
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Faculty Publications 

2018-09-01 

Fitting Parameter Uncertainties in Least Squares Fitting Fitting Parameter Uncertainties in Least Squares Fitting 

R. Steven Turley 
Brigham Young University, turley@byu.edu 

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub 

 Part of the Astrophysics and Astronomy Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Turley, R. Steven, "Fitting Parameter Uncertainties in Least Squares Fitting" (2018). Faculty Publications. 
2236. 
https://scholarsarchive.byu.edu/facpub/2236 

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been 
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more 
information, please contact ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F2236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/123?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F2236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/2236?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F2236&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu


Fitting Parameter Uncertainties
Version 1.0

R. Steven Turley

September 1, 2018

Contents

1 Introduction 1

2 Estimating Uncertainties 2

3 Numerical Examples 3
3.1 Linear Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Nonlinear Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 Introduction

This article derives the formulas for estimating parameter uncertainties in least square
fitting to data. It relies heavily on Bevington[1], the first edition of which served as my
introduction to the subject as an undergraduate. There is additional helpful background
on Wikipedia[2] and MathWorld[3]. I will use that same notation as in my article on
linear least squares fitting[4] which is an inter-related companion to this one.

The goal in least squares is to find the best fit to a function of the form f(x;~b) to
a set of data points (xi, yi). It is called ”least squares” because by ”best fit” I mean
the function which finds the set of p parameters bk which minimizes χ2, the sum of the
squares of the differences between f(xi;~b) and yi.

χ2 =
n∑

i=1

[f(xi;~b)− yi)]2 (1)

If the data is heteroscedactic (i.e. if the extent of the deviations of yi from f(xi,~b)
varies across the range of xi, the appropriate function to minimize is a weighted sum of
the squares. This can be written in terms of the weights wi or in terms of the relative
uncertainties at each data point σi.

χ2
∑
i

[wi(xi;~b)− yi)]2 (2)

1



Note that it defined wi differently here than in the linear least squares paper[4] to match
a convention in the Julia library code LsqFit.jl which I modified to use for these
studies.

2 Estimating Uncertainties

The estimated uncertainty in the measured data s can be calculated from χ2.

s =

√
χ2

n− p
(3)

=

√√√√ 1

n− p

n∑
i=1

[f(xi;~b)− yi)]2 (4)

If we expand f(y;~b) in a Taylor series about the mean value ȳ,

yi = f(xi;~b) (5)

≈ ȳ +
∑
k

(bk − b̄k)

(
∂f

∂bk

)
+ · · · (6)

yi − ȳ =
∑
k

(bk − b̄k)

(
∂f

∂bk

)
+ · · · (7)

Substituting Eq. 7 into Eq. 4 and keeping only the first order terms,

s2y =
1

n− p

n∑
i=1

(yi − ȳ)2 (8)

≈ 1

n− p

∑
i,k

(bk − b̄k)

(
∂f

∂f
∂bk

)2

. (9)

If we define Cij to be the elements of the covariance matrix with

Cij ≡
1

n− p
∑
i

(bi − b̄i)2, (10)

we note the the uncertainty in the fit parameter bi is si and

s2i = Cii. (11)

Thus the diagonal elements of the covariance matrix are the uncertainties we are seeking.
The off-diagonal elements show the statistical correlations between the fit parameters.
The Jacobian J of f is defined to be

J =

 ∂f(x1;~b)/∂b1 · · · ∂f(x1;~b)/∂bp
...

...
...

∂f(xn;~b)/∂b1 · · · ∂f(xn;~b)/∂bp

 . (12)

2



If we expand the quadratic in Eq. 9 and write the matrix C as

C =


c11 c12 · · · c1,p−1 c1,p
c21 c22 · · · c2,p−1 c2,p
...

...
...

...
...

cp−1,1 cp−1,2 · · · cp−1,p−1 cp−1,p

cp1 cp2 · · · cp,p−1 cp,p

 (13)

and represent the identity matrix as I, then we can write Eq. 9 as

syI = C(JTJ) (14)

C = sy(JTJ)−1 (15)

σi ≈
√
Cii. (16)

Note that if the f is linear in the parameters bk, then f does not have any derivatives of
higher order than 1. In this case, Eq. 7 is exact. However the computed uncertainties
in the fit parameters are still an estimate since sy only equals σy and si only equals σi
in the limit as n→∞.

