2018-08-23

Cubic Interpolation with Irregularly-Spaced Points in Julia 1.0

R. Steven Turley
Brigham Young University, turley@byu.edu

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

Part of the Physics Commons

BYU ScholarsArchive Citation
Turley, R. Steven, 'Cubic Interpolation with Irregularly-Spaced Points in Julia 1.0' (2018). All Faculty Publications. 2177. https://scholarsarchive.byu.edu/facpub/2177

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen amatangelo@byu.edu.
1. Introduction

This is the mathematics and some implementation details behind a derivation of 1d cubic piece-wise continuous interpolation with regularly and irregularly spaced points. I will explore two ways to compute this cubics: splines and Hermite polynomials. Both are continuous and have continuous derivatives at the knots. Splines also have continuous second derivatives.
2. Cubic Splines

I will use the article on splines for a regularly-spaced grid in MathWorld[1] as a basis for my derivations and generalizations.

Splines are piece-wise cubic polynomials which are continuous and have continuous first and second derivatives. In each interval it takes four coefficients to define a cubic polynomial. If there are \(n + 1 \) points, there are \(n \) intervals requiring \(4n \) coefficients for the splines. Let the knots on the spline (the data points that match exactly) be \((x_i, y_i)\). Let \(Y_i(x) \) be the cubic polynomial for the interval \(i \) where \(x_i \leq x \leq x_{i+1} \). Then the \(4n - 4 \) conditions for matching the points and having continuous first and second derivatives are for \(2 \leq n \leq n \)

\[
Y_{i-1}(x_i) = y_i \\
Y_i(x_i) = y_i \\
Y'_{i-1}(x_i) = Y'_i(x_i) \\
Y''_{i-1}(x_i) = Y''_i(x_i) .
\]

In addition to these equations, the spline also needs to match at the two endpoints.

\[
Y_1(x_1) = y_1 \\
Y_{n+1}(x_{n+1}) = y_{n+1}
\]

This gives a total of \(4n - 2 \) equations and \(4n \) unknowns. There are several ways to choose the last two conditions. I will use the specification that the second derivative be zero at the two endpoints.

\[
Y''_1(x_1) = 0 \\
Y''_{n+1}(x_{n+1}) = 0
\]

2.1. Regularly-Spaced Points

The spline equations can be solved with a particularly elegant form for the case of equally spaced knots. It is useful to put the origin of each cubic at the beginning of the interval and transform to a variable \(t \) which goes from 0 to 1 in each interval \(i \).

\[
x = x_i + \alpha t \quad \text{for} \quad x_i \leq x \leq x_{i+1} \\
\alpha = x_{i+1} - x_i \quad \forall i
\]

If the intervals are of equal length, the conditions of continuity of a derivative with respect to \(x \) is the same as a derivative with respect to \(t \). Equations 1 through 4 are then

\[
Y_{i-1}(1) = y_i \\
Y_i(0) = y_i \\
Y'_{i-1}(1) = Y'_i(0) \\
Y''_{i-1}(1) = Y''_i(0) .
\]
Let the four coefficients of the cubic for interval i be given by
\[Y_i(t) = a_i + b_i t + c_i t^2 + d_i t^3. \] (15)

Then these coefficients can be solved for in terms of the values y_i and the derivatives $D_i = Y_i'(0)$.

\[Y_i(0) = y_i = a_i \] (16)
\[Y_i(1) = y_{i+1} = a_i + b_i + c_i + d_i \] (17)
\[Y_i'(0) = D_i = b_i \] (18)
\[Y_i'(1) = D_{i+1} = b_i + 2c_i + 3d_i \] (19)

These equations can be solved for the cubic coefficients in terms of y_i and D_i.

\[a_i = y_i \] (20)
\[b_i = D_i \] (21)
\[c_i = 3(y_{i+1} - y_i) - 2D_i - D_{i+1} \] (22)
\[d_i = 2(y_i - y_{i+1}) + D_i + D_{i+1} \] (23)

Weisstein shows that these equations can be rewritten as the matrix equation
\[
\begin{pmatrix}
2 & 1 \\
1 & 4 & 1 \\
& 1 & 4 & 1 \\
& & 1 & 4 & 1 \\
& & & \ddots & \ddots & \ddots & \ddots \\
& & & & 1 & 4 & 1 \\
& & & & & 1 & 2 \\
\end{pmatrix}
\begin{pmatrix}
D_1 \\
D_2 \\
D_3 \\
D_4 \\
\vdots \\
D_n \\
D_{n+1} \\
\end{pmatrix}
=
\begin{pmatrix}
3(y_2 - y_1) \\
3(y_3 - y_2) \\
3(y_4 - y_3) \\
\vdots \\
3(y_n - y_{n-2}) \\
3(y_{n+1} - y_{n-1}) \\
3(y_{n+1} - y_n) \\
\end{pmatrix}.
\] (24)

My derivation of this is in Appendix A. Equation 24 can be solved with an efficient symmetric tridiagonal solver in Julia for the unknown values D_i. Once those are known, Equations 20 through 23 can be used to solve for a_i, b_i, c_i, and d_i.

