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ABSTRACT 
 
 
 

DESIGN AND ANALYSIS OF A DUAL-MODE CASCADED-LOOP 

FREQUENCY SYNTHESIZER 
 
 
 

Xiongliang Lai 

Department of Electrical and Computer Engineering 

Master of Science 
 
 
 

A new architecture for a frequency synthesizer with adjustable output frequency 

range and channel spacing is introduced. It is intended for the generation of closely 

spaced frequency channels in the GHz range while producing minimal spurious phase 

noise components. The architecture employs two independent phase-locked loops that are 

driven in cascade by a single reference oscillator. The approach provides fine resolution 

and wide bandwidth as well as low phase noise and should find application in many 

contemporary communication systems. 

The synthesizer can be operated in either of two different modes: nonfractional 

and mini-denominator fractional modes. The architecture produces no fractional spurs in 

the first mode and relatively small phase spurs when operated in the second mode. For 

example, in an application to a P-GSM 900 system, it is capable of tuning from 890 – 915 

MHz with a channel spacing of 200 kHz and shows worst case phase spurs of -100 dBc at 



 

 



 

an offset frequency of 833 kHz. Because of the low magnitude and location of the worst 

case spurs, the phase-locked loop filters can be designed with a wide bandwidth which in 

turn results in a fast settling time. A linear frequency-switching settling time (to 0.01% of 

frequency increments) of 128 µs is typical in the P-GSM 900 application. 
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1 Abbreviations and Conventions 

The abbreviations and labeling conventions contained in Table 1.1 and Table 1.2 

are used commonly throughout this thesis. Most are also defined in the text when used for 

the first time. 

Table 1.1: List of conventions 

Labels 
fref Synthesizer input reference frequency  
fout Synthesizer output frequency  
fv Divided frequency from feedback frequency divider  
f0 Carrier frequency  
N1

* First-loop fractional divider modulus 
N2 Second-loop integer divider modulus 
M Bridging divider modulus 
A First-loop accumulator addend 
Q First-loop accumulator modulus 
C1,2,a,b Loop filter capacitors 
R1a,b Loop filter resistors 
Kφ Phase-frequency detector gain 
Kv VCO gain 
H1,2(s) First and second loop open-loop transfer functions 
ζ Damping ratio 
ωn Undamped natural frequency 
τ Time constant 
ωp Pole frequency 
ωz Zero frequency 
∆φ Discontinuous phase error in phase-frequency detector 
∆f Offset frequency from the carrier 
ak Fourier transform coefficients 
em[n] Zero-mean quantization noise 
Idet_error Charge-pump current error due to phase error 
Sdet_error(f) Baseband power spectral density of Idet_error 
Sspur(∆f) Discrete spur power spectral density at offset frequency ∆f 
Pcarrier Carrier Power 
Pspur(∆f) Discrete spur power at offset frequency ∆f 
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Table 1.1 – Continued 

L(∆f) Logarithm of ratio of spectral power at offset frequency ∆f to the carrier power 
Wφ(∆f) Continuous phase-noise power spectral density at offset frequency ∆f 
ϕ(t) Phase deviation from steady phase 2π f0t 
vo(t) PLL synthesized passband signal 
PRF(f) Average power of passband signal vo(t) within resolution bandwidth 
WRF(f) Approximated power spectral density of passband signal vo(t) within resolution 

bandwidth 
Pϕ(fm) Average power of baseband signal ϕ(t) within resolution bandwidth at centered 

frequency fm. 
Wϕ(f) Power spectral density of baseband signal ϕ(t)  
ϕperiod(t) Periodic baseband phase noise signal of ϕ(t) 
Sϕ_period(∆f) Power spectral density of ϕperiod(t) 
ϕwss(t) Wide-sense stationary baseband phase noise signal of ϕ(t) 
Sϕ_wss(t) Power spectral density of ϕwss(t) 
ϕaperiodic(t) Aperiodic baseband phase noise signal of ϕ(t) 
Sϕ-

_aperiodic(t) 
Power spectral density of ϕaperiodic(t) 

ϕnonstat(t) Nonstationary baseband phase noise signal of ϕ(t) 
Sϕ_nonstat(t) Power spectral density of ϕnonstat(t) 
ζ Damping ratio 
ωn Undamped natural frequency 
τ Time constant 

 

Table 1.2: List of abbreviations 

Abbreviations  
PLL Phase-locked loop 
IC Integrated circuit 
PFD Phase frequency detector  
LPF Lowpass filter 
VCO Voltage controlled oscillator  
CP Charge pump 
WSS Wide-sense stationary 
RBW Resolution bandwidth 
VBW Video Bandwidth 
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2 Introduction 

Phase-Locked Loops (PLL) were first invented in 1930’s and soon found 

widespread applications in electronics. After nearly 70 years, phase locking continues to 

find new applications in electronics, communications and instrumentations [1]. While the 

basic idea of phase comparison and self-adjusted phase locking has not been changed 

since its invention, its implementation has evolved into different technologies. These 

technologies benefit from the rapid development of integrated circuits (ICs) and digital 

signal processing techniques since 1950’s. Integrated circuits lead to the development of 

fully integrated monolithic PLLs and digital signal processing results in the latest 

developments of fractional-N frequency synthesizers and digital sampled PLLs. 

2.1 A Brief History of Phase-Locked Loop Frequency Synthesizers 

In 1930’s, superheterodyne receiver architecture was dominant in radio receivers. 

But superheterodyne receivers require heavy number of tuned stages, a simpler method 

was desired. In 1932, a new type of receiver architecture, called homodyne and later 

renamed to synchrodyne, was developed by a team of British scientists.  It consisted of a 

local oscillator, a mixer and an audio amplifier. When the input modulated signal and the 

local oscillator were mixed at the same phase and frequency, the output was an exact 

modulating audio representation of the modulated carrier. The initial experiments were 
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encouraging, but the synchronous reception after a period of time became difficult due to 

the slight drift in frequency of the local oscillator (nowadays known as phase jitter). To 

counteract the frequency drift, the frequency and phase of the local oscillator was 

compared with the frequency and phase of the input modulated signal by a phase detector 

and their phase difference converted into a correction voltage was fed back into the local 

oscillator to maintain the local oscillator frequency in the same pace as the input 

modulated signal. This innovation of receiver architecture starts a new chapter of phase 

locking in today’s electronics. 

An interesting phenomenon was observed during the first development of PLLs. 

If the output frequency from the VCO was divided by a factor and then fed back to the 

phase detector, the corrected lowpass filter output voltage would continue to drive the 

VCO output frequency the same factor times the input reference frequency. This 

phenomenon is not hard to understand if we consider the PLL as a phase maintenance 

device to synchronize the two input signals to its phase detector at an exactly same 

frequency. And if you trace this synchronized signal from the phase detector back to the 

VCO in its feedback path, the frequency multiplication effect will be evident. This 

frequency multiplication effect by PLLs was soon developed into its own field of 

frequency synthesis and found its extensive application in today’s memories, 

microprocessors, hard disk drive electronics, RF and wireless transceivers, and optical 

fiber receivers. We can say that, without the invention of frequency synthesizers, 

nowadays wireless electronics would not even exist. 
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2.2 Basic Structure of a PLL 

There have been a variety of PLLs in different technologies for different 

applications. Despite the dazzling variations of PLLs, the basic structure of a PLL has not 

been changed. Figure 2.1 shows the basic structure of a PLL which includes three 

essential parts: (1) a phase-frequency detector (PFD), (2) a lowpass filter (LPF) and (3) a 

voltage controlled oscillator (VCO). The phase-frequency detector compares the phase 

difference between the input reference signal and the VCO output signal and converts 

this phase difference into a current or voltage output for the lowpass filter. The lowpass 

filter smoothes this fast fluctuating phase difference and provides an average control 

signal for the voltage controlled oscillator. This control signal subsequently changes the 

VCO output frequency in a direction that reduces the phase difference between the input 

reference signal and the VCO output signal. 

When the loop is locked, the control signal from the LPF sets the average 

frequency of the VCO exactly equal to the average frequency of the input reference 

signal. And for each cycle of the input reference signal, there is one and only one cycle of 

the VCO output. 

 

 

Figure 2.1: Basic structure of a phase-locked loop 
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2.3 Challenges in Today’s PLL Frequency Synthesizer Design 

As key components of almost all communication systems and most computing 

electronics, PLL frequency synthesizers have been imposed on stricter and stricter 

technical requirements. Examples of requirements for frequency synthesizers for two 

common wireless communication applications are listed in Table 2.1for their respective 

frequency range, channel spacing (or frequency resolution) and frequency hopping 

settling speed. 

Table 2.1: Wireless system design requirements for frequency synthesizers 

 
System 

 
Frequency Range 

Channel Spacing 
(Frequency Resolution) 

Frequency-Switch 
Settling Time 

P-GSM 900 (Uplink) 890 – 915 MHz 200 kHz 344.3 µs 
Bluetooth 2.402 – 2.480 GHz 1 MHz 224 µs 
802.11b  2.400 – 2.484 GHz 5 MHz 5 µs 

UMTS (Rx) 2.110 – 2.170 GHz 5 MHz 200 µs 
 

2.3.1 PLL Specifications 

Essentially, a PLL is a phase feedback system. Although none of PLLs is linear, 

when the phase variations in a PLL only encounter small changes, each loop components 

can still be treated as linear models and linear feedback theories can efficiently applied to 

the analysis of PLLs. Sufficiently, the results obtained from the linear analysis of PLLs 

can be used to predict the PLL performance in its nonlinear instances. In the following, 

we are going to list some of the most crucial parameters when designing a PLL frequency 

synthesizer: 

1. Bandwidth: Bandwidth is the most fundamental property of a PLL and gives the 

basic tone of a PLL’s overall performance. Even though literatures often mix 



 

 7 

them together, bandwidth should be clearly identified from its two distinct 

identities: open-loop unity-gain bandwidth which is often used to determine the 

stability of the PLL and closed-loop bandwidth which can be used to estimate the 

scope of other parameters: linear track-in range, linear track-in settling time, 

nonlinear pull-in range, nonlinear pull-in settling time and the reduction of phase 

noise and spurs caused by each of the components in the PLL. 

 
2. Stability: PLLs always suffer phase variations of the input reference source and 

phase interruptions from internal loop components. Stability defines whether the 

PLL output phase variation converges or diverges during these input phase 

variations or internal phase interruptions. As measuring stability of a linear 

feedback system, the stability of a PLL can be conveniently measured by the 

phase margin at the unity-gain frequency of its open-loop frequency response. A 

phase margin of 60 degree or more is usually required for a practically stable PLL 

design to account for temperature and manufacturing process variations. 

 
3. Tracking: When the PLL’s initial status is locked, which is the output phase has 

been synchronized with the input phase, any small phase variations in the input 

will be followed exactly by the same change at the output and this process is 

called tracking. Tracking is studied through linear approximation of the dynamics 

of the PLL system when phase errors in the PFD are small so that the VCO will 

not slip cycles. Because PLL analysis during tracking process has been linearized, 

the PLL output response can be simulated by linear s-domain transfer functions. 

Two common specifications are often used to describe a PLL’s tracking behavior: 
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• PFD Linear Tracking Range: Frequency variations in the input of a PLL will 

cause phase errors in its PFD. A type of PFD can only handle a limited range of 

phase errors in order for it to work linearly without causing the VCO to slip 

cycles. The PFD linear tracking range is the maximum range of input frequencies 

so that the phase errors are in the PFD’s linear range. 

• Linear Tracking Settling Time: During a PLL’s tracking process, the output 

frequency follows the input frequency variation and settles gradually to the target 

frequency. Linear tracking settling time measures how soon the output frequency 

falls within a percentage error of its target frequency. A common way to measure 

the linear tracking settling time is to input a unit frequency step and measure the 

time the PLL takes to settle at the target frequency. Figure 2.2 demonstrates an 

example of a PLL’s tracking process in its locked status for an input frequency 

step from 1879.85 MHz to 1880.00 MHz. The tracking process takes around 200 

us to settle its output frequency within a tolerance band of 20 kHz from the target 

frequency. 

 
4. Acquisition: Acquisition is the process that the PLL is bringing itself back to the 

locked status from an out-of-locked status. Comparing with the tracking process 

that is assumed the loop has already been locked and the PLL’s behavior can be 

well approximated by a linear system for small phase errors in its PFD, 

acquisition is inherently a nonlinear process and nonlinear analysis is generally 

needed, because out-of-locked phase errors in the PFD will greatly exceed the  
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Figure 2.2: Illustration of a PLL’s linear tracking process 

linear range that the PFD can handle. If the loop acquires lock by itself, the 

process is called self-acquisition and if it is assisted by auxiliary circuits, the 

process is called aided acquisition. According to the input signal conditions, 

acquisition can also be categorized as phase acquisition and frequency 

acquisition. If an acquisition process is a self-aided frequency acquisition process, 

this process is also called a pull-in process. Figure 2.3 illustrates (A) linear 

tracking process and (B) nonlinear pull-in process for an input frequency step 

from 1649.7 MHz to 1686.8 MHz for an integrated fractional-N frequency 

synthesizer of ANALOG DEVICES ADF4154. The whipsaws in the pull-in 

process are caused by PFD phase cycle slips. 

 
5. Frequency Tuning Resolution: Frequency tuning resolution is one of the unique 

properties of PLL frequency synthesizers and is defined as the minimum output 

frequency step that a frequency synthesizer can generate. Frequency tuning 

resolution is also known as channel spacing for communication systems because  
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Figure 2.3: Illustration of (A) Linear Tracking Process and (B) Nonlinear Pull-in Process of 
ANALOG DEVICES ADF4154 

of its application in modulation and demodulation. Finer tuning resolution is 

always desired for advance communication systems which are containing more 

channels in a limited frequency bandwidth. 

 
6. Phase Noise and Spur Performance: Phase noise and phase spurs are two distinct 

frequency domain representations of phase interruptions in a PLL. Phase noise 

shows continuous property in its frequency power spectrum, but phase spurs 

generate discrete power impulses at single frequencies. 

• Phase Noise: Phase noise power spectrum is frequency-domain power 

representation of phase noise’s time-domain continuous random variations. 

Theoretically, phase noise power spectrum is the Fourier transform of phase 

noise’s autocorrelation function in time domain. But autocorrelation functions for 

phase noises are hard to calculate and even impossible in most cases because 

phase noises are not wide-sense stationary processes [1]. Practically, engineers 
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use spectrum analyzers and phase-noise analyzers to approximately estimate 

power spectrums of passband phase noises and baseband phase noises 

respectively. Both equipments measure power (mW) of phase noises in a 1-Hz 

bandwidth at an offset frequency ∆f from the carrier frequency, and the result is 

often displayed as logarithm of the ratio of the 1-Hz bandwidth noise power to the 

carrier power in the unit of dBc/Hz: 

 . (2.1) 

Except for its frequency domain representation, phase noise is also characterized 

in time domain as jitter with a unit of s/cycle, which measures the average root-

mean-square error of the PLL actual output signal periods from the ideal PLL 

output period in a given time interval. 

• Phase Spur: Phase spurs are frequency-domain power representation of 

continuous-time periodic phase interruptions in a PLL. Phase spurs show in the 

frequency spectrum as discrete spectral components with all their power 

concentrated at single frequencies. This can be explained by examining the power 

of a continuous-time periodic signal as the square of the Fourier coefficients of 

the signal. A phase spur is an infinite impulse and its power is represented by its 

underlying area which can be calculated by its integration over frequency. Neither 

passband spectrum analyzer nor baseband phase-noise analyzer can display 

infinite height impulses, but both equipments can estimate the power of a spectral 

component in the vicinity of its frequency. Similar to phase noise, the measured 

power (mW) of a discrete spectral component at an offset frequency ∆f from the 
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carrier is compared with the carrier power and displayed as logarithm in the unit 

of dBc: 

 . (2.2) 

Figure 2.4 demonstrates the output power spectrum of the ANALOG DEVICES 

ADF4154 fractional-N frequency synthesizer. As shown in the figure, phase noise 

is the continuous spectrum around the carrier and phase spurs are the discrete 

spectral components. 