3 Numerical Examples

I will consider two numerical examples which demonstrate how well this formula works.

3.1 Linear Fit

Consider the function
f(x; b1.b2) = b1 + b2x. (17)

In other words,

g1(x) = 1 (18)

g2(x) = x. (19)

The Jacobian J has the elements

Ji,1 = 1 (20)

Ji,2 = xi (21)

J =


1 x1
1 x2
...

...
1 xn−2

1 xn−1

 (22)

JTJ =

( ∑
xi

∑
x2i

N
∑
xi

)
(23)

3



Using the result from my linear least squares article[4] or polynomial fitting article[5],
the solution for the fit parameters is the solution to

Ab = y (24)

where

A =

(
N

∑
xi∑

xi
∑
x2i

)
(25)

y =

( ∑
yi∑
yixi

)
. (26)

To get good approximations, I’ll use an array with 1,000 points from 0 to 1 for x and
m = 1.5, b = 3.0. The random noise will have an amplitude of 0.2. Here is the Julia
code for the implementation.

The function lfit fits 1,000 points to the line described in the previous paragraph.
It returns the fit parameters in column 1 of the returned matrix and the estimated
uncertainties of the parameters in column 2.

us ing LinearAlgebra
us ing P r i n t f

f unc t i on l f i t ( )
npts = 10000
xpts = [ ( i −1.0)/( npts−1) f o r i =1: npts ]
m = 1 .5
b = 3 .0
ypts = b .+ m.∗ xpts .+ randn ( npts )∗0 . 2
A = Matrix{Union{Missing , Float64 }}( miss ing , 2 , 2)
y = Array{Union{Missing , Float64 }}( miss ing , 2)
A[ 1 , 1 ] = npts
A[ 1 , 2 ] = sum( xpts )
A[ 2 , 1 ] = A[ 1 , 2 ]
A[ 2 , 2 ] = sum( xpts .∗ xpts )
y [ 1 ] = sum( ypts )
y [ 2 ] = sum( ypts .∗ xpts )
b = A\y
J = hcat ( ones ( npts ) , xpts )
y f i t = b [ 1 ] .+ xpts .∗b [ 2 ]
r e s = ypts .− y f i t
sigmay = s q r t . ( sum( abs2 , r e s )/ ( npts −2))
cov = inv (J ’∗ J )
s igmai = sigmay .∗ s q r t . ( d iag ( cov ) )
[ b s igmai ]

end

4



The following code calls lfit 1,000 times to compute the fit parameters with successive
sets of random noise. With n measurements of x

σx =
√
〈x2〉 − 〈x〉2. (27)

The sums for the means of the fit parameters are accumulated in psum. The sums for
the means of the squares of the fit parameters are accumulated in sumsq.

# repeat 1000 t imes f o r averages
l e t

psum = ze ro s (2 , 2 )
sumsq = ze ro s (2 , 2 )
t r i a l s = 1000
f o r i =1: t r i a l s

f t = l f i t ( )
psum += f t
sumsq += f t .∗ f t

end
pbar = psum . / t r i a l s
pbarsq = sumsq . / t r i a l s
sigma = s q r t . ( pbarsq [ : , 1 ] .− pbar [ : , 1 ] . ˆ 2 )
@pr int f (” average i n t e r c e p t = %.3 f +/− %.4 f \n” ,

pbar [ 1 , 1 ] , pbar [ 1 , 2 ] )
@pr int f (” average s l ope = %.3 f +/− %.4 f \n” ,

pbar [ 2 , 1 ] , pbar [ 2 , 2 ] )
@pr int f (” computed unce r ta in ty in i n t e r c e p t : %.2e\n” ,

sigma [ 1 ] )
@pr int f (” computed unce r ta in ty in s l ope : %.2e\n” ,

sigma [ 2 ] )
end

This code produced the following output:

average i n t e r c e p t = 3.000 +/− 0 .0040
average s l ope = 1.500 +/− 0 .0069
computed unce r ta in ty in i n t e r c e p t : 3 .94 e−03
computed unce r ta in ty in s l ope : 6 .89 e−03

As you can see, the average of the fit parameters agreed very well with the model. The
variance in the fit parameters agreed well with the estimated variances using the formulas
in this article.