2.2. Irregularly-Spaced Points

If the points x_i are not regularly spaced, α in Equations 9 and 10 needs to be replaced with $\alpha = x_{i+1} - x_i$ which will vary in each interval. It also becomes more sensible to define Y_i as a function of x instead of a function of t.

\[Y_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3. \] (25)

Letting D_i be a derivative of x instead of t,

\[Y_i(x_i) = y_i = a_i \] (26)
\[Y_i(x_{i+1}) = y_{i+1} = a_i + b_i \alpha_i + c_i \alpha_i^2 + d_i \alpha_i^3 \] (27)
\[Y_i'(x_i) = D_i = b_i \] (28)
\[Y_i'(x_{i+1}) = D_{i+1} = b_i + 2c_i \alpha_i + 3d_i \alpha_i^2 \] (29)
These can be solved for a_i, b_i, c_i and d_i as before.

$$a_i = y_i$$ \hspace{1cm} (30)

$$b_i = D_i$$ \hspace{1cm} (31)

$$c_i = \frac{3y_{i+1} - y_i}{\alpha_i^2} - 2\frac{D_i}{\alpha_i} - \frac{D_{i+1}}{\alpha_i^2}$$ \hspace{1cm} (32)

$$d_i = \frac{2y_i - y_{i+1}}{\alpha_i^3} + \frac{D_i}{\alpha_i^2} + \frac{D_{i+1}}{\alpha_i^2}$$ \hspace{1cm} (33)

With the change of variables, the first and second derivative equations with respect to x are the same as the conditions on the derivatives with respect to t. Appendix B derives the following matrix equation as a solution for D_i in terms of y_i and α_i.

$$\begin{pmatrix}
2\alpha_1^{-1} & \frac{\alpha_1^{-1}}{\alpha_1} & \frac{\alpha_1^{-1}}{2(\alpha_1^{-1} + \alpha_2^{-1})} & \alpha_2^{-1} & \alpha_3^{-1} \\
\alpha_1^{-1} & 2(\alpha_1^{-1} + \alpha_2^{-1}) & \alpha_2^{-1} & \alpha_3^{-1} & \ldots \\
\vdots & \vdots & \ddots & \ddots & \ldots \\
\alpha_{n-1}^{-1} & \frac{\alpha_{n-1}^{-1}}{\alpha_{n-1}} & \frac{\alpha_{n-1}^{-1}}{2(\alpha_{n-1}^{-1} + \alpha_n^{-1})} & \ldots & \alpha_n^{-1} \\
\frac{3(y_2 - y_1)\alpha_1^{-2}}{\alpha_1} & \frac{3[y_3\alpha_1^{-2} + y_2(\alpha_1^{-2} - \alpha_2^{-2}) - y_1\alpha_1^{-2}]}{\alpha_1} & \ldots & \frac{3[y_n\alpha_1^{-2} + y_{n-1}(\alpha_1^{-2} - \alpha_n^{-2}) - y_{n-1}\alpha_1^{-2}]}{\alpha_1} & \frac{3(y_n+1\alpha_n^{-2} + y_n(\alpha_{n-1}^{-2} - \alpha_n^{-2}) - y_{n-1}\alpha_n^{-2})}{\alpha_1} & \frac{3(y_n+1 - y_n)\alpha_n^{-2}}{\alpha_1}
\end{pmatrix}
$$

$$= \begin{pmatrix}
D_1 \\
D_2 \\
D_3 \\
\vdots \\
D_n \\
D_{n+1}
\end{pmatrix}$$ \hspace{1cm} (34)

$$\begin{pmatrix}
3(y_2 - y_1)\alpha_1^{-2} \\
3[y_3\alpha_1^{-2} + y_2(\alpha_1^{-2} - \alpha_2^{-2}) - y_1\alpha_1^{-2}] \\
3[y_4\alpha_2^{-2} + y_3(\alpha_2^{-2} - \alpha_3^{-2}) - y_2\alpha_2^{-2}] \\
\vdots \\
3[y_{n+1}\alpha_n^{-2} + y_n(\alpha_{n-1}^{-2} - \alpha_n^{-2}) - y_{n-1}\alpha_n^{-2}] \\
3(y_{n+1} - y_n)\alpha_n^{-2}
\end{pmatrix}$$ \hspace{1cm} (35)

2.3. Cubic Spline Results

2.3.1. Checking Validity

Figure 1 is my interpolation of a spline curve for regularly spaced points using my spline routine. Figure 2 is the same calculation using irregularly spaced points. Doing the same calculation in Matlab gives similar results. Figure 3 is the same calculation done in Matlab with irregularly spaced points. I also did a range of unit tests on the routine checking for satisfying the spline equations and for continuity of the function and its first two derivatives at the knots. All units tests were passed successfully.

2.3.2. Extra Oscillations

If there are jumps in the data making the curve look discontinuous, a spline can oscillate near the gap. Consider the data in Figure 4 as an example. In this case, a piece-wise hermite polynomial may be a better way to go. Matlab recommends the pchip function[2, 3] based on hermite polynomials to address this issue. The spline interpolation in Matlab is identical to the Julia one. Figure 5 is what the pchip routine produces.
Figure 1: Spline interpolation with regularly spaced points for \(\sin(x) \), \(x = 0, \pi \). The large circles are the data, the dotted line the exact curve and the orange line the spline curve.

3. Piece-wise Hermite Polynomials

I will follow Fritsch’s notation[2]

\[
f(x) = y_i H_1(x) + y_{i+1} H_2(x) + d_i H_3(x) + d_{i+1} H_4(x) \tag{36}
\]

\[
y_i = f(x_i) \tag{37}
\]

\[
d_i = f'(x_i) \tag{38}
\]

\[
h_i = x_{i+1} - x_i \tag{39}
\]

\[
H_1(x) = \phi \left(\frac{x_{i+1} - x}{h_i} \right) \tag{40}
\]

\[
H_2(x) = \phi \left(\frac{x - x_i}{h_i} \right) \tag{41}
\]

\[
H_3(x) = -h_i \psi \left(\frac{x_{i+1} - x}{h_i} \right) \tag{42}
\]

\[
H_4(x) = h_i \psi \left(\frac{x - x_i}{h_i} \right) \tag{43}
\]

\[
\phi(t) = 3t^2 - 2t^3 \tag{44}
\]

\[
\psi(t) = t^3 - t^2 \tag{45}
\]
Figure 2: Spline interpolation with irregularly spaced points for $\sin(x), x = 0, \pi$. The large circles are the data, the dotted line the exact curve and the orange line the spline curve.