 

 

Figure 2.4: Output power spectrum of phase noise and phase spurs of ANALOG DEVICES 
ADF4154 fractional-N frequency synthesizer 

2.3.2 Optimization and Tradeoff 

There exist inherent relationships of each of the properties in a PLL frequency 

synthesizer design, where bandwidth serves as the key connection between all these 

properties. Figure 2.5 illustrates these relationships of improved bandwidth and the 

relative performance change of the other major parameters, where ↑ represents a 
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performance improvement and ↓ represents performance deterioration. Similar results for 

decreased bandwidth can be obtained by inverting the directions of the arrows. 

 

 

Figure 2.5: Relationships of bandwidth with other major parameters 

2.4 Contributions of This Work 

This thesis focuses on the design, analysis and application of a novel dual-mode 

cascaded-loop frequency synthesizer for the generation of GHz carrier frequencies and 

clocks with high accuracy and closely-spaced channel spacing. The contributions of the 

thesis are summarized below by improvements of the proposed dual-mode cascaded-loop 

frequency synthesizer over existing prevailing architectures. 

 
• Improvements over Integer-N Frequency Synthesizers: 
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1. Fractional multiplication. Outputs of regular integer-N frequency synthesizers 

can only assume integer multiples of the input reference frequency. The 

proposed dual-mode cascaded-loop frequency synthesizer realizes fractional 

multiplication of the input reference frequency by its novel up(1st loop)-

down(divider)-up(2nd loop) architecture while both the 1st and 2nd loops can be 

still integer-N PLLs individually. 

2. Finer frequency resolution. Frequency resolution of integer-N frequency 

synthesizers is identical to the input reference frequency for its integer 

multiplication. The fractional multiplication realized by the proposed dual-

mode cascaded-loop frequency synthesizer improves its frequency resolution 

to a small fraction of the input reference frequency. 

3. Wider Bandwidth. The fractional multiplication function and finer frequency 

resolution enable application of large reference frequencies to the input of the 

proposed frequency synthesizer, which reduces frequency divider modulus in 

the feedback path of a PLL and equivalently extend the PLL bandwidth. Other 

benefits of extended PLL bandwidth include. 

• Faster settling speed for both nonlinear and linear frequency variations. 

• Reduced VCO out-of-band phase noise due to highpass filtering effects of 

the PLL bandwidth. 

• Minimized sizes for loop filter components for monolithic applications. 

 
• Improvements over Fractional-N Frequency Synthesizers: 

1. Reduced denominator for fractional multiples. For fractional multiplication, 

frequency resolution is inversely proportional to the denominator size. To 
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achieve the same frequency resolution, the proposed frequency synthesizer 

reduces its denominator size significantly smaller than a regular fractional-N 

frequency synthesizer. This favors circuitry designs for smaller and simpler 

accumulators whose overflows are commonly used to trigger fractional 

division mechanisms. 

2. Far spaced fractional phase spurs. Fractional-N mechanism generates 

fractional phase spurs on the output spectrum with spacing from the carrier 

inversely proportional to its denominator size. The reduced denominator size 

for the proposed frequency synthesizer than a regular fractional-N frequency 

synthesizer pushes fractional phase spurs offset at further distances from the 

carrier with the spur strengths being suppressed by internal loop bandwidth 

without assistance from auxiliary devices. 

 
• Improvements over Dual-loop and Multi-loop  Frequency Synthesizers: 

1. Elimination of frequency mixing. In all existing literatures of dual-loop and 

multi-loop frequency synthesizers, combinations and step increments for 

synthesized frequencies are implemented by mixing of the frequencies with 

mixers. Mixing is a nonlinear operation which generates large close-in 

harmonic spurs and increases 1/f noises around the carrier. The proposed 

frequency synthesizer realizes frequency combinations and step increments by 

applying adjustable multiplying factors and a dividing factor from its 

architecture to the input reference frequency without the appliance of mixers. 

2. Free selection of synthesized frequency bands with arbitrary channel spacing. 

As per the date of writing of this thesis, all reported dual-loop and multi-loop 
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frequency synthesizers have preselected synthesis bands and fixed channel 

spacing. The proposed frequency synthesizer provides a versatile architecture 

to freely choose synthesized bands with arbitrary channel spacing in GHz 

ranges by optimally selecting moduli for its variable frequency dividers. 

3. Single reference source. Most dual-loop and multi-loop frequency 

synthesizers require extra independent reference sources for frequency 

combinations. Due to the degrees of freedom of the free selection of 

synthesized bands with arbitrary channel spacing, the proposed frequency 

synthesizer requires just single reference source for all its applicable bands 

and channel spacing. 

 
Contributions of this work have been presented in a journal paper submitted to 

IEEE transactions of VLSI system, which is currently being advised for correction and 

resubmission. 

 

2.5 Organization of the Thesis 

The thesis is organized as follows: 

Chapter 3 presents a summary of existing prevalent frequency synthesizer 

architectures beginning with the fundamental integer-N frequency synthesizer. 

Subsequently, fractional-N frequency synthesizer, dual-loop frequency synthesizer and 

∆∑ fractional-N frequency synthesizer are introduced individually. 

Chapter 4 introduces analysis techniques for power spectra of common signals in 

PLL frequency synthesizers. Physical measuring principles of spectrum analyzers and 
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phase-noise analyzers are firstly presented. Secondly, calculation and estimation methods 

for power spectra of various common continuous-time signals in PLLs are presented for 

computer simulations. Thirdly, discrete approximation is introduced to approximate 

power spectrum of baseband modulation signals to phase-noise sidebands of modulated 

passband signals. 

Chapter 5 describes the proposed architecture of a new dual-mode cascaded-loop 

frequency synthesizer with its synthesis modes and the respective synthesis formulas. 

Computer search results for the proposed architecture to synthesize channel frequencies 

for P-GSM 900, Bluetooth and an arbitrarily chosen band range and channel spacing are 

given in tables which demonstrate the degrees of freedom of the proposed architecture 

and the superiority of its frequency resolution. 

Chapter 6 provides quantitative studies of the design and performances of the 

proposed dual-mode cascaded-loop frequency synthesizer. Passive RC loop filter 

structure is proposed to derive loop transfer functions of each of the constituent loops and 

the overall architecture. Stability issues are studied by allocating pole-zero positions of 

the loop transfer functions to achieve optimal phase margins for fastest settling speeds. 

Design procedures are proposed to summarize important characteristics of the proposed 

architecture. Discrete fractional phase spurs and continuous phase noises in PLLs are 

discussed with respect to the following issues: 

• Modeling 

• Filtering 

• Discrete approximation to compare with carrier power 
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Chapter 7 simulates performances of the proposed architecture according to the 

quantitative discussions in Chapter 6 with its application to a P-GSM 900 uplink system. 

Advantages and superiorities of the proposed architecture are discussed respectively. 

Similar results can be obtained for other applications. 

Chapter 8 summarizes the thesis and presents conclusions about the impact of the 

research. Additional research topics for future work are suggested. 

Appendix A shows Matlab codes for the simulations in Chapter 7 by the 

quantitative analyses in Chapter 6. 

Appendix B illustrates circuitries for a high-speed prescaler running above 10 

GHz suitable for the design of high-speed frequency dividers for the proposed dual-mode 

cascaded-loop frequency synthesizer. 
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3 Architectures of Existing PLL Frequency Synthesizers 

In this chapter, architectures of existing prevalent PLL frequency synthesizers 

will be discussed from the fundamental to the advanced. Although there are a variety of 

distinct PLL frequency synthesizer architectures, they are all derivatives of the same 

prototype of the integer-N frequency synthesizer. The basic properties deduced from the 

integer-N frequency synthesizer can be generally applied to its derivatives and serve as 

guidelines when designing more advance frequency synthesizer architectures. Therefore, 

in Section 3.1, we will first examine the basic properties of an integer-N frequency 

synthesizer including its linear model, phase-variation transfer functions, definitions of 

PLLs’ order and type, and one of its typical implementations as charge-pump (CP) 

frequency synthesizers. Secondly, in Section 3.2, we will introduce an important variant 

of the integer-N frequency synthesizer as fractional-N frequency synthesizers in which 

the integer divider modulus will be replaced by a fractional divider modulus in the 

feedback loop from VCO to PFD. Thirdly, in Section 3.3, dual-loop architectures for 

frequency synthesizers will be introduced to generate fractional multiples of input 

reference frequency by arithmetic combinations of integer-N PLLs and frequency 

dividers. And lastly, Section 3.4 studies the advancement of regular fractional-N PLLs to 

∆∑ fractional-N frequency synthesizers where divider quantization noise is randomized 
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by a digital ∆∑ modulator and its power spectrum is reshaped to push the majority of its 

power to further offsets from the carrier. 

3.1 Integer-N Frequency Synthesizers 

3.1.1 Transfer Functions in an Integer-N Frequency Synthesizer 

Figure 3.1 shows the basic structure of an integer-N frequency synthesizer where 

an integer-N-modulus divider is inserted in the feedback loop of a regular PLL. The 

input-output frequencies can be written by a simple relationship as 

 . (3.1) 

 

 

Figure 3.1: Basic structure of an integer-N frequency synthesizer 

To study the dynamics of output phase and frequency responses due to small 

phase and frequency variations in a PLL frequency synthesizer, linear phase and 

frequency representations of the PLL system are desired. Because of similar natures of 

phase and frequency, the results obtained from a linear phase model for a PLL frequency 

synthesizer can be suitably applied to the linear frequency model for the same PLL 

frequency synthesizer. In this thesis, only phase models of frequency synthesizers will be 
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discussed, but the results obtained from phase models can be generally applied to their 

frequency models.  

Figure 3.2 gives the linear phase representation of the basic structure of an 

integer-N frequency synthesizer shown in Figure 3.1 where each of the loop components 

has been replaced by their respective linear models in Laplace domain and their input-

output relationships can be characterized by Laplace-domain linear transfer functions. 

Table 3.1 summarizes these relationships and affixes the variables with their appropriate 

units to approximate a real PLL circuit. 

 

Figure 3.2: Linear phase model of the basic structure of an integer-N frequency synthesizer. 

Table 3.1 gives the basic transfer functions of individual elements in an integer-N 

frequency synthesizer, system loop transfer functions can be obtained by connecting the 

individual basic transfer functions in specific combinations to describe the dynamic 

input-output relationships for the variables in the linear phase model shown in Figure 3.2. 

In the following, the most fundamental and important system transfer functions will be 

examined respectively, and, generally, these transfer functions will also be well 
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applicable in the study and design of other PLL frequency synthesizer architectures in 

later sections and chapters with only minor adjustments. 

Table 3.1: Summary of variables in the linear phase model of an integer-N frequency 
synthesizer 

Variable Description Unit 
Φref(s) Phase of the Input Reference Signal rad 
Φv(s) Phase of the Feedback Signal after the Integer-N-Modulus Divider rad 
Φe(s) Phase Error of the Two Input Signals to the PFD: 

Φe(s) = Φref(s) - Φv(s) 
rad 

Kφ PFD Gain  
Depending on the type of the PFD, Φe(s) can be converted to either a 
voltage output or a current output. For a voltage output, Kφ is in a unit of 
V/rad; For a current output, Kφ is in a unit of A/rad.  

V/rad 
or 

A/rad 
 

Vdet(s) 
or 

Idet(s) 

PFD Output Voltage or Current  
• For voltage type PFD, Vdet(s) = Kφ · Φe(s); 
• For current type PFD, Idet(s) = Kφ · Φe(s). 

V 
or 
A 

F(s) LPF Transfer Function 
For VCOs, the output of the LPF needs to be a voltage controlling signal.  
• For Vdet(s), Vvco(s) = F(s) · Vdet(s) where F(s) attaches no unit or a unit 

of V/V. 
• For Idet(s), Vvco(s) = F(s) · Idet(s) where F(s) is a transimpedance with a 

unit of V/A. 

V/V 
 

or 
 

V/A 

Vvco(s) VCO Tuning Voltage  V 
Kv VCO Gain rad/(s·V) 

ωvco(s) VCO Output Angular Frequency: 
ωvco(s) = Kv · Vvco(s) 

rad/s 

Φout(s) PLL (or VCO) Output Phase: 
Φout(s) = (1/s) · ωvco(s) 

rad 

 

• Open-loop Transfer Function (Loop Gain): 

 , (3.2) 

• Closed-loop Transfer Function (System Transfer Function): 

 , (3.3) 

• Error Transfer Function: 
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 , (3.4) 

• Feedback Transfer Function: 

 . (3.5) 

As we have seen above, the feedback transfer function, HL(s) can be used as a 

convenient shortcut to write the other loop transfer functions. For example, the closed-

loop transfer function can be written as Hclose(s) = N·HL(s) which is the divider modulus 

times the feedback transfer function, and the error transfer function can be written as 

He(s) = 1-HL(s) which is the unit complement of the feedback transfer function. This 

convenience of writing loop transfer functions in terms of HL(s) will prove useful in later 

contexts of this thesis for the study of other frequency synthesizer architectures. 

3.1.2 PLL Order and PLL Type 

In this section, two classifications of PLLs will be discussed as the PLL order and 

the PLL type. By ignoring constant terms in (3.3)-(3.5) such as Kφ, Kv and N, it can be 

discovered that the only changeable factor for the transfer functions of an integer-N 

frequency synthesizer is the LPF frequency response F(s). For a practical LPF, its 

transfer function can be expressed as a rational function with real-coefficient polynomial 

numerators and denominators: 
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 , (3.6) 

where NA and NB  are the orders of the numerator and the denominator, and Ak and Bk  are 

the coefficients of their respective polynomials. A LPF exhibits nonzero gain at the zero 

frequency and zero gain at the infinite frequency, which puts (3.6) into the following 

constraints: 

  (3.7) 

where the constant term A0 in the numerator of (3.6) can not be zero and the order of the 

denominator must be greater than the order of the numerator to ensure the lowpass 

characteristic. 

The PLL order is defined as the denominator order of the PLL closed-loop 

transfer function. Substituting (3.6) into the feedback transfer function HL(s) in (3.5), 

which is a close resemblance of the closed-loop transfer function of (3.3), we have 

 , (3.8) 
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where the denominator order is NB+1. Thus, we can conclude that the order of an integer-

N frequency synthesizer is its LPF denominator order plus one, and this same rule is 

suitable for other PLL frequency synthesizer architectures. 

Another classification of a PLL is by its type which is defined as the number of 

zero-frequency poles for its open-loop transfer function. Because the VCO in a PLL has 

already provided a zero-frequency pole in its open-loop transfer function, which can be 

seen by the integration-effect Laplace-domain factor, 1/s, in (3.2), and according to 

circuit theories, there could only be at most two coincident poles on the imaginary axis 

including zero frequency for a stable circuitry [7], we can conclude that, for a realistic 

PLL, the maximum number of zero-frequency poles for its LPF is one. This restriction of 

maximum one extra pole in the LPF will give us some caution in our future design of 

LPFs. Therefore, a Type-I PLL contains only one zero-frequency pole in its open-loop 

transfer function and implies that there is no zero-frequency pole in its LPF; a Type-II 

PLL contains two zero-frequency poles in its open-loop transfer function and implies that 

there is another zero-frequency pole in its LPF. 

