used to approximate distributions under simulation. Hastings

(1970) generalized the Metropolis algorithm, and the resulting algorithm is commonly

referred to as the Metropolis-Hastings algorithm.

Key steps in a Bayesian analysis include:

(1) Specify the prior distribution for θ, π(θ) to express uncertainty.

(2) Choose a statistical model or likelihood that describes the distribution of data

y given θ, f(y|θ).

(3) Update uncertainty about θ by combining information from the prior dis-

tribution and the likelihood to calculate the posterior distribution π(θ|y).

Usually π(θ|y) does not have a closed form, so Markov chain Monte Carlo

(MCMC) methods are needed to draw samples from π(θ|y). The posterior

draws generated from the MCMC iterations can then be used to calculate

estimates and confidence intervals for the regression parameters or functions

of them. The draws can also be combined with the likelihood function to

generate predictions and prediction intervals for new individuals.

8



2.4 Goodness of Fit

A measure of goodness of fit for the proposed model specification in Bayesian

analysis is the Bayesian χ2 statistic as defined by Johnson (2004). This goodness of

fit statistic is based on the process of partitioning and binning. For regression data

the steps in the process include:

(1) Partition (0, 1) into k intervals (not necessarily equal).

(2) Randomly pick θ̃ from the posterior draws.

(3) For every yi,xi in the data set calculate Fθ̃(yi|xi).

(4) Bin each Fθ̃(yi|xi) using the partition from (1).

(5) Tally the number of Fθ̃(yi|xi) in each partition.

(6) Calculate

χ2 =
k∑
j=1

(Oj − Ej)2

Ej
,

where

Oj = the observed number of Fθ̃ in jth partition,

Ej = the expected number of Fθ̃ in jth partition

(Ej = the width of the jth times the total number of observations.)

(7) Repeat the above steps n times.

(8) From the repetitions, calculate χ2.

(9) Compute p− value using the χ2 distribution with df = k − 1.

The Bayesian goodness of fit procedure works well and is easy to compute for

noncensored data. However, it can not be directly applied to censoring cases since
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Fθ̃(yi|xi) has a different meaning for censored data; it is difficult to assign to an

appropriate bin since yi is a lower limit for actual count. To address this issue Yin

(2009) and Cao, Moosman, and Johnson (2007) suggest working only with the non-

censored observations. In step (3) they calculate for each noncensored observation

1

a

∫ yi

0

(1−G(z))f(z)dz,

where

a =

∫ ∞
0

(1−G(z))f(z)dz

and G(zi) is the cdf of the censoring distribution. For discrete random variables, the

corresponding quantity would be

1

a

yi∑
z=0

(1−G(z − 1))f(z)dz,

where

a =
∞∑
z=0

(1−G(z − 1))f(z)dz.

2.5 Model Selection

A widely used statistic for comparing and selecting models in a Bayesian frame-

work is the Deviance Information Criterion (DIC) (Spiegelhalter, Best, Carlin, and

vander Linde 2002). DIC is a Bayesian alternative to the Akaike Information Cri-

terion (AIC) and the Bayesian Information Criterion (BIC). Calculation of the DIC

in connection with MCMC is trivial as it does not require maximization over the

parameter space, like the AIC and BIC.

The deviance, D(θ), is evaluated at the parameter mean θ as

10



D(θ) = −2 log[f(y|θ)].

The goodness of fit of the model is summarized as the posterior expectation of the

deviance

D(θ) = Eθ|y[D].

The complexity of the model (the effective number of parameters in the model), pD, is

given by the expected deviance minus the deviance evaluated at the posterior means

pD = Eθ|y[D]−D(Eθ|y[θ])

= D −D(θ).

These statistics combine to give the overall DIC

DIC = pD +D

= 2D −D(θ).

Essentially, DIC is a penalized measure of how well the model fits the data. It

is a compromise between fit and complexity. A smaller DIC indicates better fit to

the data set.

The model with the best DIC and an acceptable Bayesian χ2 will be the one

considered for prediction purposes.

11



3. DATA DESCRIPTION

The data were obtained from one of the leading health care insurers in the United

States, CIGNA Behavioral Health (CIGNA). The use of administrative data for the

purposes of compiling aggregate statistics, monitoring trends, and providing infor-

mation for planning purposes is allowed by the Health Insurance Portability and

Accountability Act of 1996 (HIPAA), regulations for protecting personal health care

information. The raw claims data received from CIGNA contained over five mil-

lion claims for the study period, starting January 1, 2001 and ending December 31,

2003. Names and all personal identifying information were removed and a unique

and unidentifiable client identification number was added for each patient prior to

the data being delivered. In no case was it possible to identify any unique subscriber

or provider information from the data provided.