Figure 3: Spline interpolation using Matlab spline routine with irregularly spaced points. Compare to Figure 2.
Figure 4: Cubic spline interpolation for data with a sudden bump.

Figure 5: Hermite polynomial interpolation for data with a sudden bump using pchip in MATLAB.
If speed is important, the above nested formulas can undoubtedly be simplified to make
the code more efficient.

The prescription in Fritsch[2] for producing cubic hermite interpolants requires the
derivatives at the knots. It is not clear from the documentation which choice the current
version of MATLAB makes in the pchip routine. However, I found looked through the
MATLAB source code to see how this choice was made.

3.1. Derivatives

The formulas in the previous section require the computation of numerical derivatives
at each knot.

3.1.1. Equally-Spaced Points

With equally-spaced knots, this is probably best done using the straightforward "three
point formula."

\[y_i' \approx \frac{y_{i+1} - y_{i-1}}{2h} \]

(46)

where \(h = y_2 - y_1 = y_3 - y_2 \). This formula is accurate to second order in \(h \) as can be
seen from a Taylor series expansion of \(f(x) \) about the point \(x_i \).

\[f(x) = f(x_i) + f'(x_i)(x - x_i) + \frac{1}{2} f''(x_i)(x - x_i)^2 + \frac{1}{6} f'''(x_i)(x - x_i)^3 \]

(47)

Substituting Equation 47 into Equation 46 with \(y_{i+1} = f(x_i + h), y_{i-1} = f(x_i - h) \) and
\(h = x_i - x_{i-1} = x_{i+1} - x_i \) yields

\[y_i' = f'(x_i) = f'(x_i) + \frac{1}{6} f'''(x_i)h^2. \]

(48)

3.1.2. Unequally-Spaced Points

If the points are not equally spaced, a somewhat less accurate formula can be found
from the average of the forward and backward difference formulas.

\[f'(x_i) \approx \frac{f_f'(x_i) + f_b'(x_i)}{2} \]

(49)

\[= \frac{y_i - y_{i-1}}{2h_b} + \frac{y_{i+1} - y_i}{2h_f} \]

(50)

\[= \frac{y_{i+1}}{2h_f} + y_i \left(\frac{1}{2h_b} - \frac{1}{2h_f} \right) - \frac{y_{i-1}}{2h_b} \]

(51)

\[= \frac{y_{i+1}}{2h_f} + y_i \left(\frac{h_f - h_b}{2h_f h_b} \right) - \frac{y_{i-1}}{2h_b} \]

(52)
where \(h_f = y_{i+1} - y_i \) and \(h_b = y_i - y_{i-1} \). Substituting the Equation 47 for the terms in Equation 51 shows the error in this formula.

\[
\frac{f(x_{i+1})}{2h_f} = \frac{f(x_i)}{2h_f} + \frac{f'(x_i)}{2} + \frac{1}{4}h_ff''(x_i) + \cdots \tag{53}
\]

\[
\frac{f(x_{i-1})}{2h_b} = \frac{f(x_i)}{2h_b} - \frac{f'(x_i)}{2} + \frac{1}{4}h_bf''(x_i) + \cdots \tag{54}
\]

\[
\frac{f(x_{i+1})}{2h_f} + f(x_i) \left[\frac{1}{2h_b} - \frac{1}{2h_f} \right] - \frac{f(x_{i-1})}{2h_b} = f'(x_i) + \frac{1}{4}f''(x_i)(h_f - h_b) + \cdots \tag{55}
\]

Thus, the error in this case is linear in \(h \) and proportional to \(f''(x_i) \) instead of \(f'''(x_i) \) as is the case for equally spaced points.

Another way to find a derivative is to find the quadratic polynomial which goes through the three points and take the derivative of that. Let

\[
f(x) = a + b(x - x_i) + c(x - x_i)^2. \tag{56}
\]

At the point \(f(x_{i-1}) = y_{i-1} \)

\[
y_{i-1} = a - bh_b + ch_b^2. \tag{57}
\]

At the point \(f(x_i) = y_i \)

\[
y_i = a. \tag{58}
\]

At the point \(f(x_{i+1}) = y_{i+1} \)

\[
y_{i+1} = a + bh_f + ch_f^2. \tag{59}
\]

Substituting Equation 58 into Equation 57 and Equation 58, solving the remaining equations for \(c \) and then equating them to solve for \(b \) yields

\[
b = f'(x_i) = \frac{(y_i - y_{i-1})h_f}{h_b(h_f + h_b)} + \frac{(y_{i+1} - y_i)h_b}{h_f(h_f + h_b)}. \tag{60}
\]

Figure 6 compares the cubic Hermite interpolations using Equation 52 and Equation 60 to the cubic spline interpolation. Note that both choices of slopes still result in overshooting on the interpolation curve, but not as severe as with the spline. The slope computed using Equation 52 has less overshoot than the one computed using Equation 60.