3.1.3 Linear Modeling of Charge-Pump Integer-N Frequency Synthesizers 

Figure 3.2 gives the general linear model of PLL frequency synthesizers where 

PFD has been represented by a linear phase comparator and the phase difference is 

ideally being converted to a voltage or current output by the multiplying factor Kφ (A/rad 

or V/rad). In a physical circuit implementation of PLL frequency synthesizers, the PFD 

can be realized by a variety of circuit architectures. Thus, the determination of the PFD 

linearization factor Kφ when it is operating in its linear range is the first issue we need to 

consider before applying the transfer functions of (3.2)-(3.5) to analyze the PLL 



 

 26 

performance for a specific PLL circuit. Shown in Figure 3.3 is a common circuit 

realization of a PFD, which contains two D-flip-flops, an AND gate, and a charge-pump 

(CP). The two D-flip-flops and the AND gate are used to detect the phase differences of 

its two input signals. And the charge pump consisting of two identical current sources 

and two independent switches is used to convert the phase differences into current output 

signals. Detail operations of the flip-flops and the CP can be referred to [7]. And our 

interest is the equivalence of the circuit implementation in Figure 3.3 and its linearized 

model in Figure 3.2. As in [7], the operation of the PFD circuit in Figure 3.3 can be 

approximated by a linear PFD gain, Kφ, as 

 , (3.9) 

where I (A) is the current of both current sources in the CP. Shown in Figure 3.3, there is 

also a simple circuit implementation of the LPF, which is a first-order lowpass filter 

consisting of a single resistor and a single capacitor. In a CP PLL, the LPF smoothes the 

fast-fluctuating current pulses from the PFD and convert them into a relatively steady 

control voltage for the following VCO with a transimpedance transfer function as 

 , (3.10) 

where the unit of F(s) is V/A. The linearization of PFD by (3.9) and the loop filter 

transfer function (3.10) provide us the opportunity to study dynamic behaviors of the CP 

PLL integer-N frequency synthesizer in Figure 3.3 for its locked status and the derived 

results nonetheless will be inspiring for its non-locked status and other PLL frequency 

synthesizer architectures. Substituting (3.9) and (3.10) into (3.2) and (3.3) respectively, 

we have 



  
27 

 

Figure 3.3: A circuit implementation of the PFD, CP and LPF for the linear phase model of an integer-N frequency synthesizer 
in Figure 3.2 
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• Open-loop Transfer Function (Loop Gain) of Figure 3.3: 

 , (3.11) 

and 

• Closed-loop Transfer Function (System Transfer Function) of Figure 3.3: 

 . (3.12) 

The open-loop transfer function (3.11) has two poles at its zero frequency and the 

closed-loop transfer function (3.11) contains a 2nd-order term in its denominator. Thus, 

the CP PLL integer-N frequency synthesizer shown in Figure 3.3 is a type-II 2nd-order 

PLL system. For a 2nd-order linear system, the theories of signals and systems provide it a 

general model by a rational 2nd-order transfer function [12]: 

 , (3.13) 

where ζ is referred to as the damping ratio and ωn as the undamped natural frequency. 

Comparing the closed-loop transfer function in (3.12) and the general transfer function in 

(3.13), and ignoring their respective numerators, we can identify the damping ratio, ζ and 

the undamped natural frequency, ωn, for the PLL system in Figure 3.3: 

 . (3.14) 

Both ωn and ζ are in a reverse relationship with the divider modulus, N, which will 

give us enough cautions in our future designs, because, for a 2nd-order system, the closed-
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loop bandwidth can be well approximated by the undamped natural frequency, ωn, and its 

time-domain settling speeds for impulse and step responses are characterized by the 

damping ratio, ζ. A larger divider modulus, N, results in a smaller ωn and a smaller ζ, 

which in turn implies a smaller closed-loop bandwidth and a slower settling speed for a 

specifically designed PLL system. As in a 1st-order system where a time constant is 

defined, a similar definition can be applied for a time constant for a 2nd-order system 

from its explicit time-domain impulse and step responses [12]: 

 , (3.15) 

where the time constant, τ, is linear with the divider modulus, N, which indicates that a 

larger divider modulus, N, results in a larger time constant and a slower system response 

and once again confirms the reverse relationship mentioned above.  

3.1.4 Frequency Resolution and PLL Bandwidth 

Even though the reverse relationship of the divider modulus, N, and the PLL 

closed-loop bandwidth was demonstrated by a 2nd-order integer-N frequency synthesizer, 

it is also a general relationship for higher-order PLLs and other PLL frequency 

synthesizer architectures. As in (3.1), the output frequency of an integer-N frequency 

synthesizer can only assume integer multiples of the input reference frequency with a 

minimum output frequency increment the same as the input reference frequency. For 

modern communication applications with high carrier frequency band and small channel 

spacing, the integer-N frequency synthesizer suffers from a number of critical drawbacks. 

For example, to generate the GSM carrier frequency band listed in Table 2.1 from 890 

MHz to 915 MHz with a channel spacing of 200 kHz, an integer-N frequency synthesizer 
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has to assume an input reference frequency of 200 kHz and the divider modulus has to 

vary from 4450 for 890MHz to 4575 for 915 MHz. This large divider modulus, or, 

equivalently, this small input reference frequency, causes an extremely small PLL 

bandwidth and slow PLL system response and the resulted frequency-switching settling 

time is far beyond the standard requirements of 500 µs to 850 µs. In addition, another 

concern of narrowed closed-loop bandwidth is the increased amount of the VCO noise 

being conveyed to the output of a PLL system. The VCO is one of the noisiest 

components in a PLL and its self-generated phase noise is highpass filtered by the closed-

loop bandwidth before it arrives at the output of the PLL system [7]. A small closed-loop 

bandwidth implies there will be a large portion of unfiltered VCO noises leaking out to 

the PLL output, which will seriously downgrade the overall performance of the PLL and 

make it unacceptable for most communication systems. 

3.2 Fractional-N Frequency Synthesizers 

The inherent contradiction of frequency resolution (channel spacing) and the PLL 

bandwidth in an integer-N frequency synthesizer prompted the application of fractional 

frequency division in the feedback loop of a PLL frequency synthesizer. Considering the 

generation of a 912.2-MHz carrier frequency in a GSM communication system with 200-

kHz channel spacing, an integer-N frequency synthesizer requires a 200-kHz reference 

frequency and an integer divider modulus of 912.2 MHz / 200 kHz = 4561, which, as 

indicated in Section 3.1.4, causes seriously reduced PLL bandwidth and slow system 

response. Instead of restricting its divider moduli to integer numbers, a fractional-N 

frequency synthesizer applies a larger reference frequency, e.g., 10 MHz to generate the 
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same carrier frequency and channel spacing with a fractional divider modulus of 912.2 

MHz / 10 MHz = 91.22 = 91 + (11/50), where the fractional portion of 11/50 enables the 

output frequency to be a fractional multiple of the input reference frequency and the 

denominator guarantees the required frequency resolution. The substantially reduced 

divider modulus in a fractional-N frequency synthesizer provides opportunities for large 

reference frequencies and resulted increased PLL bandwidths. 

But an actual frequency divider circuit can only divide integer numbers. The 

fractional division can be realized by the averaging effect of the togging of two integer 

moduli for an integer-N frequency divider. Shown in Figure 3.4 is the block diagram of 

an implementation of a fractional-N frequency divider. The Q-modulus accumulator is 

clocked by the divided VCO frequency fv and sums its own output with the given addend 

A for each clock period. If the sum is over its modulus Q, there will be an overflow signal 

from the accumulator to switch the modulus of the integer-N frequency divider from N to 

N+1. 

 

 

Figure 3.4: An implementation of a fractional-N frequency divider 
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The overflow signal is a periodic signal with period Q· Tv, Tv=1/ fv, during which 

there are A overflows, so the dual-modulus integer-N frequency divider divides by N+1 in 

A clock periods and by N in the rest Q-A clock periods and the average division factor 

can be written as: 

 . (3.16) 

The output frequency of a fractional-N frequency synthesizer can be written as: 

 , (3.17) 

where the frequency resolution is controlled by the accumulator modulus Q and can be 

written as 

 . (3.18) 

It seems from (3.18) that a fractional-N frequency synthesizer can achieve 

frequency resolutions arbitrarily small and reference frequencies arbitrarily large by 

keeping the accumulator modulus Q as large as possible. But it is also observed from 

Figure 3.4 that the overflow signal from the accumulator periodically modulates the 

feedback VCO-divided frequency fv and generates periodic phase errors in the PFD. The 

phase errors pass through the LPF and modulate the output frequency of the VCO, which 

in the frequency domain manifests themselves as phase spurs around the carrier 

frequency. As discussed in later context, the larger the accumulator modulus Q is, the 

closer the spurs are located around the carrier frequency and the harder the PLL can filter 

out these spurs.  
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Assuming the PLL is locked, the feedback VCO-divided frequency fv can be 

regarded as changing immediately after the switching of the modulus of the dual-modulus 

integer-N frequency divider and fv can be written as 

 , (3.19) 

where fv is always above or below the reference frequency fref during each of the clock 

periods Tv. And the resulted phase error in the PFD relative to the input reference 

frequency in one of the clock periods can be written as 

 , (3.20) 

where Tv=1/ fv, Tref=1/ fref and the subscript index j is to record the time moments for 

phase errors during a specific clock period.  ∆φj constitutes a staircase phase-error 

sequence in the PFD and is converted to voltage or current error signals for the PFD gain 

Kφ as: 

  (3.21) 

where Kφ takes the unit of A/rad for current-type CP-PFD and V/rad for voltage-type 

PFD. Because of the periodic overflow signal from the accumulator in Figure 3.4, the 

phase-error signals Idet_error and Vdet_error are also periodic with period Q·Tv and according 

to chapter 4.1.2, their power spectra can be calculated as: 
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 , (3.22) 

where ak is the Fourier series coefficients of the periodic signals Idet_error and Vdet_error and 

their discrete spectral powers (phase spurs) are concentrated at the harmonics of the 

fundamental frequency 1/(Q·Tref) as infinite-height zero-width impulses. Idet_error and 

Vdet_error are baseband signals and their power spectrum Sdet_error(f) modulates the VCO and 

appears as discrete sideband phase spurs around the carrier frequency on the output 

spectrum of the fractional-N PLL frequency synthesizer, which is denoted by Sspur(∆f) 

and can be derived from the PLL’s system transfer function as: 

 ,(3.23) 

where ∆f is the offset frequencies from the carrier frequency; HL(∆f) is the feedback 

transfer function in (3.5) with the s-domain variable s replaced by its frequency response 

j2π∆f. 

As seen in (3.22) and (3.23), discrete sideband phase spurs originated from the 

fractional-N architecture in Figure 3.4 are located at offset frequencies ∆f spur around the 

carrier frequency as 
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 , (3.24) 

where the spacing between two adjacent spurs is the same as the frequency resolution 

∆fout in (3.18), which manifests the conflict of frequency resolution and phase-spur 

spacing for a fractional-N frequency synthesizer. 

Illustrated in Figure 3.5 is a Matlab simulation of phase-spur strength and 

locations on the output spectrum of a fractional-N frequency synthesizer to generate 

912.2-MHz carrier frequency for a P-GSM communication system with fref =10 MHz, Q 

=50 and A =11. The generated phase spurs on the output spectrum are closely located at 

offset frequencies ∆fspur =k·(fref/Q) =k·(10 MHz /50) =k·(200 kHz), k = ±1, ±2, ±3,… 

 

 

Figure 3.5: Simulated double-sided phase-spur strength and locations on the output 

3.3 Dual-Loop Frequency Synthesizers Based on Integer-N PLLs 

The fractional-N frequency synthesizer architecture presented in Section 3.2 

overcomes the conflict of frequency resolution (channel spacing) and PLL bandwidth 

(settling speed) for integer-N frequency synthesizers, but, at the same time, generates 
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another conflict of its frequency resolution (channel spacing) and the spacing of 

fractional phase spurs arising from the periodic phase errors in its PFD. The fractional 

phase spurs are closely located around the synthesized carrier frequency and can be very 

large such that unless the PLL bandwidth is very small to suppress the spurious tones, the 

fractional-N frequency synthesizer can hardly be applied to most practical applications, 

but a small PLL bandwidth negates the potential benefits of applying the fractional-N 

technique. In order to generate fractional multiples of the input reference frequency by 

solely applying integer-N PLLs, dual-loop frequency synthesizer architectures have been 

proposed in which integer-N PLLs serve as frequency multipliers (numerators) and 

frequency dividers serve as division factors (denominators) and the overall effect of the 

dual-loop frequency synthesizer is a fractional multiple of the input reference frequency. 

Shown in Figure 3.6 is the block diagram of a dual-loop frequency synthesizer 

architecture proposed in [2]. The final output frequency from its VCO1 can be 

represented in terms of the two input reference frequencies, fref1 and fref2 as: 

 , (3.25) 

where the integer-frequency multiplications are realized by the integer-N PLLs; the 

integer-frequency division is realized by the bridging frequency divider “/X”; the 

frequency addition is realized by the operation of the mixer; and the minimum 

synthesized output frequency step is controlled by the term, fref2/X. 

Dual-loop frequency synthesizer architectures realize fractional multiplications of 

the input reference frequency without generating fractional phase spurs as in a fractional-

N frequency synthesizer by deploying an extra integer-N PLL and an integer-frequency 

divider. The architecture also offers designers extra degrees of freedom to tradeoff 
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bandwidths, settling speeds and phase-noise reductions in between the two PLLs. But a 

significant drawback of the current dual-loop architectures is that they inevitably apply 

mixers to implement arithmetic operations of the different frequency combinations, 

which may generate large harmonic components around the desired carrier frequency 

because of the nonlinearities of the mixers. The large harmonic components are closely 

located around the carrier frequency and are difficult to remove solely by the filtering of 

the constituent loops’ bandwidths. The nonlinearities of the mixers may also increase the 

1/f noises around the carrier frequency [5], [6]. Another drawback of the current dual-

loop architectures is the requirements of extra independent reference sources for each 

PLL, which is not practical for many applications. 

 

 

Figure 3.6: Block diagram of a dual-loop frequency synthesizer architecture proposed in [2] 
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3.4 Delta-Sigma (∆∑) Frequency Synthesizers Based on Fractional-N PLLs 

Fractional phase spurs on the output spectrum of the fractional-N frequency 

synthesizer architecture presented in Section 3.2 arise from the periodic phase errors in its 

PFD which are caused by the periodic toggling between integer moduli to achieve 

average fractional division for the frequency divider in the feedback loop of the PLL. For 

the fractional frequency divider in Figure 3.4, it can be redrawn as in Figure 3.7 in which 

the fractional frequency divider can be alternatively represented as ÷(N + y[n]), where 

y[n] = +1 or -1 and n denotes the clock sequence. The fractional average effect of y[n] 

can be decomposed as y[n] = x + em[n], where the x is the desired fractional part of the 

average divider modulus, i.e. x = A/Q in (3.16); and em[n] is undesired zero-mean 

quantization noise caused by using integer moduli in place of the ideal fractional value. 

em[n] corresponds to the phase errors it causes in the PFD and is periodic for the 

modulation of the overflow signals from the Q-modulus accumulator. Therefore, there 

are discrete phase spurs on the spectrum of the output synthesized carrier frequency. 