For our analysis we used a sample of the raw data containing only patients

who were receiving anxiety-related therapy. An episode of care (EoC) is defined by

CIGNA as a series of continuing services for the same patient; it begins with the first

service and ends when the individual has had no claims for 90 days or more. Since

the data set included the date of each service, it was possible to compute the number

of EoCs as well as the number of sessions in that EoC for each patient/client. For

this project we used the number of sessions for each patient in the first EoC during

the study period.

The response variable, Y , is the total number of sessions (for a patient) minus

one. Note that, by definition, an EoC must have at least one session. Hence Y has

a minimum of zero. The objective of the study is to relate Y to various predictor

variables.

We added a censoring indicator variable to the data. If, during the study period,

the patient’s first visit took place within the first 89 days of the beginning (Jan. 1,

12



2001) of the study period or within the last 89 days of the end (Dec. 31, 2003) of the

study period (Figure 3.1), the observation was categorized as being censored.

Data from all states of the U.S.A. were included in the study. For regional

comparison purposes, we created a region variable where the states were summed

into six distinct regions: Northeast (CT, DE, MA, ME, NH, NJ, NY, PA, RI, VT);

Midwest (IL, IN, IA, KS, MI, MN, MO, ND, NE, OH, OK, SD, WI); Pacific (AK,

CA, HI, OR, WA); South (AL, AR, DC, FL, GA, KY, LA, MD, MS, NC, SC, TN,

VA, WV); and West (AZ, CO, ID, MT, NM, NV, TX, UT, WY). Services performed

outside the United States were not considered for our analysis.

Other predictor variables included client age (in years), client gender, procedure

type (individual, family, or mixed), and therapist license (psychologist, psychiatrist,

or social worker).

3.1 Descriptive Statistics

The sample data used for our analysis had 123,163 observations. Each row of

the data had the first EoC information for each patient. Of the 123,163 observations,

84,162 were for females and 39,001 were for males. Furthermore, 22,936 had a censored

number of sessions (Table 3.1), of which 7,266 were for males, and 15,670 were for

females.

Table 3.1: EoC Summary

EoC Median no. Sess. Max. no. Sess. I.Q.Ra Single Sess.b Percentc(%)

total 123,163 4 226 6 22,897 18.6
non-censored 100,227 4 226 7 17,555 17.5
censored 22,936 3 210 5 5,346 23.3
start censoredd 9,765 2 42 3 3,441 35.2
end censorede 13,171 5 210 10 1,905 14.5

a inter quartile range
b number of single session in the EoC
c percent of single session EoCs of total EoC
d censoring between Jan. 1, 2001 - Mar. 30, 2001
e censoring between Oct. 4, 2003 - Dec. 31, 2003

13



The youngest patient was three years old and the oldest was 94 years old. There

were 2,932 patients 11 years and younger, 16,007 patients between the ages of 12 and

18, 53,345 patients between the ages of 19 and 40, 47,480 patients between the ages

of 41 and 60, and 3,411 patients were 61 years or older (Figure 3.2).

Males and females had similar overall trends in terms of session counts. Both

distributions were very long tailed (Figure 3.3). A similar trend in the session count

distribution was observed for all the other predictor variables. The median for cen-

sored counts was less than the median for noncensored counts. Likewise the mean for

the censored counts was less than the mean for the noncensored counts. Most of the

EoCs (97,954) involved the individual procedure type.
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Figure 3.1: Diagram illustrating type of censoring in the EoC Data. Since we know
the lower limits from either type, EoC data has right censoring only.
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are of all the EoCs. The middle row of plots are of censored EoCs, and the bottom
row of plots are of noncensored EoCs.
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4. ZERO-INFLATED CENSORED MODELS

In this project, we fit a sequence of increasingly complex censored models to the

EoC data. The added complexity will help address the issues of zero-inflation, over-

dispersion, and censoring in the data. In this section we describe likelihood functions

for such models.

4.1 Zero-Inflated Poisson

A zero-inflated model can be expressed as a two-component mixture model

where one component has a degenerate distribution at zero and the other is a count

distribution (Equation 2.1) such as the Poisson.

Let the response variable, Yi, be the number of sessions minus one for patient i

in the first EoC during the study period, and let n be the number of first EoCs (also

the number of patients) in the data. The zero-inflated Poisson (ZIP) distribution is

defined as

f(yi) = ηγ0(yi) + (1− η)

(
e−µiµi

yi

yi!

