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Abstract: Artificial neural networks (ANNs) provide a useful and effective tool for modelling poorly 
understood and complex processes, such as those that occur in nature.  However, developing an ANN to 
properly model the desired relationship is not a trivial task.  Selection of the correct causal inputs is one of the 
most important tasks faced by neural network practitioners, but as knowledge regarding the relationships 
modelled by ANNs is generally limited, selecting the appropriate inputs is also one of the most difficult tasks 
in the development of an ANN.  Many of the methods available for assessing the significance of potential 
input variables do not consider the uncertainty or variability associated with the input relevance measures 
used and, consequently, this important factor is neglected during hypothesis testing.  In this paper a model-
based method is presented for pruning ANN inputs, based on the statistical significance of the relationship 
between the input variables and the response variable.  The approach uses Bayesian methods to estimate the 
input relevance measure such that the uncertainty associated with this parameter can be quantified and 
hypothesis testing can be carried out in a straightforward and statistical manner.  The proposed methodology 
is applied to a synthetically generated data set and it is found to successfully identify the 3 relevant inputs that 
were used to generate the data from 15 possible input variables that were originally entered into the ANN.  

Keywords: Artificial neural networks; Input selection; Pruning; Bayesian; Environmental modelling 

 
1. INTRODUCTION 

Artificial neural networks (ANNs) provide a useful 
and effective tool for modelling the complex and 
poorly understood processes that occur in nature, 
as they are able to extract functional relationships 
between model inputs and outputs from data 
without requiring explicit consideration of the 
actual data generating process.  However, in order 
to achieve a good representation of the data-
generating relationship, an ANN needs to contain 
all information relevant to the problem.  Therefore, 
selection of the correct causal inputs is one of the 
most important tasks faced by neural network 
practitioners.   

Knowledge about exact environmental 
relationships is generally lacking and, 
consequently, it is difficult to select the correct set 
of inputs that are relevant to the process.  Often, 
little consideration is given to this task as it has 
been assumed that, because ANNs are a data 
driven approach, the relevant inputs will be 
determined automatically during the modelling 
process (Maier and Dandy 2000).  However, the 
number of potential inputs can be large for 

complex environmental systems, particularly when 
the process under study is dynamic and requires the 
inclusion of time-lagged input variables.  
Presenting all potential inputs to an ANN increases 
the size and complexity of the network, which 
slows training and increases the amount of data 
required to estimate the free parameters, or 
weights, of the network.  Moreover, the inclusion 
of irrelevant inputs can confuse the training 
process, resulting in spurious correlations in the 
data being modelled, rather than the actual 
underlying process. 

To help ensure that a good representation of the 
underlying process is obtained, it is necessary to 
consider methods for assessing the statistical 
significance of potential inputs.  This is 
particularly important when the model is used to 
acquire knowledge about the system, rather than 
being used solely for predictive purposes.  In this 
paper a model-based method is presented for 
pruning ANN inputs, based on the statistical 
significance of the relationship between the inputs 
and the response variable.  This approach uses 
Bayesian methods to estimate the input relevance 
measure such that the uncertainty associated with 



 

this parameter can be quantified and hypothesis 
testing can be carried out in a straightforward 
manner.  The method is applied to a synthetically 
generated data set in order to demonstrate its 
application. 

 
2. BACKGROUND 

2.1 Input Significance Testing 

According to Refenes and Zapranis (1999), 
determining the significance of a potential ANN 
input involves the 3 following stages: 

1. Defining the relevance of the input to the 
model. 

2. Defining the variance of the relevance measure. 

3. Testing the hypothesis that the input is 
irrelevant to the model. 

There have been a number of methods proposed in 
the literature for addressing the first stage of this 
problem.  These include sensitivity analyses (Lek 
et al. 1996), assessing the weights of the trained 
network (Garson 1991), and stepwise methods 
where the importance of an input is determined by 
the change in predictive error when it is added to 
or subtracted from the network (Maier et al. 1998).  
Although these methods provide a means of 
determining the overall influence of a potential 
input, they are generally based on the single-valued 
weights of a trained ANN and, therefore, do not 
facilitate the further two stages of the problem.  
Consequently, inputs are included or excluded 
from the model in a subjective manner, depending 
on their effect on the output or model error, as 
there is no way to statistically test their 
significance. 