3.2. Piece-wise Monotonic Curves

Fritsch[2, 4] describe a way to make the piece-wise cubic curve locally monotonic. This should be the same as the pchip method illustrated in Figure 5.

The first step is to compute the linear slopes between the data points.

\[
\Delta_i = \frac{y_{i+1} - y_i}{h_i} \tag{61}
\]

\[
h_i = x_{i+1} - x_i \tag{62}
\]
Figure 6: Comparison of spline and hermite polynomial interpolations for data with a discontinuity. The circles are the original data points. The curve labeled “mean” uses Equation 52 for the derivatives in the hermite interpolation. The curve labeled “quad” uses Equation 60 for the slopes.

The slopes at the data points are initially chosen to be the average of the linear slopes (as in Equation 49).

\[d_i = \frac{\Delta_{i-1} + \Delta_i}{2} \quad \text{for } i = 2, \ldots, n-1 \]
\[d_1 = \Delta_1 \]
\[d_n = \Delta_n \]

If \(\Delta_i \) and \(\Delta_{i-1} \) have opposite signs, then \(d_i = 0 \). For \(i = 1, \ldots, n-1 \), if \(\Delta_i = 0 \)

\[d_i = d_{i+1} = 0 \]

In this case, the following steps are ignored. The next step is to define the variables

\[\alpha_i = \frac{d_i}{\Delta_i} \]
\[\beta_i = \frac{d_{i+1}}{\Delta_i} \]
The vector \((\alpha_i, \beta_i)\) must have a radius less than 3. Therefore, if \(\alpha_i^2 + \beta_i^2 > 9\),

\[
\tau_i = \frac{3}{\sqrt{\alpha_i^2 + \beta_i^2}}
\]

\[
d_i = \tau_i \alpha_i \Delta_i
\]

\[
d_{i+1} = \tau_i \beta_i \Delta_i
\]

Figure 7 is the interpolation using this algorithm for the slopes.

A. Spline Solution for Regularly-Spaced Points

The goal is to solve Equations 16 through 19 by eliminating the cubic coefficients and only having equations in terms of the \(y_i\) and \(D_i\) variables. We first need to add two more equations.

\[
Y_i''(0) = 2c_i
\]

\[
Y_i''(1) = Y_{i+1}''(0) = 2c_i + 6d_i
\]

\[
c_{i+1} = c_i + 3d_i.
\]
Substituting in the values for c_i from Equation 22 and d_i from Equation 23, Equation 74 becomes

$$3(y_{i+2} - y_{i+1}) - 2D_{i+1} - D_{i+2} = 3(y_{i+1} - y_i) - 2D_i - D_{i+1}$$

$$+ 3[2(y_i - y_{i+1}) + D_i + D_{i+1}].$$

(75)

Grouping the y variables on one side of the equation and the D variables on the other,

$$3(y_{i+2} - y_i) = D_{i+2} + 4D_i + 1 + D_i.$$

(76)

This accounts for the middle rows of Equation 24. The top and bottom rows come from the initial and final conditions in Equations 7 and 8. Combining Equations 7, 72, and 22,

$$2c_1 = 0$$

(77)

$$3(y_2 - y_1) = 2D_1 + D_2,$$

(78)

which is the first row of Equation 24. Combining Equations 8, 73, 22, and 23,

$$2c_n + 6d_n = 0$$

(79)

$$3(y_{n+1} - y_n) - 2D_n - D_{n+1} + 3[2(y_n - y_{n+1}) + D_n + D_{n+1}] = 0$$

(80)

$$3(y_n - y_{n+1}) = D_n + 2D_{n+1},$$

(81)

which is the bottom row of Equation 24.

B. Spline Solution for Irregularly-Spaced Points

The goal is to solve Equations 16 through 19 by eliminating the cubic coefficients and only having equations in terms of the y_i, D_i, and α_i variables. We first need to add two more equations.

$$Y''(x_i) = 2c_i$$

(82)

$$Y''(x_{i+1}) = Y''(x_{i+1}) = 2c_i + 6d_i \alpha_i$$

(83)

$$c_{i+1} = c_i + 3d_i \alpha_i.$$

(84)

Substituting in the values for c_i from Equation 32 and d_i from Equation 33, Equation 84 becomes

$$3\left(\frac{y_{i+2} - y_{i+1}}{\alpha_i^2} - \frac{D_{i+1}}{\alpha_i} - \frac{D_{i+2}}{\alpha_{i+1}}\right) =$$

$$3\left(\frac{y_{i+1} - y_i}{\alpha_i^2} - \frac{D_i}{\alpha_i} - \frac{D_{i+1}}{\alpha_{i+1}} + 3\left[\frac{2y_i - y_{i+1}}{\alpha_i^2} + \frac{D_i}{\alpha_i} + \frac{D_{i+1}}{\alpha_{i+1}}\right]\right).$$

(85)

Grouping the y variables on one side of the equation and the D variables on the other,

$$3\left[\frac{y_{i+2}}{\alpha_i^2} + y_{i+1}\left(\frac{1}{\alpha_i^2} - \frac{1}{\alpha_{i+1}^2}\right) - \frac{y_i}{\alpha_i^2}\right] = \frac{D_{i+2}}{\alpha_{i+1}} + 2D_{i+1}\left(\frac{1}{\alpha_i} + \frac{1}{\alpha_{i+1}}\right) + \frac{D_i}{\alpha_i}.$$