)
(4.1)

where

γ0(yi) =

 1 if the count belongs to the degenerate distribution

0 otherwise

and η is a mixing proportion, 0 ≤ η ≤ 1. The ZIP regression model is obtained by
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defining µi as

µi = exp(x
′

iβ),where

x
′

i = a vector of covariates for EoCi, and

β = a k -dimensional vector of parameters.

4.2 Zero-Inflated Censored Poisson

To properly account for the presence of censored EoCs in the data, we will use

the survival function (Equation 2.7). The cdf, following Equation 2.2, of an EoC is

F (yi) =

yi∑
s=0

[
ηγ0(s) + (1− η)

(
e−µiµi

s

s!

)]

= η + (1− η)

yi∑
s=0

(
e−µiµi

s

s!

)
. (4.2)

For a censored EoC we know only that Yi ≥ yi, and since the random variable

is discrete, the survival function of a censored EoC is

S(yi) = 1− F (yi − 1). (4.3)

Thus, following Equation 2.6, the likelihood function of a zero-inflated censored

Poisson (ZICP) regression model is

L =
n∏
i=1

f(yi)
1−δi(S(yi))

δi ,
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where

δi =

 1 if censored,

0 otherwise.

The log-likelihood function is defined as

` = (1− δi)
n∑
i=1

log [f(yi)] + δi

n∑
i=1

log [S(yi)] . (4.4)

4.3 Zero-Inflated Censored Generalized Poisson

For the zero-inflated censored generalized Poisson (ZICGP) regression model

we use the same parametrization as Equation 2.5. The log-likelihood of the ZICGP

regression model is formulated as Equation 4.4, where

f(yi) = ηγ0(yi) + (1− η)

(
µi

1 + αµi

)yi (1 + αyi)
yi−1

yi!
exp

[
−µi(1 + αyi)

1 + αµi

]
(4.5)

and

F (yi) =

yi∑
s=0

[
ηγ0(s) + (1− η)

(
µi

1 + αµi

)s
(1 + αs)s−1

s!
exp

[
−µi(1 + αs)

1 + αµi

]]

= η + (1− η)

yi∑
s=0

[(
µi

1 + αµi

)s
(1 + αs)s−1

s!
exp

[
−µi(1 + αs)

1 + αµi

]]
. (4.6)

When α = 0, Equation 4.5 and Equation 4.6 reduce to Equation 4.1 and Equa-

tion 4.2, respectively. For α > 0, the ZICGP model is suitable for zero-inflated

censored count data with overdispersion.
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4.4 Zero-Inflated Censored Negative Binomial

For the zero-inflated censored negative binomial (ZICNB) regression model we

use the same parametrization as Equation 2.4. The log-likelihood of the ZICNB

regression model is formulated as Equation 4.4, where

f(yi) = ηγ0(yi) + (1− η)
Γ(yi + 1

φ
)

Γ(yi + 1)Γ( 1
φ
)

(
1

1 + φµi

) 1
φ
(

φµi
1 + φµi

)yi
, (4.7)

and

F (yi) =

yi∑
s=0

[
ηγ0(s) + (1− η)

Γ(s+ 1
φ
)

Γ(s+ 1)Γ( 1
φ
)

(
1

1 + φµi

) 1
φ
(

φµi
1 + φµi

)s]

= η + (1− η)

yi∑
s=0

[
Γ(s+ 1

φ
)

Γ(s+ 1)Γ( 1
φ
)

(
1

1 + φµi

) 1
φ
(

φµi
1 + φµi

)s]
. (4.8)
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5. METHODOLOGY

In this section we consider the implementation of the models discussed in Chapter

4.

5.1 Setup of Variables

The response variable was Y = number of sessions in first EoC - 1 so that

standard count data models could be used and we could model zero-inflation rather

than one-inflation. Also, for our analysis we only considered the first EoC of each

patient during the study period.

Since the EOC data had categorical (nonquantitative) predictor variables (gen-

der, therapist type, procedure type, region), we used indicator coding to formulate

the model so that these variables would have interpretable coefficients. Indicator

coding assigns values 1 and 0 to reflect the presence and absence, respectively, of a

level. If a categorical predictor has k levels, it is represented by k − 1 indicator vari-

ables. The level not represented by an indicator variable is called the reference level.

For our analysis, we used the most frequent level as the reference level (Table 5.1).

For example, because therapist type has three levels (psychiatrist, psychologist, and

social worker), we used two indicator variables so each level is uniquely defined by

combining the two variables. The coefficient of each indicator variable compares the

effect of the specified level to that of the reference level.

Table 5.1: Reference level for each of the categorical variables in the EoC data.

Variable Reference

Gender female
Therapist Type social worker
Procedure Type individual
Region south

To minimize the effect of possible high correlation in the parameter estimates,
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we centered the age variable. This was done by subtracting the overall age mean of

34.142 from each patient’s age.