Olden and Jackson (2002) introduced a 
randomization method for statistically assessing the 
importance of an input based on the comparison of 
the input’s overall connection weight (OCW) with 
a statistical measure of irrelevance.  The overall 
connection weight of an input is the sum of the 
products of the weights between an input and the 
output.  With reference to Figure 1, the OCW of 
input 1 can be calculated by determining cA,1 and 
cB,1, which are the contributions of input 1 via 
hidden nodes A and B, respectively, and summing 
them to obtain OCW1 as follows: 
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Figure 1.  Example ANN structure 

Under this paradigm the statistical measure of 
irrelevance is determined by removing any 
functional structure between the model inputs and 
outputs and using a bootstrap procedure to obtain a 
probability density function (pdf) of the input’s 
OCW when there was no remaining relationship 
between it and the output.  Inputs were considered 
irrelevant if the original OCW of the input was not 
significantly different from the OCW when the 
relationship had been removed. 

Although the method of Olden and Jackson (2002) 
addresses each of the 3 stages of input significance 
testing, its success is reliant on finding a single set 
of optimal weights that correctly approximate the 
underlying function.  Due to complications during 
training and the inherent variability of the 
underlying process itself, it is unlikely that a single 
optimal weight vector will be found, particularly 
when irrelevant inputs are included in the model.  
It is therefore important to consider a distribution 
of the network weights such that the uncertainty 
associated with finding an optimal weight vector 
can be incorporated into the input significance 
tests.  By describing the weights as distributions a 
range of possible weight values is considered, 
preventing one, possibly incorrect weight vector, 
from completely dominating the calculated OCWs, 
which are fundamental in testing the relevance of 
the inputs. 

2.2 Bayesian Weight Estimation 

Bayesian methodology was first applied to estimate 
the weights of an ANN by Mackay (1992) and 
Neal (1992).  It provides an approach for explicitly 
handling uncertainty in the weights by considering 
the weight vector, w, as a random variable.  Using 
Bayes’ Theorem, the posterior weight distribution, 
P(w|y,x), may be inferred from the data as follows: 
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where w is a vector of ANN weights, y is a vector 
of N observations and x is a set of N input vectors. 
In (2), P(w|x) is the prior weight distribution, 
which describes any knowledge of w before the 



 

data were observed.  P(y| x,w) is known as the 
likelihood function.  This function uses 
information obtained by comparing the model 
predictions to the observed data to update the prior 
knowledge of w.  By assuming that each 
observation is independently drawn from a 
Gaussian distribution, the likelihood function can 
be described by: 
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where f(xi,w) is the ANN output for the ith input 
vector and σ is the standard deviation of the model 
residuals. 

2.2.1 The Metropolis Algorithm 

The high dimensionality of the conditional 
probabilities in (2) makes it difficult to calculate 
the posterior weight distribution analytically.  
Consequently, methods have been introduced to 
approximate (2).  Neal (1992) introduced a 
Markov chain Monte Carlo (MCMC) 
implementation to sample from the posterior 
weight distribution such that P(w|y,x) could be 
evaluated numerically. 

The Metropolis algorithm is a commonly used 
MCMC approach, which generates samples from 
the posterior distribution of an unknown variable, 
e.g. ANN weights.  As it is difficult to sample from 
the complex posterior distribution directly, this 
method uses a simpler, symmetrical distribution (a 
multinormal distribution was used in this study), 
known as the proposal distribution, to generate 
candidate weight vectors.  By employing an 
adaptive acceptance-rejection criterion the random 
walk sequence of weight vectors converges 
towards the posterior distribution over many 
iterations.  Details of the computational 
implementation of the Metropolis algorithm can be 
found in Thyer et al. (2002). 

The covariance of the proposal distribution has 
important implications on the convergence 
properties and efficiency of the Metropolis 
algorithm.  Poor selection of this parameter may 
result in an insufficient number of generated 
samples to adequately represent the posterior 
distribution.  Haario et al. (2001) introduced a 
variation of the Metropolis algorithm that was 
developed to increase its convergence rate.  In this 
algorithm the proposal distribution continually 
adapts to the posterior distribution by updating the 
covariance at each iteration based on all previous 
states of the weight vector.  The adaptation strategy 
ensures that information about the posterior 

distribution, accumulated from the beginning of the 
simulation, is used to increase the efficiency of the 
algorithm.  This algorithm is known as the adaptive 
Metropolis algorithm. 

 
3. METHODS 

The proposed input selection method is a model-
based pruning approach, where the initial ANN 
includes all potential inputs and “irrelevant” inputs 
are eliminated, or pruned, from the network 
throughout the process.  The method addresses the 
3 stages of input significance testing in a 
systematic and consistent manner by using the 
Bayesian framework to estimate distributions of 
the network weights. 