(86)
This accounts for the middle rows of Equation 35. The top and bottom rows come from the initial and final conditions in Equations 7 and 8. Combining Equations 7, 82, and 32,

\[
2c_1 = 0
\]
\[
3\left(\frac{y_2 - y_1}{\alpha_1^2}\right) = 2\frac{D_1}{\alpha_1} + \frac{D_2}{\alpha_1},
\]

which is the first row of Equation 35. Combining Equations 8, 83, 32, and 33,

\[
2c_n + 6d_n\alpha_n = 0
\]
\[
3\frac{y_{n+1} - y_n}{\alpha_n^2} - 2\frac{D_n}{\alpha_n} - \frac{D_{n+1}}{\alpha_n} + 3\left[2\frac{y_n - y_{n+1}}{\alpha_n^2} + \frac{D_n}{\alpha_n} + \frac{D_{n+1}}{\alpha_n}\right] = 0
\]
\[
3\frac{y_n - y_{n+1}}{\alpha_n^2} = \frac{D_n}{\alpha_n} + 2\frac{D_{n+1}}{\alpha_n},
\]

which is the bottom row of Equation 24.

C. Julia Code

Here is the Julia 1.0 code I used to do the calculations in this article. This version has turned off the flags for unit testing and graphics allow use of the Interp module as a standalone class. The various units tests and graphical tests illustrate how it can be used.

```julia
module Interp
  # Code for interpolation for various orders
  using LinearAlgebra
  using Test
  import Base.length

  export CubicSpline, interp, slope, slope2, pchip, pchip2, pchip3

  unitTests = false
  graphicsTests = false
  bumpTests = false
  # using PyPlot # needed if graphicsTests is true

  """
  CubicSpline(x,a,b,c,d)
  """
  struct CubicSpline
    x, a, b, c, d
  end

  concrete type for holding the data needed
to do a cubic spline interpolation

  struct CubicSpline
    x, a, b, c, d
  end
```

13
```plaintext
x::Union{Array{Float64,1},
           StepRangeLen{Float64,
                        Base.TwicePrecision{Float64},
                        Base.TwicePrecision{Float64}}}]

a::Array{Float64,1}
b::Array{Float64,1}
c::Array{Float64,1}
d::Array{Float64,1}

end

""
PSCHIP(x,a,b,c,d)
""

concrete type for holding the data needed
to do a piecewise continuous hermite interpolation
""
struct PCHIP
  x::Union{Array{Float64,1},
            StepRangeLen{Float64,
                         Base.TwicePrecision{Float64},
                         Base.TwicePrecision{Float64}}}]
  y::Array{Float64,1}
  d::Array{Float64,1}
  h::Array{Float64,1}
end

""
CubicSpline(x,y)
""

Creates the CubicSpline structure needed for cubic spline interpolation

# Arguments
- 'x': an array of x values at which the function is known
- 'y': an array of y values corresponding to these x values

function CubicSpline(x::Array{Float64,1}, y::Array{Float64,1})
  len = size(x,1)
  if len<3
    error("CubicSpline requires at least three points for interpolation")
  end
  # Pre-allocate and fill columns and diagonals
  yy = zeros(len)
  dl = zeros(len-1)
```

\[du = \text{zeros}(\text{len}-1) \]
\[dd = \text{zeros}(\text{len}) \]
\[\alpha = x[2:\text{len}], -x[1:\text{len}-1] \]
\[yy[1] = 3*(y[2]-y[1])/\alpha[1]^2 \]
\[du[1] = 1/\alpha[1] \]
\[dd[1] = 2/\alpha[1] \]
\[\text{for } i=2:\text{len}-1 \]
\[yy[i] = 3*(y[i+1]/\alpha[i])^2 + y[i]*(\alpha[i-1]^2 - \alpha[i]^2) - y[i-1]/\alpha[i-1]^2 \]
\[dl[i-1] = 1/\alpha[i-1] \]
\[du[i] = 1/\alpha[i] \]
\[dd[i] = 2*(1/\alpha[i-1]+1/\alpha[i]) \]
\[\text{end} \]
\[yy[\text{len}] = 3*(y[\text{len}]-y[\text{len}-1])/\alpha[\text{len}-1]^2 \]
\[dl[\text{len}-1] = 1/\alpha[\text{len}-1] \]
\[dd[\text{len}] = 2/\alpha[\text{len}-1] \]
\[\text{# Solve the tridiagonal system for the derivatives } D \]
\[D = \text{dm} \backslash yy \]
\[\text{# fill the arrays of spline coefficients} \]
\[a = y[1:\text{len}-1] \quad \text{silly but makes the code more transparent} \]
\[b = D[1:\text{len}-1] \quad \text{ditto} \]
\[c = 3 \cdot (y[2:\text{len}]-y[1:\text{len}-1])/\alpha[1:\text{len}-1]^2 \cdot (2 \cdot D[1:\text{len}-1]/\alpha[1:\text{len}-1] - D[2:\text{len}]/\alpha[1:\text{len}-1]) \]
\[d = 2 \cdot (y[1:\text{len}-1]-y[2:\text{len}])/\alpha[1:\text{len}-1]^3 \cdot (D[1:\text{len}-1]/\alpha[1:\text{len}-1]^2 + D[2:\text{len}]/\alpha[1:\text{len}-1]^2) \]
\[\text{CubicSpline}(x,a,b,c,d) \]

function CubicSpline(x::StepRangeLen{Float64, Base.TwicePrecision{Float64}}, Base.TwicePrecision{Float64}), y::Array{Float64,1})

\[\text{len} = \text{length}(x) \]
\[\text{if } \text{len}<3 \]
\[\text{error("CubicSpline requires at least three points for interpolation")}) \]
\[\text{end} \]
\[\text{# Pre-allocate and fill columns and diagonals} \]
\[yy = \text{zeros}(\text{len}) \]
\[dl = \text{ones}(\text{len}-1) \]
\[dd = 4.0 \cdot \text{ones}(\text{len}) \]
\[dd[1] = 2.0 \]
\[dd[\text{len}] = 2.0 \]
yy[1] = 3*(y[2]-y[1])
for i=2:len-1
 yy[i] = 3*(y[i+1] - y[i-1])
end
yy[len] = 3*(y[len]-y[len-1])