5.2 Model Fitting

The overall strategy of the Bayesian modeling was to fit the ZICP, ZICGP,

and ZICNB models using MCMC. The ZICGP and ZICNB models allowed for zero-

inflation, overdispersion, and censoring, while ZICP allowed for zero-inflation and

censoring only.

To validate our treatment of censoring, we used Bayesian MCMC to also fit a

zero-inflated Poisson (ZIP), a zero-inflated generalized Poisson (ZIGP), and a zero-

inflated negative binomial (ZINB) to the noncensored EoCs. The likelihoods of the

noncensored models involved just the zero-inflated pdfs and not the survival functions.

We used the following as our prior distribution(s)

π(β0), π(β1), ..., π(βk) ∼ Normal(0, σ2 = 100000)

π(eta) ∼ Uniform(0, 1),

π(α) ∼ Gamma(1, 2),

π(φ) ∼ Gamma(1, 2).

All of the Bayesian analyses were done in SAS software Version 9.2 using PROC

MCMC (Appendix A). We used the built-in Poisson and negative binomial pdf’s and

cdf’s in SAS software Version 9.2 to specify the likelihood functions of ZIP and ZINB

and their censored counterparts. However, for ZIGP and ZICGP we had to hard code

the likelihood function. We used 150,000 posterior draws (Table 5.2) from each of

our models to estimate the posterior distribution. We examined trace plots of the

parameters in order to evaluate convergence. We also used 100 random posterior

draws, along with noncensored observations, to calculate the Bayesian goodness of fit
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Table 5.2: Bayesian MCMC setup

Setting Number

Burn 10,000
Iteration 150,000
Thinning 1

statistics for each model where the censoring distribution is

g(z) ∼ discrete uniform

such that G(zi) = 1 − zi
t
. We chose t = 350 as the upper bound on the number of

sessions in the first EoC for a patient. The DIC statistic for each model was part of

the standard output of the PROC MCMC procedure.

For comparison purposes, we used the LIFEREG procedure in SAS software

Version 9.2 to fit Weibull models and the GLM procedure in SAS software Version

9.2 to fit Gaussian models using the same predictors as in the models based on count

distributions. For the Gaussian models, we used the log of the number of sessions as

the response variable. The Gaussian analysis included the censored observations, but

treated them as if they were noncensored. The Weibull analysis adjusted for censoring.

We used the maximum likelihood estimates from the Weibull and the Gaussian models

to compute the goodness of fit statistics based on the outline in Chapter 2 to calculate

the Bayesian χ2, but with just one repetition. For completeness, both the Weibull

and the Gaussian models were also fitted using only the noncensored EoCs.

We also generated a posterior predictive distribution using ZICGP posterior

draws for EoCs for 40-year-old females from the South region undergoing individ-

ual therapy with a social worker. For the same predictor values we generated the

sampling distribution for individual predictions based on the Gaussian model. Both

predictive distributions were compared to the observed distribution of EoCs for the

same predictor values.
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6. RESULTS

This chapter presents the results of the Bayesian analyses and non-Bayesian

analyses of the EoC data.

6.1 Noncensored Data

The Bayesian analyses via PROC MCMC ran well for the noncensored data,

but took some time (Table 6.1). This was not surprising since we were dealing with

a large data set and complex models. After a burn-in of 10,000 iterations, 150,000

iterations were monitored for model analysis. Trace plots for all the parameters in

the different models showed adequate convergence (Appendix B).

For analysis involving only the noncensored data, ZIGP had the lowest DIC

statistic (Table 6.2). The ZIGP model also had the lowest goodness of fit statistic

(3007) even though it was clearly significant. The estimated regression coefficients of

ZIGP and ZINB were very similar (Figure 6.3). The ZIP model did not fit the data

well.

Table 6.1: Time to run the Bayesian models.

Model Time (hrs)

ZIP 18
ZINB 21
ZIGP 56
ZICP 19
ZICNB 24
ZICGP 74

The Gaussian model failed to properly account for the zero-inflation present in

the data (Figure 6.1), but produced similar parameter estimates to those associated
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with the ZIGP and ZINB models. The Weibull model also provided similar parameter

estimates.

For all models, the coefficient of procedure type family was significantly negative

(Table 6.2). This meant that those undergoing family therapy had fewer sessions on

average than those undergoing individual therapy. However, those undergoing both

family and individual therapy had more sessions on average than those undergoing

individual therapy. It is not clear what these results imply regarding medical offset

of family therapy.