If the periodicity of em[n] can be broken, there will not exist discrete phase spurs 

on the output spectrum of the fractional-N frequency synthesizer in Figure 3.7. This is the 

basic principle for a ∆∑ fractional-N frequency synthesizer which generates the sequence 

of moduli y[n] such that the quantization noise em[n] is not periodic and has most of its 

power in a frequency band well above the desired bandwidth of the PLL. Shown in 

Figure 3.8 is an example of a ∆∑ fractional-N frequency synthesizer introduced in [7], 

where the PLL core is similar to the one in Figure 3.7 with the Q-modulus accumulator 

replaced by a digital ∆∑ modulator. The details of how a digital ∆∑ modulator works are 

presented in [1], [7] and [9] and its main purpose is to coarsely quantize its input 
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sequence, x[n], such that y[n] is integer values and has the form: y[n] = x[n-k] + em[n], 

where the parameter k is determined by the order of the digital ∆∑ modulator with a 

specific configuration and em[n] is dc-free quantization noise with most of its power 

outside the PLL bandwidth. The sequence x[n] consists of the desired fractional part of 

the divider modulus, A/Q, plus a small, pseudo-random, 1-bit sequence. The pseudo-

random sequence is necessary to avoid spurious tones in the ∆∑ modulator’s quantization 

noise, but its amplitude is very small so it does not appreciably increase the phase noise 

of the PLL [9] 

 

 

Figure 3.7: Remodeling of the fractional frequency divider in Figure 3.4 

Shown in Figure 3.9 is a Matlab simulation of the power spectrum of the 

quantization noise em[n] after being modulated by the VCO and appearing at the output of 

a ∆∑ fractional-N frequency synthesizer with x = A/Q = 11/50 and fref =10 MHz for a 

912.2 MHz carrier frequency in a P-GSM communication system. The illustrated power 

spectrum has been truncated from 300 kHz to 2 MHz and its power increases from low 
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offset frequencies to high offset frequencies with the majority of the power being pushed 

above a practical PLL’s bandwidth. This is the key property for the ∆∑ fractional-N 

architecture. A ∆∑ fractional-N PLL’s bandwidth can be designed significantly wider 

than its regular fractional-N counterpart while maintaining a cleaner output power 

spectrum, because the power spectrum of its quantization noise em[n] contains no discrete 

phase spurs and has most of its power at far offsets from the carrier, which can be 

effectively filtered solely by the PLL’s bandwidth 

 

 

Figure 3.8: A ∆∑ fractional-N frequency synthesizer example 

The wider bandwidth and cleaner output power spectrum make ∆∑ fractional-N 

frequency synthesizers much more attractive than the regular fractional-N architecture, 

but the cost of reshaping the quantization noise is the large extra chip area for the digital 

∆∑ modulator and the generation of the psuedo-random bit sequence. The processes of 

digital ∆∑ modulation increase the complexity of the circuit and may not be convenient 

for monolithic applications. 
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Figure 3.9: Simulated power spectrum of the quantization noise em[n] at the output of a ∆∑  
fractional-N frequency synthesizer with offset frequencies truncated from 300 kHz to 2 MHz 

3.5 Summary 

This chapter presented the architectures, model linearization and working 

principles of existing frequency synthesizers prevailing in academia and in industry. The 

pros and cons of each of the architectures can be summarized as follows:  

 
1. The integer-N frequency synthesizer architecture introduced in Section 3.1 is the 

fundamental core for other PLL frequency synthesizer architectures. It is simple 

to design but suffers from its inherent contradiction of frequency resolution 

(channel spacing) and PLL bandwidth (settling speed), which makes the integer-N 

architecture not suitable for many modern communication applications with high 

carrier frequency and close channel spacing. 

 
2. The fractional-N frequency synthesizer architecture introduced in Section 3.2 

overcomes the inherent contradiction of an integer-N frequency synthesizer by 
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replacing integer divider moduli with fractional divider moduli to achieve smaller 

divider moduli, finer frequency resolution and wider PLL bandwidth. But the 

periodic toggling of the divider moduli, at the same time, generates periodic phase 

errors in its PFD, which manifest themselves as discrete phase spurs on the output 

spectrum. The phase spurs are very strong and located at offset frequencies equal 

to the designed frequency resolution. In order to filter the discrete phase spurs, the 

bandwidth of a fractional-N frequency synthesizer has to be set at a very small 

value, which creates another contradiction of frequency resolution and PLL 

bandwidth. 

 
3. The dual-loop frequency synthesizer architecture introduced in Section 3.3 

generates fractional multiples of the input reference frequency by utilizing 

integer-N PLLs as frequency multipliers and frequency dividers as frequency 

division factors. Because the constituent loops are integer-N PLLs, the dual-loop 

architecture does not generate fractional phase spurs as in the fractional-N 

architecture in Section 3.2 and it also provides designers opportunities to tradeoff 

bandwidths, settling speeds and phase-noise reductions in between the two loops. 

But this architecture inevitably applies mixers to realize arithmetic combinations 

of the different fractional frequencies from its individual components. Mixers are 

nonlinear devices and generate large amount of harmonics around the carrier 

frequency which is present within the PLL bandwidth, plus the application of dual 

reference frequencies is inconvenient for many applications. 
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4. The ∆∑ fractional-N frequency synthesizer architecture introduced in Section 3.4 

removes fractional phase spurs from its output spectrum by randomizing the 

quantization noise in its feedback-loop frequency divider. The randomization 

reshapes the power spectrum of the resulted phase errors in its PFD to have small 

power components on its lower frequency band and most of the powers pushed to 

its higher frequency band. This reshaped power spectrum allows a wider PLL 

bandwidth and cleaner output spectrum for the ∆∑ fractional-N architecture. But 

the cost of the performance superiority is the requirements of large chip area and 

complexity of the digital ∆∑ modulator. 
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4 Analysis of Power Spectra of Signals in PLL Frequency 
Synthesizers 

 

Signals in a PLL frequency synthesizer can be categorized as passband signals 

and baseband signals. Passband Signals are usually referred to the output signals from 

PLLs with their general form written as: 

 , (4.1) 

where A is the mean amplitude of the passband signal; a(t) is a zero-mean random 

process and can be ignored in passband signals’ power spectrum analyses because 

random amplitude fluctuations in a VCO can be largely suppressed by amplitude-control 

mechanisms; f0 is the synthesized output carrier frequency with a steady phase of 2π f0t; 

ϕ(t) is an assembly of all phase deviations from the steady phase 2π f0t,  which includes 

transferred phase noises shown at the output of the PLL from all phase-noise sources in 

the PLL, the initial phase of the VCO and the integrated effects of VCO frequency drifts. 

ϕ(t) is a baseband signal because its frequency is much slower than the carrier frequency 

f0 and the study of the power spectrum of ϕ(t) can provide us a window to speculate the 

power spectrum of the passband signal vo(t), which will be discussed in Section 4.3 of 

this chapter. 

Not every signal has its power spectrum defined in theory. For example, a 

continuous-time aperiodic signal only has an energy spectrum and no defined power 

spectrum [13]; and more commonly in PLLs, phase noises in PLL components are often 
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multiplicative and nonstationary and there is no firm theoretical definitions for such 

signals [1]. But we do see power spectra displayed on measuring equipments such as 

spectrum analyzers and phase-noise analyzers in laboratories. To explain this gap 

between the theoretical power spectra and the physically measured power spectra, in this 

chapter, we first discuss the working principles of a spectrum analyzer and a phase-noise 

analyzer in Section 4.1. As we will see, spectrum analyzers are suitable for measuring 

power spectra for passband signals, vo(t), which have a high carrier frequency and a large 

frequency bandwidth, and phase-noise analyzers are used to measure close-in phase-noise 

spectra for baseband signals, ϕ(t), which are of  relatively small frequency components 

but require finer frequency resolutions. Then, in Section 4.2, calculation and estimation 

methods for power spectra of various kinds of common continuous-time signals are 

introduced. For signals with theoretically defined power spectra such as periodic signals 

and wide-sense stationary (WSS) stochastic signals, their power spectra can be directly 

calculated. For signals without theoretically defined power spectra such as aperiodic 

signals and nonstationary stochastic signals, estimation methods need to be applied by 

sampling a portion of the original signal. In Section 4.3, discrete approximation will be 

introduced to reveal the approximation relationship of the power spectrum of the 

baseband phase-noise modulation signal ϕ(t) to the phase-noise sidebands of its phase-

modulated passband signal vo(t). Lastly, a summary of this chapter is drawn in Section 

4.4. 



 

 47 

4.1 Measurements of Power Spectra of Signals 

4.1.1 General Measuring Principle of Power Spectra of Signals 

The general model of measuring power spectra of signals applies to both power 

spectrum analyzer and phase-noise analyzer and is shown in Figure 4.1, where x(t)  is an 

arbitrary continuous-time signal passing through an ideal 1-Hz range bandpass filter 

centered at the frequency f1. The resulted continuous-time signal, x1-Hz(t), is then passed 

through a squaring device and subsequently being smoothed over a long period of time to 

achieve the signal’s average power at the frequency f1 as Sxx(j2πf)|f= f1. The physical 

implication of Sxx(j2πf)|f= f1 coincides with the unit for power spectral densities: V2/Hz, 

which can be approximately interpreted as a signal’s average power concentrated in a 1-

Hz range at a certain frequency. The measuring processes in Figure 4.1 can be abstracted 

as a single formula as: 

 , (4.2) 

where T is the smoothing time period of the averaging process and, in practical 

measurement equipments, as long as 1/T is much smaller than the frequencies of the 

measured signal x(t) , T can be treated as infinity. The unit of Sxx(j2πf) can be taken as 

V2/Hz or A2/Hz, depending on the type of the measured signal: voltage or current, and 

more commonly, Sxx(j2πf) is affixed with a unit of W/Hz because of the input impedance 

of measurement equipments. 
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Figure 4.1: General model of measuring power spectra of signals 

4.1.2 Measurement of Power Spectra of Passband Signals 

Because a practical bandpass filter has a bandwidth which is much greater than 1-

Hz range and its center frequency can not be altered easily with the input frequencies, the 

general model in Figure 4.1 needs to be modified to measure the power spectra of 

passband signals. Shown in Figure 4.2 is a simplified model of a spectrum analyzer for 

passband signals. Comparing with the general model in Figure 4.1, a passband spectrum 

analyzer utilizes a mixer and a swept local oscillator with sweeping frequency, fLO to 

convert the high-frequency input passband signal to an intermediate-frequency signal, fIF; 

the intermediate-frequency signal is then fed into a bandpass filter with resolution 

bandwidth, RBW and its center frequency aligned with the intermediate frequency, fIF, to 

generate a filtered output signal of vRBW(t); the following squared-law detector and the 

smoothing filter are similar to the ones in Figure 4.1 with the smoothing filter attaining a 

video bandwidth of VBW. The output of the smoothing filter represented by PRF(f) is the 

average power of the signal within the resolution bandwidth, RBW. But the definition of 

power spectral density can be approximately interpreted as the average power of the 

signal within a 1-Hz range. Thus, PRF(f) can be converted to a nominal power spectral 

density, WRF(f), by dividing its RBW as 
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 , (4.3) 

where WRF(f) is an approximation of the signal’s actual power spectral density because its 

resolution is the same as the spectrum analyzer’s RBW instead of the 1-Hz range defined 

by an actual power spectral density. The only way to improve the accuracy of WRF(f) to 

an actual power spectral density is to reduce the RBW at the cost of increasing the 

scanning time of the power spectrum analyzer. 

 

 

Figure 4.2: Simplified model of power spectrum analyzers for passband signals 

Shown in Figure 4.3 are simulated power spectrum, PRF(f), and power spectral 

density, WRF(f), of a 10-MHz sinusoidal oscillator output signal measured by a passband 

spectrum analyzer shown in Figure 4.2 with a RWB = 1 kHz. Figure 4.3(a) shows the 

reading of PRF(f), which represents the signal’s average power within the RBW at a 

certain frequency. WRF(f) shown in Figure 4.3(b) is the scaled version of PRF(f) by (4.3) to 
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represent the power spectral density of average power within a 1-Hz range at a certain 

frequency. 

To better show noise sidebands of passband signals, more commonly, dB scales 

are used in spectrum analyzers by comparing the signal’s power at a certain frequency 

with a standard unit power. PRF(f) can be converted to a dB-scale reading with a unit of 

dBmW by dividing its power at a certain frequency within the RBW by a unit power of 1 

mW as 

 . (4.4) 

Figure 4.4(a) shows the dB-scale reading of PRF(f) in Figure 4.3(a), where noise 

sidebands are better demonstrated than in Figure 4.3(a). Similarly, WRF(f) can be 

converted to a dB-scale reading with a unit of dBmW/Hz by dividing its power spectral 

density at a certain frequency by a unit power spectral density of 1 mW/Hz as 

 . (4.5) 

Figure 4.4(b) shows this process of (4.5) by converting the actual power spectral 

density reading of WRF(f) in Figure 4.3(b) to its dB-scale reading. Because WRF(f) is just 

an ordinate-scaled version of PRF(f),  the dB-scale reading of WRF(f) in Figure 4.4(b) can 

be obtained from dB-scale reading of PRF(f) in Figure 4.4(a) by subtracting a logarithm of 

RBW from the latter as 
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 . (4.6) 

The ratio of noise powers at different frequencies on sidebands of a passband 

signal can be conveniently obtained by subtracting the readings of noise powers on dB-

scale charts of PRF(f) and WRF(f). For example, to compare noise sideband powers at 11 

MHz and 12 MHz of the passband signal in Figure 4.4(a), the noise-power ratio at the 

two frequencies can be directly obtained by subtracting their respective dB-scale readings 

as 

 . (4.7) 

Similar principles can be applied to dB-scale charts for WRF(f). 
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(a) 

 

(b) 

Figure 4.3: Simulated measured power spectrum and power spectral density of a 10-MHz sinusoidal 
oscillator signal by a passband spectrum analyzer with RBW = 1 kHz: (a) PRF(f) and (b) WRF(f) 
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(a) 

 

(b) 

Figure 4.4 Conversion of actual power readings in Figure 4.3 to relative dB-scale readings: (a) dB-
scale reading of power spectrum, PRF(f), in Figure 4.3(a); (b) dB-scale reading of power spectral 
density, WRF(f), in Figure 4.3(b) 

4.1.3 Measurement of Power Spectra of Baseband Signals 

Various noise sources exist in a PLL and their final results at the output of the 

PLL can be assembled as time-domain phase-noise modulation, ϕ(t), in (4.1) or 
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frequency-domain spectrum sidebands illustrated in Figure 4.3 and Figure 4.4. The study 

of close-in phase-noise sidebands for passband signals is difficult for a spectrum analyzer 

because its RBW is required to be large to accommodate a widespread frequency range of 

the passband signal, which results that details of the close-in sidebands have to be 

ignored. In addition, in order to measure power spectra of input signals with wide power-

dynamic ranges without overloading the measuring system, weak sidebands are often 

hardly able to be displayed noticeably in spectrum analyzers. Because of these major 

drawbacks for a spectrum analyzer, the frequency-domain power spectrum of the 

baseband phase-noise modulation signal, ϕ(t), of the corresponding passband signal is 

used to represent the close-in noise sidebands of the passband signal. This approximation 

has been quite successful in practical observations and has become the underlying 

principle for a phase-noise analyzer where the power spectrum of a phase-noise 

modulation signal, ϕ(t), will be displayed. Conditions for this approximation to hold will 

be discussed in Section 4.3 and we are going to use the derived results from this 

approximation to simulate phase-noise and phase-spur performance of our proposed PLL 

frequency synthesizer architecture in this thesis. 

Because the phase-noise modulation, ϕ(t), is a baseband continuous-time real 

signal with its power spectrum symmetrically even on both sides of the frequency origin, 

by folding the two-sided power spectrum to the positive-frequency range and doubling 

the corresponding spectrum components, we can use Wϕ(f) to represent its one-sided 

power spectrum on the positive frequencies. Shown in Figure 4.5 is a simulated one-sided 

Wϕ(f) of a phase-noise modulation signal, ϕ(t), at the output of a fractional-N frequency 

synthesizer. It is prominent to note that the power spectrum, Wϕ(f), is composed of a 
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continuous power spectrum and a discrete power spectrum with individual impulse lines. 

A well-known polynomial of 1/f is often used to approximate the continuous power 

spectrum [1] as 

 , (4.8) 

where hv with v = 0, 1, 2 and 3 are coefficients for each of the polynomial terms and with 

units of mW·Hzv-1. 

The continuous power spectrum and discrete power spectrum of Wϕ(f) in Figure 

4.5 are due to different kinds of noise sources in the phase-noise modulation signal ϕ(t). 