3.2 Nonlinear Fit

The second fit I tried was a fit to the nonlinear function

f(x) =
b1

b2 + cos(2πx/b3)
(28)

5



with b1 = 0.5, b2 = 1.35, and b3 = 0.3. I won’t go into the details of the fitting
since that’s implemented in the LsqFit module which is documented in the linear least
squares article[4]. The routine curve fit returns a structure with the degrees of freedom,
the Jacobian, and the mean square error which I will use to estimate the fit error.

Here is the nlfit function which did a single nonlinear fit. Because the function was
more difficult to fit and nonlinear fitting is an iterative process, this function took a lot
longer to run than in the linear case.

us ing LsqFit
us ing P r i n t f
us ing LinearAlgebra

func t i on n l f i t ( )
npts = 10000
f (x , p ) = p [ 1 ] . / ( p [ 2 ] .+ cos . ( 2∗ pi .∗ x . / p [ 3 ] ) )
xpts = [ ( i −1.0)/( npts−1) f o r i =1: npts ]
p0 = [ 0 . 5 , 1 . 3 5 , 0 . 3 ]
ypts = f ( xpts , p0)+randn ( npts ) /0 . 2
wt = ones ( npts )
c f = c u r v e f i t ( f , xpts , ypts , wt , p0 )
sigmay = s q r t . ( sum( abs2 , c f . r e s i d )/ ( c f . dof ) )
J = c f . j a cob ian
cov = inv (J ’∗ J )
s igmai = sigmay .∗ s q r t . ( d iag ( cov ) )
[ c f . param sigmai ]

end

This function was called in much the same way that lfit was called for linear fits. The
major difference is that we are fitting three parameters this time instead of two.

l e t
psum = ze ro s (3 , 2 )
sumsq = ze ro s (3 , 2 )
t r i a l s = 1000
f o r i =1: t r i a l s

f t = n l f i t ( )
psum += f t
sumsq += f t .∗ f t

end
pbar = psum . / t r i a l s
pbarsq = sumsq . / t r i a l s
sigma = s q r t . ( pbarsq [ : , 1 ] .− pbar [ : , 1 ] . ˆ 2 )
@pr int f (” average b1 = %.3 f +/− %.4 f \n” ,

pbar [ 1 , 1 ] , pbar [ 1 , 2 ] )
@pr int f (” average b2 = %.3 f +/− %.4 f \n” ,

pbar [ 2 , 1 ] , pbar [ 2 , 2 ] )

6



@print f (” average b3 = %.3 f +/− %.4 f \n” ,
pbar [ 3 , 1 ] , pbar [ 3 , 2 ] )

@pr int f (” computed unce r ta in ty in b1 : %.2e\n” ,
sigma [ 1 ] )

@pr int f (” computed unce r ta in ty in b2 : %.2e\n” ,
sigma [ 2 ] )
@pr int f (” computed unce r ta in ty in b3 : %.2e\n” ,

sigma [ 3 ] )
end

The computed uncertainties were not as close to the average uncertainties in this case
as they were with a linear fit using fewer parameters, but they are reasonable.

average b1 = 0.508 +/− 0 .1154
average b2 = 1.362 +/− 0 .1080
average b3 = 0.297 +/− 0 .0027
computed unce r ta in ty in b1 : 1 .24 e−01
computed unce r ta in ty in b2 : 1 .19 e−01
computed unce r ta in ty in b3 : 4 .20 e−02

References

[1] Philip R. Bevington, D. Keith Robinson, ”Data Reduction and Error Analysis for
the Physical Sciences,” Third Edition, McGraw Hill, 2003.

[2] Wikipedia, ”Monotonic least squares,” https://en.wikipedia.org/wiki/Linear_

least_squares (accessed 31 Aug 2018).

[3] Eric W. Weisstein, ”Least Squares Fitting,” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/LeastSquaresFitting.html (accessed
31 Aug 2018).

[4] R. Steven Turley, ”Linear Least Squares,” BYU, 2018.

[5] R. Steven Turley, ”Polynomial Fitting,” BYU, 2018.

7


	Fitting Parameter Uncertainties in Least Squares Fitting
	BYU ScholarsArchive Citation

	tmp.1535850319.pdf.8JUxs