6.2 Full Data

As with the noncensored data analysis, after a burn-in of 10,000 iterations,

150,000 iterations were monitored for model analysis. Trace plots for all the parame-

ters in the different models showed adequate convergence. The parameter estimates

of all the models that accommodated censoring (all but the Gaussian) were compara-

ble to the estimates based on only noncensored data (Table 6.2 and Table 6.3). Thus

censoring appeared to be dealt with correctly.

The estimated intercepts tell an interesting story. The intercepts for those mod-

els that accommodated censoring increased between the noncensored data analysis

and the full data analysis. This probably is due to the bias of ignoring individuals

with large session counts when analyzing the noncensored data. On the other hand,

the Gaussian analysis ignored censoring in the full data analysis. Thus the intercept

was biased downward by assuming that the censored counts were complete counts.

Of the censored Poisson models (ZICP, ZICGP, and ZICNB), ZICNB had the

lowest DIC (Table 6.3). The ZICP model did not fit the data well. For both the

ZICGP and ZICNB models, the dispersion parameter was greater than zero and was

significant. For the ZICNB model, zero-inflation was not significant while for the

ZICGP model zero-inflation was significant. While the parameter estimates were
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similar for the ZICGP, ZICNB, Weibull, and even the Gaussian models, properties of

predictions based on the models would be very different. As an example, we compared

the posterior predictive distribution based on the ZICGP model to the sampling

distribution of predictions based on the Gaussian model (back-transformed from the

log scale) (Figure 6.2) for 40-year-old females in the South undergoing individual

therapy with a social worker. These distributions were very different from each other,

although the posterior predictive distribution for the ZICGP model was similar to

the empirical distribution of sessions for this subgroup.

Both the ZICGP and ZICNB models had similar parameter estimates (Fig-

ure 6.4). However, the goodness of fit statistic suggested that ZICGP (1696) provided

a better fit to the full EoC data than ZICNB (5378).
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Figure 6.1: Residual plots for the Gaussian models. The top two plots show that
the Gaussian model does not fit the data well. The bottom two qq-plots show the
lack of fit in the tails, especially the lower tail, signifying that Gaussian models do
not properly handle the short left tail of the session count distribution.
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Figure 6.2: Posterior predictive distribution of ZICGP model, sampling distribution
for the Gaussian model, and empirical distribution of number of sessions for 40-year-
old females in the South undergoing individual therapy with a social worker.
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Figure 6.3: Posterior densities for regression coefficients of the ZIP (black solid
line), ZIGP (red broken lines) and ZINB (blue dots) models. Overall, the ZIP model
underestimated the standard error.
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Figure 6.4: Posterior densities for regression coefficients of the ZCIP (black solid
line), ZICGP (red broken lines) and ZICNB (blue dots) models. Overall, the ZICP
model underestimated the standard error.

30



Table 6.2: Parameter estimates and standard errors (in parentheses). Only noncen-
sored data were used.

Parameters Gaussian Weibull ZIP1 ZIGP2 ZINB3

Intercept
1.33198 1.83114 1.77510 1.65524 1.580268

(0.006528) (0.006592) (0.003270) (0.009110) (0.007565)

Age
0.00456 0.00605 0.00567 0.00724 0.008653

(0.000215) (0.000220) (0.000105) (0.000300) (0.000259)

Gender: M
-0.02330 -0.03989 -0.04553 -0.04735 -0.052935

(0.006371) (0.006318) (0.003110) (0.008464) (0.007513)
Therapist Type

Psychiatrist
-0.46968 -0.31334 -0.19232 -0.38866 -0.404091

(0.022219) (0.021987) (0.014463) (0.028756) (0.027058)

Psychologist
0.07086 0.08291 0.07462 0.10010 0.104894

(0.006314) (0.006268) (0.002993) (0.008496) (0.007345)
Procedure Type

Family
-0.18701 -0.25892 -0.24030 -0.30798 -0.343256

(0.009479) (0.009447) (0.005635) (0.012244) (0.011503)

Mixed
0.70181 0.52292 0.40575 0.58151 0.655238

(0.010182) (0.010117) (0.003967) (0.014770) (0.011712)
Region

Midwest
-0.06587 -0.08304 -0.07819 -0.09925 -0.036996

(0.009505) (0.009421) (0.004899) (0.012617) (0.010985)

Northeast
0.21582 0.21084 0.17451 0.23810 0.258471

(0.008159) (0.008117) (0.003897) (0.011069) (0.009335)

Pacific
0.18506 0.18350 0.16186 0.20569 0.236692

(0.010208) (0.010153) (0.004792) (0.013901) (0.012049)