Continuous power spectra are caused by continuous-time aperiodic or random noise 

 

Figure 4.5: Simulated one-sided power spectrum, Wϕ(f), of a phase-noise modulation signal, ϕ(t), at 
the output of a fractional-N frequency synthesizer 

sources in a PLL, but discrete power spectra are caused by continuous-time periodic 

noise sources in the PLL. The different kinds of noise sources in a PLL pass though the 

PLL system and form a mixed signal at the output of the PLL, which, in the baseband 
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form, is the phase-noise modulation signal ϕ(t). Because of the distinct natures of a 

continuous power spectrum and a discrete power spectrum, measuring algorithms for a 

phase-noise analyzer need to be adjusted correspondingly to display the correct power for 

each kind of the spectra. Shown in Figure 4.6 is a simplified block diagram of a phase-

noise analyzer. The phase demodulator is to demodulate the baseband phase-noise 

modulation signal ϕ(t) from its passband carrier signal, vo(t). (Detailed operations of a 

phase demodulator can be referred to [1].) The following spectrum analyzer is a baseband 

spectrum analyzer which is similar to the passband spectrum analyzer in Figure 4.2 but 

with a much finer RBW to accommodate the relatively narrower frequency range of a 

baseband signal. The final logarithmic converter is to display the measured baseband 

phase-noise power spectrum, Wϕ(f), approximately as the one-sided noise sideband of the 

modulated passband signal vo(t) by comparing powers at offset frequencies to the carrier-

frequency power in a unit of dBc/Hz or dBc, which will be discussed further in Section 

4.3. 

 

 

Figure 4.6: Simplified block diagram of a phase-noise analyzer 

Measurements of continuous power spectra and discrete power spectra are carried 

out in the baseband spectrum analyzer for a phase-noise analyzer. The operation for a 

baseband spectrum analyzer is similar to that for a passband spectrum analyzer, which 

consists of the major processes of mixing, bandpass filtering, squaring and smoothing as 
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seen in Figure 4.2, where the mixing and bandpass filtering have been illustrated in their 

frequency-domain representations and the squaring and smoothing have been illustrated 

in their time-domain representations instead. But the overall power measuring process in 

a spectrum analyzer for a one-sided power spectrum Wϕ(f) can also be concluded into a 

concise frequency-domain equation as: 

 , (4.9) 

where Wϕ(f) can assume either a continuous power spectrum or a discrete power 

spectrum; Y( f , fm) is the frequency response of the bandpass filter in the spectrum 

analyzer with its bandwidth centered at a frequency of fm; the operations of squaring the 

magnitude of Y(f , fm) and integration over the frequency range from 0 to +∞ represent the 

process of passing the measured signal’s power through the spectrum analyzer; and the 

resulted Pϕ(fm) (mW) is the estimated average power of the measured signal within the 

RBW of the bandpass filter at the center frequency, fm. 

To measure the continuous power spectrum, Wϕ(f) is denoted as Wϕ_c(f), where the 

subscript “c” indicates “continuous.” Since a spectrum analyzer is to measure a signal’s 

average power within its RBW which is comparatively smaller than the measured 

signal’s  frequency range, in the vicinity of fm, both Y( f , fm) and Wϕ_c(f) can be 

approximated as constants by their center values as Y(fm , fm) and Wϕ_c(fm) respectively. 

And (4.9) can be rewritten as: 

 , (4.10) 
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where Pϕ_c(fm) is the spectrum analyzer’s output measurement of the input signal’s 

average power within the RBW; the integration of |Y( f , fm)|2 can be approximated by the 

product of its center value at the frequency fm and the BN(fm) which is the bandpass filter’s 

effective bandwidth when approximating the bandpass filter as an ideal rectangular 

frequency response, and, in many cases, BN(fm) can be approximately equal to the 

bandpass filter’s RBW. Similar to (4.3), (4.10) indicates that the signal’s nominal power 

spectral density at the frequency fm can be obtained as 

 , (4.11) 

where Pϕ_c(fm) is the spectrum analyzer’s measurement; |Y(fm , fm)|2 and BN(fm) are 

already-known specifications for the spectrum analyzer. 

The power measuring processes of (4.10) and (4.11) for a spectrum analyzer have 

been idealized and simplified such as replacing Y(f , fm) and Wϕ_c(f) with their respective 

center values and approximating the integration of |Y(f , fm)|2 by a product of |Y(fm , fm)|2 

and BN(fm). Measurement calibrations for an actual spectrum analyzer will take into 

account the actual bandpass filter’s characteristic frequency response, Y(f , fm) and the 

signal’s nonflat power spectral density, Wϕ_c(f). The operations of such calibrations are 

somewhat complicated by the underlying principles remain the same. 

To measure the discrete power spectrum, Wϕ(f) is denoted as Wϕ_d(f), where the 

subscript “d” indicates “discrete.” A discrete power spectrum consists of a series of 

infinite-height, zero-width, finite area, impulses located at the harmonics of its 

fundamental frequencies f0 with its single-sided power spectrum represented as 

 , (4.12) 
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where ak is the fourier series coefficients for the continuous-time periodic components in 

the baseband phase-noise modulation signal ϕ(t); and the resulted spurs are located at k f0 

for k = 1, 2, … , +∞ with the dc term, |a0|2, being ignored in our future discussion for the 

approximation of the baseband power spectrum Wϕ(f) to the one-sided noise sideband of 

the passband signal vo(t) only holds for offset frequencies sufficiently away from the 

carrier frequency as explained in Section 4.3. The bandpass filter in the spectrum 

analyzer continues to sweep the frequency range of the measured signal and its center 

frequency fm automatically aligns closely with each of the impulses in (4.12). For a single 

impulse at k1·f0, k1 � Z+, its power spectrum can be written as 

 , (4.13) 

and, similar to (4.9), its average power within the RBW of the bandpass filter can be 

calculated as 

 , (4.14) 

where fm ≈ k1·f0 for the impulse being captured in the bandwidth of the bandpass filter. 

Therefore its power (the underlying area of the impulse) can be estimated from (4.14) as 

 . (4.15) 

Equation (4.15) indicates that the power measuring process for discrete spectral 

spurs is independent of the bandpass filter’s effective bandwidth, BN(fm), which is 

substantially different from the power measuring process of (4.11) for continuous spectral 
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components. It will be seriously wrong to apply the distinct power measuring processes 

of (4.11) and (4.15) for each kind of power spectral densities to the other one. 

4.2 Calculations and Estimations of Power Spectra of Signals 

At the beginning of this chapter, it mentioned that not every type of signal has its 

power spectrum well defined in theory. But we do see the measurement results from a 

spectrum analyzer or a phase-noise analyzer in the last section. To explain this paradox, 

we need to understand that spectrum analyzers and phase-noise analyzers only 

mechanically scan the input signal’s average power within the RBW of its bandpass filter 

and the measurement results of the average powers are displayed in alignment with the 

center frequencies of the sweeping bandpass filter and named as “power spectrum”, 

regardless of the type of the input signal. However, for computer simulation of a signal’s 

power spectrum, there are no physically-existed sweeping bandpass filters available and 

the signal’s power spectrum must be either calculated or estimated mathematically. In 

this section, we are going to introduce the power spectral calculation and estimation 

methods for signals with and without formally-defined spectral densities. And the derived 

results will be applied to Matlab simulations of phase-noise and phase-spur performances 

of the proposed PLL frequency synthesizer architecture in this thesis. 

4.2.1 Calculation of Power Spectra of Continuous-Time Periodic Signals 

For a continuous-time periodic signal ϕperiod(t) with Fourier coefficients ak, k � Z, 

its power spectrum consists of a series of infinite-height, zero-width, finite-area, impulses 

located at the harmonics of its fundamental frequency: 
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 , (4.16) 

where T is the fundamental period of the periodic signal. 

4.2.2 Calculation of Power Spectra of Continuous-Time Wide-Sense Stationary 
(WSS) Stochastic Signals 

For a continuous-time wide-sense stationary (WSS) stochastic signal ϕwss(t), its 

autocorrelation function is defined as 

 , (4.17) 

where τ is the difference of two time instants of the WSS stochastic signal. And its power 

spectrum is the Fourier transform of the autocorrelation function Rϕ(τ) as 

 , (4.18) 

where the power spectrum, Sϕ_wss(t), can be proved to be always real and positive [13]. 

4.2.3 Estimation of Power Spectra of Continuous-Time Aperiodic Signals 

A continuous-time aperiodic signal ϕaperiodic(t) does not have a theoretically-

defined power spectrum [13], but with an energy spectrum defined as the magnitude 

square of its Fourier transform as 

 , (4.19) 

where Φaperiodic(f) is the Fourier transform of the aperiodic signal ϕaperiodic(t). However, a 

presumed power spectrum for ϕaperiodic(t) can be derived from the RMS (root mean 

squared) power of its truncated sample with sufficiently long period. A truncated sample 

of the original aperiodic signal in the time period from –T to +T is denoted as 
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 , (4.20) 

where u(t) is a unit step function. And the RMS power of ϕ'aperiodic(t) can be used to 

approximate the RMS power of ϕaperiodic(t) as 

 , (4.21) 

where Φ'aperiodic(f) is the Fourier transform of ϕ'aperiodic(t); the equation in the 2nd row holds 

for Parseval’s relation; and the last equation implies that the power spectrum of the 

aperiodic signal ϕaperiodic(t) can be estimated from Φ'aperiodic(f) as 

 . (4.22) 

4.2.4 Estimation of Power Spectra of Continuous-Time Nonstationary Stochastic 
Signals 

For a continuous-time nonstationary stochastic signal ϕnonstat(t), its power 

spectrum is not formally defined because autocorrelation functions do not exist for 

nonstationry stochastic signals. Nonetheless, similar to (4.22), its power spectrum can be 

estimated through the energy spectrum of a truncated period of a sample of the stochastic 

signal as 

 , (4.23) 
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where the magnitude square of the integral is the energy spectrum of the truncated period 

of the stochastic signal ϕnonstat(t); and T is the truncation period. This estimation process is 

called “periodogram” in signal estimation theories [13]. 

4.2.5 Physical Units for Calculated and Estimated Power Spectra 

Physical units can be attached to theoretically calculated and estimated power 

spectra for practical analyses. To emulate a physical measurement environment for 

computer simulations, the above mentioned theoretical power spectra can attach a unit of 

mW/Hz; for circuit analyses, V2/Hz or A2/Hz can be used; and for theoretical analyses, 

rad2/Hz is popular. 

4.3 Discrete Approximation 

In previous sections, it has been mentioned that the power spectrum of the 

baseband phase-noise modulation signal ϕ(t) in (4.1) can be used to represent the noise 

sidebands of its corresponding passband signal vo(t). This process is called discrete 

approximation [1], [14]. And its working principle can be demonstrated from the power 

spectrum of a phase-modulated passband signal with its phase being modulated by a 

single-tone sinusoid: 

 , (4.24) 
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where ϕ(t) is the phase modulation for vo(t); for ϕ(t) << 1, cos(ϕ(t)) ≈ 1 and sin(ϕ(t)) ≈ 

ϕ(t); and ϕ(t) = m·sin(2πfot) for single-tone phase modulation. Its double-sided power 

spectrum denoted by Svo_double(f) consists of a series of impulses and is illustrated in 

Figure 4.7(a) as 

, 

(4.25) 

where the power spectral impulses are symmetrical to the origin and to the carrier 

frequency respectively. By folding Figure 4.7(a) to the right twice with respect to the 

origin and to the carrier frequency, a single-sided power spectrum Svo_single(f) shown in 

Figure 4.7(b) can be constructed: 

 , (4.26) 

where ∆f denotes the offset frequencies from the carrier frequency fo; the total power of 

the carrier component is A2/2; and the total power of the noise-sideband component at the 

offset frequency fm is (A2·m2)/4. 

 

(a) 
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(b) 

Figure 4.7: Power spectral representations of the passband signal vo(t) in (4.24): (a) double-sided 
power spectrum, Svo_double(f); (b) single-sided power spectrum, Svo_single(f) 

Implications of discrete approximation can be revealed from Figure 4.7(b) by the 

ratio of noise-sideband powers to the carrier power in a single-sided power spectrum: 

 , (4.27) 

where L(∆f) represents the ratio at an offset frequency ∆f; Psideband(∆f) is the noise-

sideband components’ power at the offset frequency ∆f; and Pcarrier is the carrier’s power. 

Observing (4.27), the ratio L(∆f) at the offset frequency ∆f = fm equals the single-sided 

power of the baseband phase-noise modulation signal ϕ(t) = m·sin(2πfot), which is the 

essential conclusion of discrete approximation. 

Discrete approximation indicates that, for a sinusoidal passband signal vo(t) with 

its phase being modulated by a baseband signal ϕ(t), the ratio of the powers of its noise-

sideband components to the carrier’s power can be approximately equal to the powers of 

the baseband phase-noise modulation signal ϕ(t) at offset frequencies ∆f on the conditions 

that (1) the baseband phase-noise modulation signal ϕ(t) is relatively small and (2) the 
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offset frequencies are relatively far way from the carrier [1]. But discrete approximation 

needs to be understood differently for the distinct natures of the kinds of a continuous 

power spectrum and a discrete power spectrum, and the ratio of the powers is often 

converted to logarithmic scales to emphasize the weak noise sidebands at farther offset 

frequencies. 

For a continuous power spectrum, its power spectral density at an offset 

frequency ∆f can be interpreted as its average power in a 1-Hz range at that offset 

frequency. Correspondingly, discrete approximation is interpreted as: 

 , (4.28) 

where Svo_single(∆f) is the single-sided continuous power spectral density of the passband 

signal vo(t) at an offset frequency ∆f; and the ratio is approximated to Wϕ_c(∆f), the single-

sided continuous power spectral density of its baseband phase-noise modulation signal 

ϕ(t) at the same offset frequency ∆f, which can be measured as in (4.11) for practical 

measurement equipments or calculated as in Section 4.2 for computer simulations. 

For a discrete power spectrum, its powers are concentrated at individual offset 

frequencies as infinite-height zero-width impulses. Accordingly, discrete approximation 

can be written as: 

 , (4.29) 

where Pspur_single(∆f) is the single-sided powers of discrete spurs at offset frequencies ∆f 

for the passband signal vo(t); and the ratio is approximated to the single-sided Fourier 
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series powers |ak|2, k � Z of the underlying baseband phase-noise modulation signal ϕ(t), 

which can be measured as in (4.15) for practical measurement equipments or calculated 

as in Section 4.2.1 for computer simulations. 

4.4 Summary 

In this chapter, signals in a PLL have been categorized as passband signals, 

denoted by vo(t) and baseband signals, denoted by ϕ(t). Measuring principles of a 

spectrum analyzer have been introduced to display passband signals’ average powers 

within a RBW at an offset frequency, f, as PRF(f) and its nominal power spectral density, 

WRF(f), can be calculated by dividing the RBW to approximate the signal’s actual power 

spectral density. To better display weak noise sidebands and easily compare the noise 

power strengths at different offsets, both PRF(f) and WRF(f) have been shown to be 

commonly converted to dB scales by being compared to their respective physical unities. 

For baseband signals, phase-noise analyzers have been introduced to demodulate 

baseband phase noises from their passband signals. And the powers of the baseband 

noises are displayed in low frequency bands with finer RWBs. Because of the distinct 

natures of baseband continuous power spectra, denoted by Wϕ_c(f), and baseband discrete 

power spectra, denoted by Wϕ_d(f), the measuring methods for both spectral types of 

baseband noises have been discussed separately and their similarities and differences 

have been emphasized. 

To simulate continuous phase-noise and discrete phase-spur sidebands at the 

output of a PLL system, it is necessary for a computer program to recognize the types of 

noises in the PLL and choose the correct method to either calculate or estimate the power 
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spectra of the corresponding noise types. For continuous-time periodic noise signals and 

continuous-time wide-sense stationary stochastic noise signals, their power spectra are 

formally defined and can be calculated as introduced in Section 4.2.1 and 4.2.2. For 

continuous-time aperiodic noise signals and continuous-time nonstationary stochastic 

noise signals, their power spectra are not theoretically defined, but can be estimated as 

introduced in Section 4.2.3 and 4.2.4. Phase spurs on the output spectrum of a PLL are 

caused by continuous-time periodic noise errors in the PLL, the calculation method 

introduced in Section 4.2.1 will prove to be useful when analyzing the quantization errors 

in a fractional-N PLL in later chapters. 