Solve the tridiagonal system for the derivatives D
Dm = Tridiagonal(dl,dd,dl)
D = Dm\yy

fill the arrays of spline coefficients
a = y[1:len-1] # silly but makes the code more transparent
b = D[1:len-1] # ditto
CubicSpline(x,a,b,c,d)
end

""
pchip(x,y)

Creates the PCHIP structure needed for piecewise continuous cubic spline interpolation

Arguments
- 'x': an array of x values at which the function is known
- 'y': an array of y values corresponding to these x values
""

function pchip(x::Array{Float64,1}, y::Array{Float64,1})
 len = size(x,1)
 if len<3
 error("PCHIP requires at least three points for interpolation")
 end
 h = x[2:len],-x[1:len-1]
 # Pre-allocate and fill columns and diagonals
d = zeros(len)
d[1] = (y[2]-y[1])/h[1]
for i=2:len-1
 d[i] = (y[i+1]/h[i]+y[i]*(1/h[i]-1/h[i-1])-y[i-1]/h[i-1])/2
end
d[len] = (y[len]-y[len-1])/h[len-1]
PCHIP(x,y,d,h)
end

function pchip2(x::Array{Float64,1}, y::Array{Float64,1})
 len = size(x,1)
end
if len<3
 error("PCHIP requires at least three points for interpolation")
end
h = x[2:len]−x[1:len−1]
Pre-allocate and fill columns and diagonals
d = zeros(len)
for i=2:len−1
 d[i] = (y[i]−y[i−1])/h[i]/(h[i−1]*(h[i−1]+h[i])) +
 (y[i+1]−y[i])/h[i]/(h[i]*(h[i−1]+h[i]))
end
d[len] = (y[len]−y[len−1])/h[len−1]
PCHIP(x,y,d,h)
end

function pchip3(x::Array{Float64, 1}, y::Array{Float64, 1})
 len = size(x,1)
 if len<3
 error("PCHIP requires at least three points for interpolation")
 end
 h = x[2:len]−x[1:len−1]
del = (y[2:len]−y[1:len−1])./h
 # Pre-allocate and fill columns and diagonals
d = zeros(len)
d[1] = del[1]
 for i=2:len−1
 if del[i]*del[i−1] < 0
 d[i] = 0
 else
 d[i] = (del[i]+del[i−1])/2
 end
 end
d[len] = del[len−1]
 for i=1:len−1
 if del[i] == 0
 d[i] = 0
 d[i+1] = 0
 else
 alpha = d[i]/del[i]
beta = d[i+1]/del[i]
 if alpha^2+beta^2 > 9
 tau = 3/sqrt(alpha^2+beta^2)
d[i] = tau*alpha*del[i]
d[i+1] = tau*beta*del[i]
 end
 end
end
PCHIP(x, y, d, h)

```
# Interpolate to the value corresponding to v

# Examples
x = cumsum(rand(10))
y = cos(x);
cs = CubicSpline(x, y)
v = interp(cs, 1.2)
```

```ruby
function interp(cs::CubicSpline, v::Float64)
    segment = region(cs.x, v)
    if typeof(cs.x)==Array{Float64,1}
        # irreguarly spaced points
        t = v-cs.x[segment]
    else
        # regularly spaced points
        t = (v-cs.x[segment])/(cs.x[segment+1]-cs.x[segment])
    end
    cs.a[segment] + t*(cs.b[segment] + t*(cs.c[segment] + t*cs.d[segment]))
end
```

```ruby
function interp(pc::PCHIP, v::Float64)
    i = region(pc.x, v)
    phi(t) = 3*t^2 - 2*t^3
    psi(t) = t^3 - t^2
    H1(x) = phi((pc.x[i+1]-v)/pc.h[i])
end
```
\[
H_2(x) = \phi\left((v-pc.x[i])/pc.h[i]\right)
\]
\[
H_3(x) = -pc.h[i] \ast \psi\left((pc.x[i+1]-v)/pc.h[i]\right)
\]
\[
H_4(x) = pc.h[i] \ast \psi\left((v-pc.x[i])/pc.h[i]\right)
\]
\[
\text{end}
\]

\[
\text{slope}(cs::\text{CubicSpline}, v::\text{Float})
\]

Derivative at the point corresponding to \(v\)

Examples
```
x = cumsum(rand(10))
y = cos.(x);
cs = CubicSpline(x,y)
v = slope(cs, 1.2)
```

```f
function slope(cs::CubicSpline, v::Float64)
    # Find v in the array of x’s
    if (v<cs.x[1]) | (v>cs.x[length(cs.x)])
        error("Extrapolation not allowed")
    end
    segment = region(cs.x, v)
    if typeof(cs.x)==Array
        # irregularly spaced points
        t = v-cs.x[segment]
    else
        # regularly spaced points
        t = (v-cs.x[segment])/(cs.x[segment+1]-cs.x[segment])
    end
    cs.b[segment] + t*(2*cs.c[segment] + t*3*cs.d[segment])
end
```

```
slope(pc::PCHIP, v::Float)
```