West
0.00318 0.01096 0.01108 0.00343 0.027661

(0.008792) (0.008714) (0.004401) (0.011728) (0.010298)
Other Parameters

η
- - 0.17347 0.03452 0.000085
- - (0.001208) (0.002182) (0.000085)

α/φ
- - - 0.32866 1.269804
- - - (0.002290) (0.005994)

Fit Statistics
GoF4 13582 22104 58234 3007 5573
DIC5 - - 825746.5 562338.2 686606.6

1 Zero-Inflated Poisson
2 Zero-Inflated Generalized Poisson
3 Zero-Inflated Negative Binomial
4 Goodness of Fit
5 Deviance Information Criterion
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Table 6.3: Parameter estimates and standard errors (in parentheses). Both censored
and noncensored data were used. Adjustments for censoring were made for all the
models except the Gaussian.

Parameters Gaussian6 Weibull ZICP1 ZICGP2 ZICNB3

Intercept
1.29188 1.99994 1.85039 1.85297 1.80844

(0.005968) (0.006610) (0.003050) 0.009417 0.008121

Age
0.00539 0.00802 0.00676 0.01032 0.00954

(0.000197) (0.000221) (0.000098) (0.000314) (0.000274)

Gender: M
-0.02425 -0.04241 -0.04603 -0.05137 -0.05079

(0.005821) (0.006379) (0.002881) (0.009040) (0.008013)
Therapist Type

Psychiatrist
-0.44879 -0.33507 -0.19314 -0.42412 -0.43578

(0.020472) (0.02219) (0.014928) (0.029346) (0.028449)

Psychologist
0.06733 0.09349 0.07467 0.11712 0.10956

(0.005762) (0.006326) (0.002780) (0.009107) (0.007808)
Procedure Type

Family
-0.20559 -0.31193 -0.27338 -0.38280 -0.38083

(0.008755) (0.009540) (0.005289) (0.012464) (0.012207)

Mixed
0.73291 0.51109 0.40055 0.61084 0.60139

(0.009496) (0.010211) (0.003688) (0.016469) (0.012481)
Region

Midwest
-0.00446 -0.01170 -0.01505 -0.00337 -0.00869

(0.008622) (0.009516) (0.004457) (0.013376) (0.011979)

Northeast
0.20909 0.22783 0.18346 0.26924 0.268861

(0.007437) (0.008193) (0.003642) (0.011934) (0.010156)

Pacific
0.19115 0.16999 0.15457 0.19378 0.202161

(0.009415) (0.010249) (0.004397) (0.014508) (0.012824)

West
0.01627 0.01843 0.02761 0.01198 0.018939

(0.008072) (0.008795) (0.004200) (0.012196) (0.011028)
Other Parameters

η
- - 0.14154 0.02002 0.000056
- - (0.001010) (0.001775) (0.000057)

α/φ
- - - 0.32681 1.198601
- - - (0.002046) (0.005958)

Fit Statistics
GoF4 21440 20269 63583 1696 5378
DIC5 - - 920194.2 598571.7 597665.0

1 Zero-Inflated Poisson
2 Zero-Inflated Generalized Poisson
3 Zero-Inflated Negative Binomial
4 Goodness of Fit
5 Deviance Information Criterion
6 Censoring was ignored
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7. CONCLUSIONS

We were able to successfully fit the zero-inflated, overdispersed and censored

count models to the EoC data using the PROC MCMC procedure in SAS software

Version 9.2. The code used can be found in Appendix C. We modified the Bayesian

goodness of fit procedure to apply to censored EoC count. This was original work not

found in the literature on zero-inflated models. For the goodness of fit statistic, we

assumed that the censoring distribution was uniform. The code used for the analysis

can be found in Appendix D.

The positive significant estimates of the overdispersion parameters φ and α

meant that the EoC data had overdispersion. Thus, ZIP and ZICP models did not

fit the data well at all. Also, the ZIP and ZICP models seriously underestimated

standard errors (Figures 6.3 and 6.4), which present the issue of biases in the model.

The best fitting model for the EoC data was the ZICGP model. It had the second

lowest DIC value (very close to that of ZICNB) and had the best goodness of fit

statistic. Unfortunately, the ZICGP model still had significant lack of fit. The model

might be improved by including interactions between predictor variables and squares

of predictor variables in the model. Another option would be to include random

effects in the model for the mean of the Poisson distribution, modelling the mixing

proportion as a logistic function of predictors, or modelling the count distribution as

a mixture of two Poissons plus a point mass at zero.