The overall connection weight (OCW) measure, 
used by Olden and Jackson (2002), is employed to 
quantify the input variables’ relevance to the 
model.  The OCW of an input measures the 
strength and direction of the relationship between 
that input and the output.  If this measure is 
approximately equal to zero there is no relationship 
between the input and the response variable. 

The adaptive Metropolis algorithm is used to 
generate samples from the posterior weight 
distribution.  The corresponding OCW values are 
then calculated for each sampled weight vector, 
producing empirical distributions of the OCWs, 
which capture the variation in these relevance 
measures.  In this study, a uniform prior 
distribution over the range [-3,3] was assumed for 
each weight.  After a warm-up period of 30,000 
iterations, 100,000 weight vectors were sampled 
from the posterior weight distribution and the 
corresponding OCWs calculated. 

By having distributions of the input relevance 
measures, Bayesian probability intervals can be 
formed in order to test the hypothesis that an input 
is irrelevant to the model (OCW=0).  The 
probability intervals are initially formed around the 
mode of the pdf such that 100(1-a)% of the 
distribution is contained within the interval, where 
a is the significance level.  If zero lies within these 
bounds, the hypothesis that the input is irrelevant 
to the model is true.   

The weights of an ANN are generally small values 
centred around zero, thus it is likely that the OCWs 
are also relatively close to zero.  Moreover, it is 
expected that the initial OCW distributions will be 
quite variable due to the inclusion of irrelevant 
inputs in the model.  Therefore, it is likely that a 
number of the initial OCW distributions will 
contain zero regardless of whether the input is 
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Figure 2  Increasing width of probability intervals (shaded region) at different stages of the pruning process. 
The standard deviation of the OCW reduces from 0.5 in (a) to 0.05 in (d) when the relationship between the 

input and the output becomes well defined. Eventually the input is tested for its dissimilarity to 0. 

relevant to the model or not.  To ensure that 
important inputs are not pruned in these initial 
stages when the relationship is poorly defined, 
inputs are only pruned from the network when their 
OCWs are statistically similar to zero at a high 
significance level (e.g. 95%).  As the process 
continues and irrelevant inputs are pruned from the 
network, the relationship between inputs and 
outputs becomes better defined and the variance in 
the OCWs reduces.  This means that the pdf of a 
significant input’s OCW is less likely to contain 
zero as more irrelevant inputs are pruned.  
Therefore, the significance level at which inputs 
are tested for their similarity to zero may be 
reduced gradually throughout the process.  
Eventually inputs are tested for their statistical 
dissimilarity to zero (OCW=0 at 5% ⇔ OCW≠0 at 
95%), which ensures that only inputs having a 
significant relationship with the output are included 
in the model.  This process is illustrated in Figure 2 
where the pdf of an OCW is Gaussian with a mean 
of 0.2.  The standard deviation of the distribution 
decreases from 0.5 in Figure 2 (a) to 0.05 in Figure 
2 (d) as indicated by the scale on the x-axis.  As the 
variance decreases it becomes more evident that 
the OCW is significantly different from zero.  Even 
though the probability intervals are eventually 
widened to include 95% of the distribution, zero is 
never included within this range, indicating that the 
input is statistically significant.  However, if the 
bounds were set wider when the variance was large 
this input would have been considered irrelevant. 

The following process is carried out until all inputs 
remaining in the model are statistically significant: 

1. Sample 100,000 weight vectors from the 
posterior weight distribution and calculate the 
corresponding OCWs for each input, forming 
empirical distributions of the OCWs.   

2. Test the hypothesis that the inputs are irrelevant 
(beginning at the 95% significance level) by 
constructing probability intervals around the 
mode OCW value for each input.  If zero is 
included within these intervals the input is 
considered irrelevant and is pruned from the 
network.  If no inputs are irrelevant at the 
current significance level, widen the bounds to 
include a greater proportion of the distribution 
(e.g. decrease the significance level by 5-10%). 

3. Repeat steps 1 and 2 until the only remaining 
inputs have OCWs that are statistically different 
from zero at a high significance level (e.g. 
95%) or, in other words, that the OCW is equal 
to zero at a low significance level (e.g. 5%).  

 
4. CASE STUDY 

4.1 Data 

Autoregressive (AR) models are commonly used to 
model natural systems (e.g. hydrological time 
series data).  The autoregressive model, AR(9), 



 

was used to generate a set of synthetic time series 
data according to: 

ttttt xxxx ε+−−= −−− 941 5.06.03.0  (4) 

where εt is a random noise component with 
distribution N~(0,1).  This model was selected for 
demonstrating the proposed input selection method 
as it depends on more than one input variable and 
has known dependence attributes.  Moreover, the 
use of synthetic data enabled the generation of as 
much data as was required.  400 data points were 
generated as this number was considered to 
represent a realistic data set size for environmental 
data, which are generally limiting. 