Derivative at the point corresponding to \(v\)

Examples
```
x = cumsum(rand(10))
```
\[y = \cos(x); \]
\[pc = \text{pchip}(x,y) \]
\[v = \text{slope}(pc, 1.2) \]

```python
function slope(pc::PCHIP, v::Float64)
    # Find v in the array of x's
    if (v<pc.x[1]) | (v>pc.x[length(pc.x)])
        error("Extrapolation not allowed")
    end
    i = region(pc.x, v)
    phip(t) = 6*t - 6*t^2
    psip(t) = 3*t^2 - 2*t
    H1p(x) = -phip((pc.x[i+1]-v)/pc.h[i])/pc.h[i]
    H2p(x) = phip((v-pc.x[i])/pc.h[i])/pc.h[i]
    H3p(x) = psip((pc.x[i+1]-v)/pc.h[i])
    H4p(x) = psip((v-pc.x[i])/pc.h[i])
    pc.y[i]*H1p(v) + pc.y[i+1]*H2p(v) + pc.d[i]*H3p(v) + pc.d[i+1]*H4p(v)
end
```

```python
function slope2(cs::CubicSpline, v::Float)
    # Second derivative at the point corresponding to v
    # Examples
    x = cumsum(rand(10))
    y = cos.(x);
    cs = CubicSpline(x,y)
    v = slope2(cs, 1.2)
end
```

```python
function slope2(cs::CubicSpline, v::Float64)
    # Find v in the array of x's
    if (v<cs.x[1]) | (v>cs.x[length(cs.x)])
        error("Extrapolation not allowed")
    end
    segment = region(cs.x, v)
    if typeof(cs.x)==Array{Float64,1}
        # irregularly spaced points
        t = v-cs.x[segment]
    else
        # regular spacing
        t = (v-cs.x[segment])/cs.h[segment]
    end
    h = cs.h[segment]
    # Compute second derivative
    # ...
regularly spaced points
\[
t = \frac{v - cs.x[\text{segment}]}{(cs.x[\text{segment} + 1] - cs.x[\text{segment}])}
\]
end
\[
2 * cs.c[\text{segment}] + 6 * t * cs.d[\text{segment}]
\]
end

function region(x::Array{Float64,1}, v::Float64)
    # Binary search
    len = size(x, 1)
    li = 1
    ui = len
    mi = div(li+ui, 2)
    done = false
    while !done
        if v < x[mi]
            ui = mi
            mi = div(li+ui, 2)
        elseif v > x[mi+1]
            li = mi
            mi = div(li+ui, 2)
        else
            done = true
        end
        if mi == li
            done = true
        end
    end
    mi
end

function region(x::StepRangeLen{Float64, Base.TwicePrecision{Float64}},
                 Base.TwicePrecision{Float64}, y::Float64)
    min(trunc(Int, (y - first(x))/step(x)), length(x)-2) + 1
end

function regular_tests()
    @testset "regular interpolation" begin
        # Test not enough points exception
        x = range(1.0, stop=2.0, length=2)
        y = [2.0, 4.0]
        @test_throwsErrorException CubicSpline(x,y)
        x = range(1.0, stop=3.25, length=4)
        y = [1.5, 3.0, 3.7, 2.5]
        cs = CubicSpline(x,y)
    end
end
@test throws ErrorException interp(cs, 0.0)
@test throws ErrorException interp(cs, 4.0)

# Check region
@test region(x, 1.0) == 1
@test region(x, 1.2) == 1
@test region(x, 3.25) == 3
@test region(x, 2.0) == 2
@test region(x, 2.8) == 3

# Check spline at knots
@test interp(cs, 1.0) == 1.5
@test interp(cs, 1.75) == 3.0
@test isapprox(interp(cs, 3.25), 2.5, atol=1e-14)

# Check spline with unit spacing of knots
x = range(0.0, stop=4.0, length=5)
y = sin.(x)

function irregular_tests()
x = range(0.0, stop=4.0, length=5)
y = sin.(x)

for i = 1:4
    @test cs.a[i] == y[i]
    @test isapprox(cs.a[i] + cs.b[i] + cs.c[i] +
                   cs.d[i], y[i+1], atol=1e-12)
    @test isapprox(cs.b[i], dy[i], atol=0.08)
    @test isapprox(cs.b[i] + 2*cs.c[i] + 3*cs.d[i],
                   dy[i+1], atol=0.25)
end
end
```plaintext
@test_throws ErrorException interp(csi, 6.0)

Check region
@test region(x, 0.3) == 1
@test region(x, 0.2) == 1
@test region(x, 5.7) == 3
@test region(x, 2.1) == 2
@test region(x, 4.0) == 3

Check spline at knots
@test interp(csi, 0.2) == 1.5
@test interp(csi, 1.4) == 3.0
@test isapprox(interp(csi, 5.7), 2.5, atol=1e-14)

Check spline with unit spacing of knots
x = [0.0, 1.0, 2.0, 3.0, 4.0]
y = sin.(x)
csi = CubicSpline(x,y)
for i = 1:4
 @test csi.a[i] == cs.a[i]
 @test csi.b[i] == cs.b[i]
 @test csi.c[i] == cs.c[i]
 @test csi.d[i] == cs.d[i]
 @test csi.a[i] == y[i]
 @test isapprox(csi.a[i] + csi.b[i] + csi.c[i] + csi.d[i], y[i+1], atol=1.e-12)
end