A comparison of the ZICGP and the ZIGP models for noncensored data con-

firmed that our procedures were properly handling the censoring. Even though the

ZICGP model had significant lack of fit, it still fitted the EoC data much better than

any other model, especially the Gaussian and the Weibull models. The Gaussian

models, which ignored censoring, resulted in biased conclusions.
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Also, with the ZINB and the ZICNB models, the zero-inflation parameter η was

not significant in fitting the EoC data. This means that the NB distibution does well

in accommodating zero-inflation in the EoC data, unlike the Poisson distribution.

Inaccurate and misleading prediction intervals were obtained by using a Gaus-

sian (continuous distribution) as a model for the EoC data. However, inferences about

the regression parameters were fairly good for the Weibull model. Presumably these

inferences would also be good for a censored Gaussian model. When prediction is

the goal, as it might be for an insurance company that used these data to predict

the number of sessions for a client, the ZICGP model must be used. The Gaussian

model clearly under-predicts the number of sessions (Figure 6.2), which may lead to

an inaccurate prediction of cost for the insurance company.

All in all, we were successfully able to fit the complex models to the EoC data,

and in doing so prove the need of addressing the issues of zero-inflation, overdispersion,

censoring, and goodness of fit for censored count data.
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A. APPENDIX

PROC MCMC Implementation

PROC MCMC in SAS software Version 9.2 is a flexible simulation-based pro-

cedure that is suitable for fitting a wide range of Bayesian models (SAS/STAT 9.2

User’s Guide, The MCMC Procedure) . PROC MCMC obtains samples from the

corresponding posterior distributions, produces summary and diagnostic statistics,

and saves the posterior samples in an output data set that can be used for further

analysis. One can analyze data that have any likelihood function(s) or prior(s) with

PROC MCMC, as long as these functions are programmable using the SAS DATA

step functions. The parameters can enter the model linearly or in any nonlinear func-

tional form. The default algorithm that PROC MCMC uses is an adaptive blocked

random walk Metropolis algorithm that uses a normal proposal distribution. For our

models, we used the following input commands in PROC MCMC:

• DATA= names the input data set

• OUTPOST= names the output data set for posterior samples of parame-

ters. If no OUTPOST command is specified then the posterior draws are not

available for any further analysis such as goodness of fit statistics.

• NBI= 1,000, specifies 1,000 burn-in iterations.

• NMC= 150,000, specifies 150,000 MCMC iterations, excluding the burn-in

iterations

• THIN= 1, specifies the thinning rate of 1. A thinning of THIN= n, means

to keep every nth simulation sample and discard the rest. All of the posterior

statistics and diagnostics are calculated using the thinned samples. With
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(THIN=1) we kept all the simulation draws. Increasing the thinning rate

helps decrease the auto-correlation in the parameter values. A high auto-

correlation in the parameter values deflate’s the precision of the estimates.

• PROPCOV= QUANNEW, specifies the method used in constructing the

initial covariance matrix for the Metropolis-Hastings algorithm. For our anal-

ysis we used the Quasi-Newton (QUANNEW) method.

• PRIOR, assign prior distribution for the parameters with PRIOR statement.

• DIC, computes the deviance information criterion (DIC) for the model.
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B. APPENDIX

Figure B.1: Mixing plots of the ZICGP parameters. All the parameters show ade-
quate convergence.
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C. APPENDIX

Bayesian MCMC Code for ZICGP

Below is the Baysian MCMC analysis code for the ZICGP model using SAS

software Version 9.2. The ZICGP model required hard coding of the likelihood func-

tion.

*/read in the EoC data set (already with indicators);

data d1;

infile ".../ZICGP/EOC_DATA_MCMC.csv"

firstobs=2 dlm=’,’;

input session censored intercept age female male psychiatrist

psychologist socialworker

individual family mixed west midwest pacific south northeast;

ses=session - 1; */adding a column for (session-1) to make

session zero-inflated;

agec= age - 36.41745;

run;

proc print data=d1 (obs=10); */looking at data;

run;

*Baysian MCMC for Zero-Inflated Censored Generalized Poisson (ZICGP) model;

ods graphics on;

proc mcmc DATA=d1 SEED=2009 NBI=10000 NMC=150000 NTU=1000

outpost=postZICGP propcov=quanew DIC monitor =(_parms_ mu);

ods select Parameters PostSummaries PostIntervals DIC ess mcse tadpanel;

parms eta 0.142 alpha 1;
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parms beta0 1.74 beta1 0.0068 beta2 0.05;

parms beta3 -0.193 beta4 0.08 beta5 -0.27 beta6 0.406;

parms beta7 -0.0191 beta8 -0.147 beta9 -0.189 beta10 -0.1747;

prior beta0 beta1 beta2 beta3 beta4 beta5 beta6 beta7

beta8 beta9 beta10 ~ normal(0,var=1000000);

prior eta ~ uniform(0,1);