4.2 ANN Model 

Although the response variable xt only depends on 
inputs xt-1, xt-4 and xt-9, 15 inputs from xt-1 to xt-15 
were included in the ANN in order to determine 
whether the proposed input selection method could 
identify the 12 irrelevant inputs that needed to be 
pruned from the model.  An ANN with 1 hidden 
layer with 2 hidden layer nodes was used to model 
the data.  It should be noted that due to the large 
number of inputs included in the model, and thus 
the large number of free parameters, it is likely that 
the model would overfit to noise in the data in the 
initial stages of the pruning process.  This 
amplifies the need to only prune those inputs that 
have OCWs statistically similar to zero at a high 
significance level in the initial stages.  Initially, 
testing the hypothesis of input irrelevance began at 
the 95% significance level (i.e OCW=0 with 95% 
probability).  However, there were no irrelevant 
inputs at this level and the significance was 
decreased in increments of 5% until there were one 
or more irrelevant inputs.  This occurred at the 
85% significance level. 

 
5. RESULTS & DISCUSSION 

The results of the input selection process are given 
in Table 1.  The final inputs remaining in the 
model (relevant at the 95% significance level) were 
xt-1, xt-4 and xt-9 which are the correct causal inputs 
for the AR(9) data.  Therefore, the proposed 
method was able to properly identify the irrelevant 
inputs such that they could be pruned from the 
ANN.  It can be seen in Table 1 that 7 runs were 
required to achieve the final model. 

Plots of the OCW distributions of inputs xt-3 and xt-9 
are shown in Figure 3.  Figures 3 (a) and (b) show 
the OCW distributions of xt-3 after run 1 and run 6 
respectively, while Figures 3 (c) and (d) give the 
same plots for xt-9.  It can be seen that the variances  
 

Table 1  Results of the pruning process. The 
remaining inputs were xt-1, xt-4 and xt-9. 

Run 
no. 

No. of 
initial 
inputs 

Significance 
levela 

Irrelevant inputs 

1 15 85% xt-6, xt-13, xt-14 

2 12 80% xt-8 

3 11 80% xt-7 

4 10 75% xt-5 

5 9 5% xt-2, xt-10, xt-11, xt-12, xt-15 

6 4 5% xt-3 

7 3 5% - 

awith which the OCWs of the pruned inputs were similar to 0 

of the OCW distributions are quite large when 15 
inputs were included in the model (Figures (a) and 
(c)).  Additionally, it appears that xt-3 is significant 
to the model at this stage, which indicates that the 
underlying relationship has been incorrectly 
approximated due to the inclusion of irrelevant 
inputs.  This demonstrates that an ANN will not 
necessarily determine which inputs are relevant to 
the output automatically and highlights the need for 
analytical methods for this purpose.  When the 
model contained only 4 inputs the relationships 
between inputs and outputs became better defined 
as indicated by the reduced spread of the 
distributions in Figures 3 (b) and (d).  Here it has 
been correctly identified that xt-3 is irrelevant to the 
model and xt-9 is relevant. 

 
6. CONCLUSIONS 

Selection of the correct causal inputs is vital for 
ensuring that an ANN model gives a good 
representation of the underlying function.  This is 
particularly important when the model is used to 
gain knowledge of the system and an interpretation 
of the network function is required. 

A number of methods have been proposed in the 
literature for assessing the relevance of potential 
input variables in predicting the response variable, 
but few have considered the variability in the 
relevance measure or the uncertainty in the 
network weights, both of which are fundamental 
for assessing input significance.  In this paper an 
input pruning method has been presented which 
considers both of these factors by using Bayesian 
methods to estimate the network weights.  When 
the method was applied to a synthetically 
generated data set it was able to correctly identify 
the 12 irrelevant input variables that were initially 
included in the ANN such that these were pruned 
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Figure 3  OCW distributions of inputs xt-3 and xt-9. (a) and (c) are the distributions obtained after 1 run of the 
pruning process (15 inputs included), while (b) and (d) are the distributions obtained after 6 runs (4 inputs 

included) 

and the final model only included the 3 correct 
causal inputs. 

A limitation of the proposed method is that the 
network architecture needs to be specified and this 
may have implications on the relationship 
modelled.  Future research will consider a method 
for pruning inputs and hidden nodes concurrently. 
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