Check meeting knot conditions
for i = 1:3
 di = csi.b[i+1]
 dip = csi.b[i] + 2*csi.c[i] + 3*csi.d[i]
 @test isapprox(di, dip, atol=1.e-12)
end

for i = 1:3
 ddi = 2*csi.c[i+1]
 ddip = 2*csi.c[i]+6*csi.d[i]
 @test isapprox(ddi, ddip, atol=1.e-12)
end

Second derivatives at end points
@test isapprox(csi.c[1], 0.0, atol = 1.e-12)
@test isapprox(2*csi.c[4]+6*csi.d[4], 0.0, atol = 1.e-12)

Test matching boundary conditions with unequally spaced knots
x = [0.0, 0.7, 2.3, 3.0, 4.1]
y = sin.(x)
csi = CubicSpline(x,y)
for i = 1:4
 @test csi.a[i] == y[i]
end
```
\[
\alpha = x[i+1] - x[i]
\]
\[
y_{\text{end}} = csi.a[i] + csi.b[i]*\alpha + csi.c[i]*\alpha^2 + csi.d[i]*\alpha^3
\]

# @test isapprox(yend, y[i+1], atol=1.0e-12)

eend

# Check for continuity near knot 2

eps = 0.0001
vl = x[2] - eps
vg = x[2] + eps
yl = interp(csi, vl)
yg = interp(csi, vg)
@test abs(yl-yg) < 2*eps
s1 = slope(csi, vl)
sg = slope(csi, vg)
@test abs(s1-sg) < 2*eps
s12 = slope2(csi, vl)
sg2 = slope2(csi, vg)
@test abs(s12-sg2) < 2*eps

# Check meeting knot conditions
for i = 1:3
    alpha = x[i+1] - x[i]
dip = csi.b[i+1]
di = csi.b[i]+2*csi.c[i]*\alpha+3*csi.d[i]*\alpha^2
    @test isapprox(di, dip, atol=1.0e-12)
eend

for i = 1:3
    alpha = x[i+1] - x[i]
    ddi = 2*csi.c[i+1]
ddip = 2*csi.c[i]+6*csi.d[i]*\alpha
    @test isapprox(ddi, ddip, atol=1.0e-12)
eend

# Second derivatives at end points
@test isapprox(csi.c[1], 0.0, atol = 1.0e-12)
@test isapprox(2*csi.c[4]+6*csi.d[4]*\alpha, 0.0, atol = 1.0e-12)
eend

function graphics_tests()
x = range(0.0, stop=pi, length=10)
y = sin.(x)
cs = CubicSpline(x, y)
xx = range(0.0, stop=pi, length=97)
yy = [interp(cs, v) for v in xx]
end
\[ y_{\text{yy}} = \sin(x) \]

**figure()**

**plot** (x, y, "o", xx, yy,"-",xx, yyy,"-")

**title** ("Regular Interpolation")

\[ x = \text{cumsum}(\text{rand}(10)); \]
\[ x = (x.-x[1]).* \pi / (x[10].-x[1]) \]
\[ y = \sin(x) \]

**cs = CubicSpline(x,y)**

\[ xx = \text{range}(0.0, \text{stop}=\pi, \text{length}=97) \]
\[ yy = [\text{interp}(cs,v) \text{ for v in xx}] \]
\[ y_{\text{yyy}} = \sin(xx) \]

**figure()**

**plot** (x, y, "o", xx, yy,"-",xx, yyy,"-")

**title** ("Irregular Interpolation, 10 Points")

**function** bump_tests()

\[ x = [0.0, 0.1, 0.2, 0.3, 0.35, 0.55, 0.65, 0.75]; \]
\[ y = [0.0, 0.01, 0.02, 0.03, 0.5, 0.51, 0.52, 0.53]; \]
\[ xx = \text{range}(0.0, \text{stop}=0.75, \text{length}=400); \]
\[ sp = \text{CubicSpline}(x,y); \]
\[ yy = [\text{interp}(sp,v) \text{ for v in xx}] \]
\[ pc = \text{pchip}(x,y) \]
\[ y_{\text{yyy}} = [\text{interp}(pc,v) \text{ for v in xx}] \]
\[ pc2 = \text{pchip2}(x,y) \]
\[ y_{\text{yyy}} = [\text{interp}(pc2,v) \text{ for v in xx}] \]

**figure()**

**plot** (x, y, "o", xx, yy,"-",xx, yyy,"-",xx, yyy2,"-")

**title** ("Cubic Interpolation")

**legend** ("data", "spline", "mean","quad")

**pc3 = pchip3(x,y)**

\[ y_{\text{yyy}} = [\text{interp}(pc3,v) \text{ for v in xx}] \]

**figure()**

**plot** (x, y, "o", xx, yyy3,"-")

**title** ("PCHIP Interpolation")

**legend** ("data", "PCHIP")

**end**

**function** regular_pchip_tests()

@testset "Regular pchip" begin

**end**
function irregular_pchip_tests()
    x=[1.0, 1.8, 2.5, 3.0, 3.9];
    y=cos(x);
    pc=pchip(x, y)
    @testset "Irregular pchip" begin
        for i=1:5
            # Continuity
            @test interp(pc, x[i])==y[i]
        end
        for i = 2:4
            # Continuity of slope
            eps = 0.000001
            @test isapprox(slope(pc, x[i]−eps), slope(pc, x[i]+eps), atol=4*eps)
        end
    end

    if unitTests
        regular_tests()
        irregular_tests()
        regular_pchip_tests()
        irregular_pchip_tests()
    end

    if graphicsTests
        graphics_tests()
    end

    if bumpTests
        bump_tests()
    end

end # module Interp

References