prior alpha ~ gamma(1,scale=2);

mu=exp(beta0*intercept + beta1*agec + beta2*male +

beta3*psychiatrist + beta4*psychologist + beta5*family

+ beta6*mixed + beta7*midwest +

beta8*northeast + beta9*pacific + beta10*west);

a=(mu/(1+alpha*mu));

cdf=0;

if (ses >0) then do i =0 to (ses-1);

val= pdf("Poisson",i,a)*((1+alpha*i)**(i-1))*

exp(-mu*alpha*i/(1+alpha*mu));

cdf=cdf + val;

end;

else cdf= pdf("Poisson",ses,a)*((1+alpha*ses)**(ses-1))*

exp(-mu*alpha*ses/(1+alpha*mu));

if censored = 0 then do;

like=(eta*(ses eq 0) +

(1-eta)*pdf("poisson",ses,a)*((1+alpha*ses)**(ses-1))*

exp(-mu*alpha*ses/(1+alpha*mu))); if like <= .000000000000001

then like=.000000000000001;

llike=log(like);end;

else do; like=(1 - eta)*(1 - cdf); if like <= .000000000000001
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then like=.000000000000001;

llike=log(like);end;

model general(llike);

run;

ods graphics off;

*/Exporting the ZICGP posterior information to file;

proc export data=postZICGP outfile=’.../ZICGP/postZICGP.csv’;

run;
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D. APPENDIX

Goodness of Fit Analysis Code

Below is the Bayesian χ2 goodness of fit analysis code for ZICGP using SAS

software Version 9.2.

*/read in the EoC data set (already with indicators);

data d1;

infile ".../EOC_DATA_MCMC.csv" firstobs=2 dlm=’,’;

input session censored intercept age female male psychiatrist

psychologist socialworker individual family mixed west midwest

pacific south northeast;

ses=session - 1; */adding a column for (session-1) to make

session zero-inflated;

agec= age - 36.41745;

run;

*Bayesian Chi Squared;

data postZICGP;

infile "...ZICGP/postZICGP.csv" firstobs=2 dlm=’,’;

input Iteration eta alpha beta0 beta1 beta2 beta3 beta4 beta5

beta6 beta7 beta8 beta9 beta10 mu LogPrior LogLike LogPost;

dumb=ranuni(0);

proc sort data=postZICGP;

by dumb;

run;
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proc iml;

use postZICGP;

read all var{beta0 beta1 beta2 beta3 beta4 beta5 beta6 beta7

beta8 beta9 beta10 eta alpha} into postd;

use d2;

read all var{intercept agec male psychiatrist psychologist family

mixed midwest northeast pacific west ses} into dat;

n=nrow(dat);

m=nrow(postd);

irtp=pdf("NORMAL",0); * ’inverse root two pi’ for stirlings formula;

q=j(300,1,0);

preds=j(m,1,0);

do j=1 to n;

mu= exp(postd[j,1:11]*t(dat[j,1:11]));

alpha=postd[j,13];

a=(mu/(1+alpha*mu));

do i=1 to 300;

ii=i-1;

if ii <= 30 then q[i,1]= (postd[j,12]*(ii=0)+ (1-postd[j,12])

*exp(ii*log(a)-a-log(gamma(ii+1))+(ii-1)*log(1+alpha*ii) - a*alpha*ii));

else

q[i,1]= (postd[j,12]*(ii=0)+ (1-postd[j,12])*irtp*exp(ii*log

(a)-a-(ii+.5)*log(ii)+ii+(ii-1)*log(1+alpha*ii) - a*alpha*ii));

end;

call randgen(x,’TABLE’,q);

preds[j,1]=x;

end;
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do j=n+1 to m;

mu= exp(postd[j,1:11]*t(dat[n,1:11]));

alpha=postd[j,13];

a=(mu/(1+alpha*mu));

do i=1 to 300;

ii=i-1;

if ii <= 30 then q[i,1]= (postd[j,12]*(ii=0)+ (1-postd[j,12])*

exp(ii*log(a)-a-log(gamma(ii+1))+(ii-1)*log(1+alpha*ii) - a*alpha*ii));

else

q[i,1]= (postd[j,12]*(ii=0)+ (1-postd[j,12])*irtp*exp(ii*log(a)

-a-(ii+.5)*log(ii)+ii+(ii-1)*log(1+alpha*ii) - a*alpha*ii));

end;

call randgen(x,’TABLE’,q);

preds[j,1]=x;

end;

preds=((dat[,12]+j(n,1,1))//j(m-n,1,-9))||preds;

*print preds;

create pred from preds;

append from preds;

proc print data=pred (obs=100);

run;
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