Discrete approximation serves as key connection between the power spectrum of 

a baseband modulation signal ϕ(t) and the noise sidebands of its corresponding carrier 

signal vo(t). The conditions for the discrete approximation to hold were introduced. And 

interpretations of discrete approximation for continuous power spectra and discrete power 

spectra were explained individually. 
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5 New Architecture of a Dual-Mode Cascaded-Loop 
Frequency Synthesizer 

 

In this chapter, a proposed new architecture of a dual-mode cascaded-loop 

frequency synthesizer and its synthesis methods will be introduced. The new architecture 

is designed to solve and tradeoff the advantages and disadvantages of the existing 

prevailing PLL frequency synthesizers discussed in Chapter 3. 

The proposed architecture merges the advantages from the integer-N, fractional-N 

and dual-loop architectures with its overall configuration resembling the dual-loop 

architecture but eliminating the application of mixers to reduce phase noises. Its 

performances such as bandwidths, phase-noise and phase-spur reductions and settling 

speeds are similar to the ∆∑ fractional-N architecture, but with a much simpler circuitry 

for monolithic applications. 

5.1 System Architecture 

Figure 5.1 shows the architecture of the proposed dual-mode cascaded-loop 

frequency synthesizer where the PFDs and VCOs are replaced by their linear models in 

Laplace domain. The first loop is a regular fractional-N PLL but can be converted to an 

integer-N PLL by disabling the Q-modulus accumulator, and the second loop is an 

integer-N PLL. The two loops are in series and bridged by a variable M-modulus divider. 
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The output frequency can be formulated, as discussed in chapter 3, from the input 

reference frequency as: 

 , (5.1) 

with the 1st-loop equivalent divider modulus 

 . (5.2) 

The variable M-modulus divider is an essential component in the architecture and 

provides the following three major functions in the architecture’s frequency synthesis: 

1. It improves the architecture’s frequency resolution by serving as a denominator in 

(5.1), which makes  fout possibly to be a fractional multiple of fref, but with both 

constituent loops still working as integer-N PLLs (see Section 5.2.1). 

2. For carrier frequencies which require the 1st-loop to be a fractional-N PLL (see 

Section 5.2.2), the size of the accumulator Q can be substantially minimized. 

From (3.25), we can see that a smaller Q for a given fref, will result in factional 

spurious tones further away from the carrier frequency and make the architecture 

possible to suppress the spurious tones solely by both the constituent loops’ 

bandwidths. 

3. The variable M-modulus divider itself attenuates the powers of phase noises and 

spurs from the 1st-loop by 10×log10(M2) dB. 
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Figure 5.1: Architecture of the proposed dual-mode cascaded-loop frequency synthesizer 

5.2 Synthesis Methods 

5.2.1 Nonfractional Mode (A=0) 

For the proposed architecture, carrier frequencies which are not integer multiples 

of the reference frequency can be synthesized in its nonfractional mode. By setting A=0 

for the Q-modulus accumulator in the first loop, the fractional-N PLL is converted to an 

integer-N PLL and (5.1) can be written as: 

 , (5.3) 

\where (N1N2)/M constitutes a fractional multiplier for the input reference frequency, 

whereas both constituent loops are integer-N PLLs. For example, to generate a Bluetooth 

carrier frequency of 2.479 GHz with 1 MHz channel spacing, a single-loop integer-N 

frequency synthesizer requires an input reference frequency of 1 MHz and a divider 

modulus of 

. 
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But with the proposed architecture, a larger reference frequency of 20 MHz can 

be used and the cascaded-loop fractional multiplier is 

, 

where each constituent loop’s divider modulus has been reduced to hundreds. And 

according to the discussion in Section 3.1.4, this implies the overall bandwidth of the 

cascaded-loop system can be greatly improved over a single-loop integer-N PLL. 

The other great benefit of using nonfractional mode is that it does not generate 

fractional phase spurs when producing the fractional multiples of the input reference 

frequency because both constituent loops are integer-N PLLs 

5.2.2 Mini-denominator Mode (0<A<Q) 

Although a large number of carrier frequencies in a given application can be 

synthesized in the nonfractional mode, there are frequencies which can not be 

synthesized precisely solely by the cascade of the two integer-N PLLs. This situation can 

be proved by a computer search program which searches all possible combinations of N1, 

N2 and M for given sizes of the feedback-loop frequency divider moduli and bridging 

divider modulus. For the frequencies which can not be synthesized precisely in the 

nonfractional mode, it is necessary that the first loop can be turned into a fractional-N 

PLL but with a minor accumulator size, Q, to enhance the main fractional effect arising 

from the bridging M-modulus divider to reach all frequencies. When the first loop is 

working as a fractional-N PLL, the proposed architecture is working in its mini-

denominator mode and its synthesis formula has been given in (5.1) with 0<A<Q. 
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In mini-denominator mode, the accumulator size, Q, can be significantly smaller 

than that for a single-loop fractional-N PLL, which, according to (3.25), will result in 

fractional phase spurs located at offset frequencies further away from the carrier 

frequency. For example, to generate a GSM carrier frequency of 912.2 MHz with 200 

kHz channel spacing from a 10 MHz input reference frequency, the synthesis formula for 

a single-loop fractional-N PLL is 

, 

with a divider modulus, Q, to be at least 50 to meet the channel spacing requirement. But 

with the proposed architecture, the same carrier frequency can be synthesized by (5.1) as 

, 

with accumulator size Q=12, which is more than four times smaller than that in the single-

loop fractional-N PLL. As with (3.25), in mini-denominator mode, the proposed 

architecture has pushed output fractional phase spurs at offset frequencies at least four 

times further from the carrier than those generated by a single-loop fractional-N PLL. 

For hardware implementations, the accumulator size, Q, is fixed, but the resulted 

fractional phase spurs can be pushed to even further offset frequencies in mini-

denominator mode when A and Q in (5.1) contain common factors. For example, to 
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generate 905.8 MHz in the above GSM communication system, mini-denominator mode 

provides a synthesis equation: 

, 

where A/Q = 4/12 = 1/3 with the effective accumulator size of 3 instead of the nominal 

value of 12. In this case, fractional phase spurs are being pushed more than 16 times 

further from the carrier than a single-loop fractional-N PLL. It is observed, through 

computer search, that more that half of the frequencies synthesized in mini-denominator 

mode are of common factors in their A and Q. 

Mini-denominator mode indeed is a fractional mechanism. Thus, a relatively large 

reference frequency can be chosen. From (3.25), a larger reference frequency combined 

with a smaller Q provides greater frequency margins between the carrier and the 

fractional phase spurs, which results in opportunities for wider PLL bandwidths and the 

suppression of phase spurs solely by the cascaded loops’ bandwidths and the M-modulus 

divider in the proposed architecture 

5.2.3 Search Results for Nonfractional and Mini-denominator Modes 

For the proposed architecture, a simple computer program can be used to search 

all possible combinations of N1, A, Q, N2 and M to reach every carrier frequency in a 

given frequency range with specified channel spacing either in its nonfractional mode or 

in its mini-denominator mode. For applications in GHz range, in order to maximize the 

constituent loops’ bandwidths and the number of frequency channels which can be 

synthesized in the nonfractional mode, an input reference frequency of a multiple of 10 
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MHz is suggested such that M can be set to vary around 1000 and 9-bit binary dividers 

are used for both N1 and N2. 

As simulation shows, a critical design problem for the proposed architecture is the 

wide tuning range of the 1st-loop VCO because of the wide variation of N1. To ease its 

hardware implementation and reduce its output phase noise, N1 has been restricted to vary 

within 10% from its midpoint in the computer search program. 

Table 5.1 shows computer search results of the proposed nonfractional mode and 

mini-denominator mode for carrier frequencies in GSM, Bluetooth and an arbitrarily 

specified communication system. In the table, numbers of channels synthesized in each 

mode are counted respectively. 

Table 5.1: Computer search results for channel synthesis in nonfractional mode and in mini-
denominator mode 

 P-GSM 900 
(Uplink) 

Bluetooth Others 
(Arbitrary) 

Frequency Range 890 – 915 
MHz 

2.402 – 2.480 
GHz 

1500 – 1520 
MHz 

Channel Spacing 200 kHz 1 MHz 100 kHz 
Number of Channels 126 79 201 

M  800 – 1200 800 – 1200 800 – 1000 
N1 (10% Variation; 9-bit Binary Divider) 360 – 440 270 – 330 360 – 440  

N2 (9-bit Binary Divider) 162 – 302  292 – 491 273 – 371  
Accumulator Size (Q) Q = 12 Q = 8 Q = 16 

Input Reference Frequency 10 MHz 20 MHz 10 MHz 
Frequency Error < 1Hz < 1 Hz < 100 Hz 

Nonfractional Mode a 71 52 92 
Mini-denominator Mode a 55 27 109 

aDenotes the number of channels in either mode. 

5.2.4 Strictly Nonfractional Mode 

For applications requiring only approximate frequency synthesis, i.e., allowing 

the synthesized carrier frequencies in the vicinity of the desired values within an error of 
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a few percentages of the channel spacing, the nonfractinal mode can be solely applied to 

reach every channel frequency. Since both cascaded loops are integer-N PLLs in the 

strictly nonfractional mode, the Q-modulus accumulator in the 1st-loop can be disabled 

and each of the channel frequencies is synthesized by optimally selecting the integer 

combinations of N1, N2 and M. Shown in Table 5.2 is the computer search results of 

applying strictly nonfractional mode to the same carrier frequencies in applications in 

Table 5.1. The numbers of channels fallen within difference error percentages of the 

channel spacing are categorized in the table, which shows that most of the channels 

synthesized in strictly nonfractional mode are located within 1% error of the given 

channel spacing. 

Table 5.2: Frequency errors for all channel frequencies synthesized in strictly nonfractional mode 

 P-GSM 900 
(Uplink) 

Bluetooth Others 
(Arbitrary) 

Frequency Range 890 – 915 
MHz 

2.402 – 2.480 
GHz 

1500 – 1520 
MHz 

Channel Spacing 200 kHz 1 MHz 100 kHz 
Number of Channels 126 79 201 

M  1000 – 1200 800 – 1200 800 – 1000 
N1 (10% Variation; 9-bit Binary Divider) 360 – 440 270 – 330 360 – 440  

N2 (9-bit Binary Divider) 203 – 302  292 – 491 273 – 371  
Input Reference Frequency 10 MHz 20 MHz 10 MHz 
Frequency Error ≤ 0.1% b 96 73 93 

0.1% < Frequency Error ≤ 1% b  29 6 101 
1% < Frequency Error ≤ 2% b  0 0 2 
2% < Frequency Error ≤ 3% b  1 0 5 

Frequency Error > 3% b 0 0 0 
bRepresents the number of channels fallen within a specified percentage error of the channel spacing.  
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5.3 Summary 

This chapter proposed the new architecture of a dual-mode cascaded-loop 

frequency synthesizer and introduced its synthesis methods in the nonfractional mode 

and the mini-denominator mode: 

• The nonfractional mode inherits advantages from both the integer-N architecture 

and the dual-loop architecture where it realizes fractional multiplication by solely 

applying the cascaded two integer-N PLLs as numerators and the bridging 

frequency divider as a denominator. 

• The mini-denominator mode inherits advantages from both the fractional-N 

architecture and the dual-loop architecture but with a significantly smaller 

modulus Q for its accumulator compared to a single-loop fractional-N architecture 

to result in fractional phase spurs being pushed to further offsets from the carrier 

and filtered by the cascaded PLLs’ own bandwidths without auxiliary circuitry. 

• For applications requiring only approximate frequency synthesis, strictly 

nonfractional mode was proposed to generate channel frequencies in the vicinity 

of desired values within a specified small percentage error with respect to the 

channel spacing. 

• Computer search results for specifications of the proposed architecture to apply to 

GSM, Bluetooth and an arbitrarily sampled system have been given in tables and 

the frequency synthesis errors were specified by the respective maximum errors 

and the number of synthesized channels in each of the error categories. 
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6 System Analysis 

This chapter describes the system analyses of the proposed dual-mode cascaded-

loop frequency synthesizer architecture for its loop filter structures, system transfer 

functions, stability and settling speeds, and phase-noise and phase-spur reductions. A 

PLL’s open-loop and closed-loop bandwidths are tightly related to its loop filter 

structure. In Section 6.1, we first introduce a simple RC loop filter structure which is 

suitable for the proposed architecture for monolithic applications. Section 6.2 discusses 

system transfer functions and a stabilization method for the proposed architecture. Design 

procedures for the optimal selection of synthesis modes and the calculation of loop filter 

parameters are proposed in Section 6.3. The analysis of discrete phase spurs in mini-

denominator mode arising from the 1st-loop fractional-N mechanism will be discussed in 

Section 6.4. The analysis of continuous phase noises from the 1st-loop VCO which is 

usually the noisiest component in the proposed architecture is subsequently discussed in 

Section 6.5. Finally, a conclusion of this chapter is drawn in Section 6.6 

6.1 Loop Filters 

The loop filter design is crucial for a PLL’s bandwidth, stability, settling speed, 

phase-noise and phase-spur reductions. With the proposed architecture, it is possible to 

use relatively simple loop filter designs, because, in nonfractional mode, there is no 
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generated fractional phase spurs and, in mini-denominator mode, the generated fractional 

phase spurs are pushed to further offsets from the carrier. In addition to the further offset 

fractional phase spurs, the reference phase spurs caused by the input reference source are 

also far away from the carrier frequency because of the relatively large reference 

frequencies used in the proposed architecture, which can be seen in Table 5.1 and Table 

5.2. Compared with many other works [2], [3] that apply active high-order loop filters, 

this work uses a simple passive second-order RC loop filter for both the proposed 

cascaded loops to achieve a relatively wide bandwidth and substantially reduced phase 

spurs. A simpler loop filter design with wider bandwidth also favors the sizes of loop 

filter components for monolithic applications. 

As seen in Figure 5.1, identical passive RC loop filter structures have been 

applied to both loops in the proposed architecture. Assuming both loops employ charge 

pumps to convert phase differences to current errors, the loop filter transfer function of 

either loop is a transimpedance and can be written as 

 , (6.1) 

where the subscript “a” and “b” are used to indicate the first and second loop 

respectively; and C1a,b, C2a,b, and R1a,b are the loop filter components for the respective 

loops. 

6.2 Stability and Settling 

The overall system transfer function of the proposed architecture, denoted by 

H(s), is the cascade of the transfer functions of its two constituent loops: 



 

 81 

 , (6.2) 

where the 2nd and 3rd fractional factors represent the closed-loop transfer functions of the 

two cascaded loops respectively [refer to (3.3) and (3.5)]; and H1,2(s) are their respective 

open-loop transfer function. As illustrated in Figure 5.1, the open-loop transfer function 

of the 1st loop, H1(s) can be written as 

 , (6.3) 

where Kφ1 = I1/(2π) (A/rad) is the linearized PFD gain [refer to (3.9)] with its charge 

pump current denoted by I1; Kv1 is the VCO gain [rad/(s·V)]; and N1
* is the ideal 

fractional divider modulus for the 1st loop. Because of the identical loop filter structures 

in the proposed two cascaded loops, H2(s) has the same transfer function as H1(s) with its 

variables in (6.3) replaced by the corresponding variables in the 2nd loop and the study of 

H1(s) will be equally applied to the study of H2(s). It can be seen from (6.2) and (6.3) that 

each of the cascaded loops in the proposed architecture is a third-order type-II PLL and 

the overall transfer function H(s) represents a sixth-order system. 

Because the two cascaded loops are independent of each other, the overall 

system’s stability can be concluded if each of the constituent loops is stable. To study the 

stability of H1(s) in (6.3), its zero-pole form is desired: 

 , (6.4) 
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where the zero, ωz1, the pole, ωp1 and the coefficient A1 can be parameterized by the 

physical constants in (6.3) as 

 . (6.5) 

One of the common measures for PLL stability is to adjust its phase margin when 

the open-loop transfer function crosses its unity-gain frequency which is denoted by ωu1 

and is often preselected at the beginning of the design. The phase margin can be adjusted 

by the relative locations of the zero ωz1 and the pole ωp1 to the unity-gain frequency 

ωu1. A popular practice [10] as shown in Figure 6.1is to place the zero a factor of r1 

below ωu1, i.e., ωz1 = ωu1/ r1, and the pole the same factor of r1 above ωu1, i.e., ωp1 = 

ωu1×r1. With such an arrangement, the first loop’s open-loop transfer function (6.4) can 

be re-parameterized by the unity-gain frequency ωu1 and the location factor r1 as 

 , (6.6) 

and its magnitude and phase margin at the unity-gain frequency, s = j·ωu1, can be 

calculated as 

 , (6.7) 

and 
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 , (6.8) 

where the phase margin can be controlled by solely adjusting the location factor r1. And 

the same procedures can be applied to the stabilization of the 2nd loop. 

 

 

Figure 6.1: Arrangement of zero and pole frequencies relative to the unity gain frequency 

As discussed in Chapter 1, a PLL’s settling speed is mainly dependent on its 

closed-loop bandwidth, but a PLL’s settling speed can be also affected by its open-loop 

phase margins when the closed-loop bandwidth is given. Shown in Figure 6.2(a) is a 

Matlab simulation of linear frequency-switching settling behaviors of a constituent loop 

(e.g. the 1st-loop) in the proposed architecture for an input frequency unit step of 1 rad/s, 

where the constituent loop’s open-loop phase margins vary from 30° to 60° with the 

feedback divider modulus N1 = 300 and the preselected open-loop unity-gain frequency 

ωu1 = 30 kHz. The settling times for the PLL’s output frequency to settle within 0.01% of 

its variation are summarized in Figure 6.2(b) for the respective phase margins from 30° to 

60°, where it can be found that the fastest settling happens around 52°. But in order to 
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allow sufficient phase margins for stability, we choose 60° in our design for PLLs in this 

thesis. 

 

(a) 

 

(b) 

Figure 6.2: (a) Linear frequency-switching settling behaviors of a constituent loop in the proposed 
architecture; (b) Settling times for phase margins varying from 30° to 60° 
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6.3 System Design Procedures 

The discussions of the synthesis methods in Chapter 5, the loop filter structures in 

Section 6.1 and the allocation of zero-pole positions for stability and settling in Section 

6.2 can be summarized as design procedures for the proposed dual-mode cascaded-loop 

architecture as: 

 
1. Computer search to optimize the selection of N1, A, Q, M, and N2 for a given 

application with a specified frequency range and channel spacing. N1 is to be 

designed to vary within a small percentage (e.g., 10%) from its center value to 

minimize the tuning range of the 1st-loop VCO, which in turn greatly reduces the 

VCO’s output close-in phase noise. Q is to be set at a possibly smallest number to 

push the phase spurs in the mini-denominator mode to the furthest locations from 

the carrier while maintaining the accuracy of the fractionally synthesized 

frequencies within an ignorable error (e.g., frequency error < 0.1% of the channel 

spacing). 

 
2. Initialize the design by preselecting each component loop’s open-loop unity-gain 

frequency: ωu1 and ωu2. And as a quick estimation, each individual loop’s closed-

loop bandwidth can be roughly approximated as 1.5 times the respective ωu1 or 

ωu2, which allows further quick estimations of the loop’s setting speed and phase-

noise and phase-spur performances. 

 
3. From (14), calculate r1 and r2 for phase margins designed for each loop. Usually, a 

phase margin of 60° is required for a PLL to account for its loop gain variations. 
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4. Substitute the preselected ωu1,2 and calculated r1,2 to (13) to calculate each 

individual loop’s coefficient A1,2. 

 
5. With the known parameters: ωu1,2, r1,2, A1,2, and specified circuit constants: Kφ1,2 

and Kv1,2, the linear group (11) can be used to solve for the corresponding loop’s 

loop filter components: R1a,b, C1a,b and C2a,b. 

6.4 Discrete Phase Spur Analysis 

In mini-denominator mode, the first loop works as a fractional-N frequency 

synthesizer with its divider modulus toggling between N1 and N1+1 periodically. The 

toggling is controlled by the overflow from the Q-modulus accumulator shown in Fig. 5.1 

where the divider modulus switches from N1 to N1+1 every time there is an overflow 

carry. When the loop is locked, the divider output frequency can assume to follow the 

toggling immediately, which results in a discontinuous feedback frequency fv1 as (refer to 

Section 3.2): 

 . (6.9) 

This discontinuity in fv1 causes discontinuous phase errors, ∆φ, in the PFD, which 

can be calculated as: 

 , (6.10) 
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where Tref is the input reference signal’s period; Tv1 is the period of the feedback 

frequency fv1; and the subscript index j is to indicate the phase error during a specific 

reference-clock period. ∆φj constitutes a phase-error sequence and is being converted to a 

continuous-time periodic current-error signal in a CP-PFD as: 

 , (6.11) 

with its power spectrum consisting of a series of infinite impulses spaced at: 

 , (6.12) 

where ak is the fourier series coefficients for Idet_error; and its DC component a0 has been 

ignored for phase-spur simulation in (6.12) which utilizes discrete approximation (refer to 

Section 4.3) approximate a PLL’s output sinusoidally-modulated phase-noise sidebands 

to the corresponding baseband power spectra for offset frequencies sufficiently removed 

from the carrier and the baseband phase-noise deviations are relatively small in time 

domain [1]. 

Idet_error can be regarded as a phase-noise source inserted in between the first-

loop’s CP-PFD and LPF as shown in Figure 6.3. Its power spectrum Sdet_error(f) is 

modulated by the VCO and transmitted through the PLL to become phase spurs on both 

sides of the carrier frequency at the output of the first loop. The phase spurs continue to 

pass through the M-modulus divider and the second loop and their final powers at the 

output of the cascaded-loop can be calculated as: 
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 , (6.13) 

where ∆f is the spurs’ offset frequencies from the carrier and the multiplying factors 

represent the corresponding cascaded components’ transfer functions weighing on the 

original fractional-N phase spurs, Sdet_error(f). 

Phase spurs at the output of the proposed cascaded loops are measured by 

spectrum analyzers which compare the modulated spurs’ powers with the carrier power 

and convert their ratios into logarithmic scales in a unit of dBc as: 

 , (6.14) 

where Pspur(∆f) represents the modulated spurs’ powers at offset frequencies ∆f; Pcarrier  is 

the carrier’s power; and their ratio, by discrete approximation, can be approximated to the 

spurs’ baseband powers at the corresponding offset frequencies ∆f, where the integration 

over a zero-width interval is used to represents the powers of the baseband spurs. 

6.5 1st-loop VCO Continuous Phase Noise Analysis 

Phase-noise spectrum at the output of the proposed architecture consists of 

discrete spectral components (phase spurs) and continuous spectral components. The 

continuous spectral components arise from random phase deviations in the cascaded 

PLLs, among which the VCOs contribute the most phase noises at the output of the 

cascaded loops. The amount of phase noises a VCO produces is tightly correlated to its  
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Figure 6.3: Addition of discrete phase spurs and continuous phase noises into the 1st loop of the 
proposed architecture 

tuning range, or equivalently, the VCO gain Kv. The larger the tuning range or the larger 

the VCO gain Kv, the noisier the resulted VCO is. In Table 5.1 and Table 5.2, variation 

ranges of the divider moduli, N1 and N2, are shown for tuning ranges of the VCOs in each 

of the loops. For most frequency-synthesis applications, the target frequency range is 

small, so the tuning range for the second-loop VCO is significantly smaller than that for 

the first-loop VCO. For example, to apply the proposed architecture to a P-GSM 900 

uplink system, the second-loop VCO is required to vary in a 25 MHz range, but the first-

loop VCO needs to vary in an 800 MHz range from 3.6 GHz to 4.4 GHz for a reference 

frequency of 10 MHz despite the restricted 10% change of N1 from its center value. For 

low-voltage circuit designs, this wide tuning range of the first-loop VCO results in a large 

VCO gain, Kv1, which in turn produces a large amount of continuous phase noises at its 

output, but the following derivation will demonstrate that the proposed architecture is 

capable of efficiently suppressing the phase noises from the first-loop VCO, so relatively 

simple circuit designs can be applied to the first-loop VCO and the resulted phase noises 

at the output of the cascaded loops will still meet practical application requirements. 
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As shown in Figure 6.3, VCO phase noises can be treated as a separate noise 

source inserted at the output of an ideal VCO and the continuous phase-noise power 

spectrum can be approximated by a polynomial of 1/∆f as [1]: 

 , (6.15) 

where ∆f is the offset frequencies from the carrier and set to be greater than zero to 

represent a single-sided power spectral density. Similar to (6.13), Wφ_1stLoop(∆f) passes 

through the first loop, the M-modulus divider and the second loop to become part of the 

total phase noises at the output of the cascaded architecture as: 

 , (6.16) 

where each of the squared norms represents the corresponding loop’s transfer function 

weighing on the Wφ_1stLoop(∆f) with the first loop serving as a highpass filter and the 

second loop as a lowpass filter. 

By discrete approximation, spectrum analyzers approximate the continuous 

baseband Wφ_cascaded(∆f) to the ratio of its modulated single-sided power spectral density, 

P1-Hz_Sideband(∆f)  to the carrier’s power, Pcarrier, at the output of the proposed cascaded 

loops as: 

 , (6.17) 



 

 91 

where the power spectral density P1-Hz_Sideband(∆f)  can also be interpreted as the average 

power of the phase-noise sideband within a 1-Hz range at an offset frequency ∆f; and the 

ratio is converted to a logarithmic scale with a unit of dBc/Hz for the spectrum analyzer.  

6.6 Summary 

In this chapter, the important design issues and analysis methods for the proposed 

dual-mode cascaded-loop frequency synthesizer architecture have been discussed: 

 
• Because there is no phase spurs in nonfractional mode and in mini-denominator 

mode, phase spurs are offset to further bands from the carrier, relatively simple 

RC loop filter structure has be chosen for the proposed architecture for smaller 

loop filter component sizes favoring monolithic applications. 

 
• For the given loop filter structure, the system transfer function of each of the 

constituent loops has been derived and transformed into appropriate pole-zero 

form to study the stability of the loop where the expressions for the phase margin 

and magnitude at the unity-gain frequency have been calculated explicitly. 

 
• Design procedures for the proposed architecture to be stabilized have been 

proposed where the optimal selection of synthesis modes for a given application, 

the preselection of unity-gain frequency and phase margin, and the calculation of 

loop filter components have been presented. 

 
• Strength and position of discrete phase spurs due to the fractional mechanism in 

mini-denominator mode have been discussed. The internal transfer process of the 
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discrete phase spurs to appear at the output of the cascaded loops has been 

represented as filtering effects of the cascaded-loop structure. And the ratio of the 

powers of the modulated discrete spurs to the carrier power has been 

approximated to the corresponding baseband powers by discrete approximation. 

 
• Continuous phase noise of the 1st-loop VCO has been modeled by a polynomial. 

The internal transfer process of the 1st-loop VCO noise to appear at the output of 

the cascaded loops was represented as filtering effects of the cascaded-loop 

structure similar to the one for discrete phase spurs. By discrete approximation, 

the ratio of the power of the modulated continuous phase noise at an offset 

frequency to the carrier power has been approximated to the baseband power of 

the continuous phase noise. 
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7 Simulation of System Performances and Dynamic 
Behaviors 

 

Simulations of bandwidths, phase spurs, phase noises, and dynamic settling 

speeds are performed in Matlab. Results are illustrated for a P-GSM 900 uplink system 

with a frequency range of 890–915 MHz and channel spacing of 200 kHz. Results of 

applying the proposed architecture to other communication systems can be derived in a 

similar manner. 

From Table 5.1, to synthesize the carrier frequencies in a P-GSM 900 uplink 

system, an input reference frequency of 10 MHz and an accumulator size Q = 12 for the 

1st loop fractional frequency divider can be chosen. Both PLL bandwidths are desired to 

be around 50 kHz for relatively short settling times and sufficient reduction of phase 

spurs. Following the design procedures in Section 6.3, it is appropriate to set ωu1 = 30 

kHz and ωu2 = 35 kHz, which derives r1 = r2 = 3.7321 for 60° phase margin on both loops, 

A1 = 9.5204×109 and A2 = 1.2958×1010. To account for loop gain variations for stability, 

loop divider moduli are set at their midpoints: N1
* = 400 and N2 = 250. Charge pump 

currents and VCO gains are set as: I1 = 20 uA, Kv1 = 800 MHz/V and I2 = 200 uA, Kv2 = 

25 MHz/V. From (11), each loop’s loop filter components can be calculated as: C1a = 3.9 

nF, C2a = 0.3 nF, R1a = 5 kΩ and C1b = 1.4 nF, C2b = 0.1 nF, R1b = 11.8 kΩ. 
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7.1 Loop Bandwidths 

With the above specified and derived parameters for the P-GSM 900 uplink 

system, Figure 7.1 plots the bandwidths of the 1st, 2nd loops and the proposed 

architecture. The 1st loop gives a closed-loop bandwidth of 46.92 kHz; the 2nd loop gives 

a closed-loop bandwidth of 54.74 kHz; and the bandwidth of the overall system is 41.6 

kHz. 

 

 

Figure 7.1: Bandwidths of the 1st loop, the 2nd loop, and the cascaded architecture 

7.2 Filtering of Phase Spurs 

In the P-GSM 900 uplink system, one of the frequencies showing the worst-case 

phase spur scenario is the channel at 912.2MHz, which can be synthesized by a single-

loop fractional-N PLL with the phase-spur strength and locations shown in Figure 7.2(a) 

and the spur offset spacing given by (3.24) as fref /Q=10 MHz/50=200 kHz. As discussed 

in Section 5.2.2, for this frequency, Q can be reduced to 12 by applying the mini-

denominator mode, and the new phase spurs are located at further offset frequencies 
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shown in Figure 7.2(b) where offset spacing is integer multiples of fref /Q=10 

MHz/12=833.33 kHz and the strength has been suppressed to below -100 dBc. Another 

carrier frequency of 905.8 MHz can be synthesized in mini-denominator mode with A = 3 

and Q = 12 containing a common factor of 3. Figure 7.2(c) shows that phase-spur spacing 

has spread out to integer multiples of fref /(Q/A)=10 MHz/4=2.5 MHz and strength is 

suppressed below -150 dBc. 

 

 

(a) 

 

(b) 
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(c) 

Figure 7.2: Simulation of phase-spur strength and positions: (a) phase spurs at the output of a single-
loop fractional-N PLL for a carrier frequency of 912.2 MHz with Q = 50; (b) phase spurs at the 
output of the proposed architecture for the same carrier frequency, but with Q = 12; (c) phase spurs 
at the output of the proposed architecture for a carrier frequency of 905.8 MHz with Q = 12 and A = 
4 

7.3 Filtering of 1st-loop VCO Phase Noise 

Figure 7.3 shows the process of the 1st-loop VCO continuous phase noise passing 

through the proposed architecture at the outputs of the 1st loop, the bridging divider and 

the 2nd loop. The original 1st-loop VCO phase noise is modeled by (6.15) as a 1/∆f 

polynomial with coefficients extracted from an actual VCO [7]: h3=7.3×106 rad2·Hz2, 

h2=21.7 rad2·Hz, h3=0 rad2 and h0= 9.8×10-15 rad2/Hz. 
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Figure 7.3: 1st-loop VCO close-in phase-noise variations through the cascaded architecture 

7.4 Dynamic Settling Behaviors 

Figure 7.4 plots the linear settling behaviors of both loops and the architecture for 

an input angular frequency step of 1 rad/s to have the respective outputs to settle within 

0.01% of their frequency increments. The 1st loop settles in 116 µs; 2nd loop in 99 µs and 

the cascaded loops in 128 µs. 

 

Figure 7.4: Linear frequency-switching settling behaviors of the 1st loop, the 2nd loop, and the 
cascaded system 
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7.5 Summary 

This chapter simulated the system performances and dynamic behaviors of the 

proposed architecture for its application toward a P-GSM 900 uplink system. For given 

design parameters, the bandwidth of the cascaded-loops is achieved to be around 50 kHz, 

which results in a settling time of 128 µs for 0.01% accuracy. Discrete phase spurs have 

been suppressed below -100 dBc for the worst-case scenarios and the continuous phase 

noise from the noisiest 1st-loop VCO has been reduced below -100 dBc/Hz above offset 

frequencies at 100 kHz. All of the simulated specifications meet GSM standards. 
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8 Conclusion 

This thesis presented the architecture, design procedures and system-performance 

simulations for the proposed dual mode cascaded-loop frequency synthesizer. The 

proposed architecture inherits the advantages from both the integer-N and the fractional-

N frequency synthesizers, which is that, for a given application with a specified 

frequency range and channel spacing, each channel frequency can be optimally chosen to 

be synthesized either in its nonfractional mode or in its mini-denominator mode. In the 

nonfractional mode, synthesized output frequency can be a fractional multiple of the 

input reference frequency but without the generation of fractional phase spurs. And in the 

mini-denominator mode, phase spurs are to be pushed to further offsets and to be reduced 

substantially by the cascaded-loop filtering effects. The cascaded-loop architecture as 

well offers opportunities to optimally tradeoff the loop bandwidths, settling speeds, and 

phase-noise and phase-spur reductions in between the two loops. Because of the removed 

or further located phase spurs in either of its working modes, the proposed architecture 

can choose to apply simple passive RC loop filter architectures to achieve a wide 

bandwidth while maintaining effective suppression of its phase noise and phase spurs for 

monolithic applications. 
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8.1 Contributions of the Thesis 

The specific contributions of this thesis are: 

 
1. An analysis of the optimization and tradeoff of the major specifications of a PLL 

frequency synthesizer, leading to the proposal of a dual-mode cascaded-loop 

frequency synthesizer architecture. Because of the inherent contradictory 

properties of the major specifications of a PLL, bandwidth can be served as the 

key connection among the specifications. This thesis is to develop a novel 

architecture to optimize the frequency synthesizer’s overall performance by 

trading off some of the downside properties of the major specifications. 

 
2. Examination of the pros and cons of existing PLL frequency synthesizer 

architectures. Integer-N frequency synthesizers have the advantage of 

architectural simplicity but suffer from the inherent contradiction of frequency 

resolution and PLL bandwidth. Fractional-N frequency synthesizers have the 

advantages of fine resolution and wide bandwidth, but suffer from fractional 

phase spurs on channel spacing. Dual-loop frequency synthesizers utilize integer-

N PLLs to generate fractional multiples, but suffer from large close-in harmonics 

and increase 1/f noises. ∆∑ fractional-N frequency synthesizers effectively 

suppress fractional phase spurs in a fractional-N frequency synthesizer, but the 

cost of the performance superiority is the requirements of large chip area and 

complexity of the digital ∆∑ modulator. This thesis proposes an architecture that 

merges the advantages of the existing architectures and trades off the respective 

disadvantages. 
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3. An analysis of continuous power spectral densities and discrete power spurs of 

phase-noise signals in PLL frequency synthesizers. Power measuring principles of 

a spectrum analyzer for passband signals and a phase-noise analyzer for baseband 

signals are explained. Differences between baseband continuous power spectra 

and baseband discrete power spurs are distinguished. Methods of calculation and 

estimation of power spectra of various continuous-time phase-noise signals in 

PLL frequency synthesizers are analyzed for computer simulations. Discrete 

approximation is presented to approximate power spectrum of a baseband phase-

noise modulation signal to phase-noise sidebands of its phase-modulated 

passband signal. Distinction of discrete approximation when applying to 

continuous phase-noise spectra and discrete phase-noise spurs is clarified. 

 
4. Development of architecture of a dual-mode cascaded-loop frequency synthesizer. 

The architecture is cascaded by two single PLL frequency synthesizers connected 

through a modulus-variable frequency divider. The 1st loop is a fractional-N PLL 

and can be converted an integer-N PLL by disabling its accumulator, and the 2nd 

loop is an integer-N PLL. The architecture inherits advantages from integer-N and 

fractional-N PLL frequency synthesizers and its overall configuration resembles a 

dual-loop frequency synthesizer but eliminating the application of mixers to avoid 

large harmonic spurs and generate less close-in 1/f noises. 

 
5. Development of synthesis modes for both precise and approximate frequency 

resolution. Strictly nonfractional mode, nonfractional mode and mini-

denominator mode are developed to produce synthesized frequencies as fractional 
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multiples of input reference frequency where the mode switching is controlled by 

enabling and disabling an accumulator in the 1st loop of the proposed architecture. 

Strictly nonfractional mode is suitable for approximate frequency synthesis which 

allows synthesized frequencies away from desired values within a specified small 

percentage error (e.g. < 3%) of the channel spacing. Nonfractional mode and 

mini-denominator mode are suitable for precise frequency resolution where 

synthesized frequencies are away from desired values less than 0.001% of channel 

spacing. 

 
6. Elimination and diffusion of fractional phase spurs. Strictly nonfractional mode 

and mini-denominator mode apply the two loops in the proposed architecture as 

integer-N PLL frequency synthesizers, which eliminates fractional-N mechanism 

in the architecture and the resulted fractional phase spurs. Mini-denominator 

mode converts the 1st loop into a fractional-N PLL frequency synthesizer but with 

a significantly smaller accumulator size, which equivalently reduces denominator 

size in its synthesis formula and results in diffused fractional phase spurs to 

further offsets from the carrier. Far offset phase spurs can be filtered by internal 

loop bandwidths of the cascaded-loop architecture. 

 
7. Development of a computer search program for selection of optimal synthesis 

modes for channel frequencies in an application with given frequency ranges and 

channel spacing. Because nonfractional mode does not generate fractional phase 

spurs, the computer search program will first start its search for possible 

configurations of the variable parameters in the proposed architecture to reach 
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every channel frequency within a specified frequency error. If a specific channel 

frequency can not be synthesized precisely in nonfractional mode, the program 

automatically switch its searching mode to mini-denominator mode to reach the 

channel frequency with possibly smallest accumulator size for furthest offset 

fractional phase spurs. Application of the computer search program to channel 

frequencies in GSM, Bluetooth and an arbitrarily specified GHz band are given in 

tables with maximum frequency errors. 

 
8. Development of quick design procedures for stabilization of the proposed dual-

mode cascaded-loop frequency synthesizer architecture. Because of the removed 

and far offset fractional phase spurs in nonfractional and mini-denominator 

modes, passive RC loop filters can be assumed in both cascaded loops to achieve 

wider bandwidths. Based on loop transfer functions derived from transimpedances 

of the loop filters, this thesis develops quick design procedures for stabilization of 

the proposed architecture, which includes optimal selection of synthesis modes 

for a given application, preselection of unity-gain frequency and phase margin, 

allocation of zeros and poles in loop transfer functions and synthesis of loop filter 

components to achieve smaller sizes for monolithic chips. 

 
9. An analysis of discrete phase spurs arising from fractional-N mechanism in mini-

denominator mode. Discrete phase spurs arise from periodic phase errors in PFD 

due to fractional-N mechanism. This thesis analyzes the strength and locations of 

discrete phase spurs on the output spectrum of PLLs by Fourier analysis. The 

internal transfer process of discrete phase spurs is represented as filtering process 
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by the proposed cascaded loops. And discrete powers of individual spurs are 

denoted by ratios compared to carrier power by discrete approximation. 

 
10. An analysis of continuous phase-noise spectrum in PLL frequency synthesizers. 

This thesis models continuous phase-noise spectra by polynomials and analyzes 

close-in continuous phase noises contributed by the noisiest 1st-loop VCO in the 

proposed architecture. The internal transfer process of continuous phase noises is 

represented as filtering process by the proposed cascaded loops. And power of 

continuous phase-noise spectrum at an offset frequency is denoted by its ratio 

compared to carrier power by discrete approximation. 

8.2 Future Work 

In the course of this work, the following topics have been identified as areas of 

future research: 

 
1. Development of advanced loop filter structures for reduced capacitor and resistor 

areas on integrated chips. The passive RC loop filter structure discussed in 

Chapter 6 is suitable for the proposed architecture and is integrable for GHz 

applications. But more advanced loop filter structures can be explored to achieve 

smaller chip area by reducing the sizes of the integrating capacitors and resistors. 

One of the possible techniques is dual-path loop filters which consist of an 

integration path, a lowpass path and a voltage adder for its dual charge pumps 

and, by scaling the dual charge-pump currents, the dual-path loop filter is 

equivalent to scaling up integration capacitance by a current scaling factor of the 
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dual charge pumps. Another possible technique is capacitance multiplier which is 

a special example of impedance scaling based on current amplifier where the loop 

filter resistances and capacitances are divided and multiplied respectively by the 

current gain factor. 

 
2. Analog compensation for fractional phase errors in mini-denominator mode. The 

proposed architecture in Chapter 5 spreads fractional phase spurs to far offsets 

from the carrier by reducing its accumulator size in the 1st loop of the cascaded 

loops. A careful study of the output of the accumulator reveals that it is inversely 

proportional to the fractional phase errors generated in the PFD. This prompts a 

potential method to suppress fractional phase spurs by compensating the 

corresponding fractional phase errors in the PFD by converting the digital outputs 

from the accumulator to an analog signal by a DAC and adding the analog signal 

inversely back to the PFD to cancel the fractional  phase errors. 

 
3. Delta-sigma (∆∑) noise shaping techniques to suppress fractional phase spurs in 

mini-denominator mode.  As discussed in Section 3.4, fractional phase spurs 

around a carrier are Fourier power spectra of quantization errors em[n] in the 

feedback fractional frequency divider. This prompts a potential method of 

eliminating fractional phase spurs by reshaping the power spectra of quantization 

errors em[n] in mini-denominator mode by a ∆∑ modulator with overflows fed to 

the feedback fractional frequency divider. A ∆∑ modulator randomizes the 

instantaneous division ratio and pushes phase-noise spectra associated with em[n] 

from low offset frequencies to high offset frequencies. A ∆∑ modulator can be 
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realized by either analog techniques or digital techniques. An analog ∆∑ 

modulator can be possibly implemented by switched-capacitor (SC) or switched-

current (SI) techniques and contain basic components such as integrators, 

operational transconductance amplifiers (OTA), a single-bit quantizer and a clock 

generator. A digital ∆∑ modulator can be implanted by an ASIC programmed in 

the language of Verilog HDL and embedded with other analog components in 

Cadence environment. 

 
4. Development of fast-locking techniques. The passive RC loop filter structure in 

the proposed architecture can be modified to speed up acquisition process by 

increasing its loop bandwidth for a short period of time. Potential fast-locking 

techniques can be: 1) creation of a separate port to charge directly the largest 

capacitor in the loop filter; and 2) analog switching that bypasses shunt resistors 

to allow charging of loop filter capacitors directly. 
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Appendix. A Matlab Codes 

A.1 Search for Synthesis Modes 

The following Matlab script was used to search the optimal selections of the 1st-

loop divider modulus N1, the 2nd-loop divider modulus N2, the bridging divider modulus 

M and the accumulator size Q for the proposed architecture to synthesize every channel 

frequency in a given application with ignorable errors. The search results have been 

demonstrated in Table 5.1 and 5.2 for the different synthesis modes respectively. 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Computer Search for Optimal Selection of Synthesis Modes          %% 
%% Author: Xiongliang Lai                                            %% 
%% Date: Mar. 25th 2009                                              %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear;  % use format short g 
n=1; 
status=0;   
status_frac=0; 
num_integer=0; 
num_decimal=0; 
num_impossible=0; 
  
Q=12;   % Accumulator Modulus 
f_r=10; % Reference Frequency in the unit of MHz 
M=800;  % Bridging Divider Modulus 
  
% Target Frequency in MHz 
for f_n1n2=890:.2:915   
  while M<=1200 & status<1   
     
    for n2=1:512 % 9-bit cascaded D-flip-flops 
        n1=round(f_n1n2*M/f_r/n2); 
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    % n2*n1/M*f_r = Actual output frequency in MHz; f_n1n2 =  
    % target frequency 
        if abs(n2*n1/M*f_r-f_n1n2)<1e-6 & 360<=n1 & n1<=440   
         factors(n,:)=[f_n1n2, n2,n1,0, Q, M, n2*n1/M*f_r-f_n1n2]; 
         status=1;  
            n=n+1;   
        end 
    end 
  
    if status==0 & status_frac==0 
        % Minimum of N2 = Minimum of f_n1n2 / Maximum of N1 
        for n2=1:512   
            n1_integer=floor(f_n1n2*M/f_r/n2); 
            A=round(Q*(f_n1n2*M/f_r/n2-n1_integer)); 
        % n2*(n1_integer+A/Q)/M*f_r = Actual Output Frequency in  
          MHz; 
        % f_n1n2 = target frequency 
            if abs(n2*(n1_integer+A/Q)/M*f_r-f_n1n2)<1e-6 & 
360<=n1_integer & n1_integer<=440  
        % Unit or Error in MHz 
                factors(n,:)=[f_n1n2, n2, n1_integer, A, Q, M, 
n2*(n1_integer+A/Q)/M*f_r-f_n1n2];  
                n=n+1;  
                status_frac=1; 
            end 
        end             
    end 
     
    M=M+1; 
  end 
   
  if status==1  
      num_integer=num_integer+1; 
  elseif status_frac==1  
      num_decimal=num_decimal+1; 
  else 
      factors(n,:)=[f_n1n2, 0, 0, 0, 0, 0, 0]; 
      n=n+1; 
      num_impossible=num_impossible+1;    
  end 
  
  status=0; 
  status_frac=0; 
  M=800;   
end 
  
% Display 
num_impossible 
num_integer 
num_decimal 
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A.2 Settling Time vs. Phase Margin 

The following Matlab script was used to plot a PLL’s settling behaviors for 

different phase margins when its input encounters a unit angular-frequency step. Settling 

times for 0.01% (or 0.05%) accuracy are tallied against corresponding phase margins. 

The phase margin for fastest settling speed along with the empirically optimal phase 

margin of 60° are used to calculate r1,2 and A1,2, as per Section 6.2. 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Optimization of Phase Margin for Constituent Loops                %% 
%% Author: Xiongliang Lai                                            %% 
%% Date: Mar. 25th 2009                                              %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear; 
syms r1 x;  % r1=wu_wz1; 
syms zz1 t1; 
  
% N1 has nothing to do with the settling time for percentage error 
N1=300;  
% wu1 = ClosedLoopBandwidth approximately and is set by the  
% initial design 
wu1=2*pi*30*10^3; % rad/s 
  
i=1; 
PM(1)=31; %%% 
Increment=1; %%%% 
while PM(i)<=60  % PM represents phase margin with unit in degree 
    r_temp=solve(atan(x)-atan(1/x)-PM(i)/180*pi, x); 
    % r_temp has two solutions; the positive one is correct 
    r1(i)=double(r_temp(1,:));  
    B1(i)=double((1+r1(i)^2)/(1+1/r1(i)^2)); 
    A1(i)=double(sqrt(wu1^4/B1(i))); 
  
    Equ1=zz1^3+wu1*r1(i)*zz1^2+A1(i)*r1(i)^2*zz1+A1(i)*r1(i)*wu1; 
    SS1=solve(Equ1, zz1); 
    tt1=1e-6:1e-6:1e-4; 
    for k=1:length(SS1) 
      
sigma1(k,1)=SS1(k)*(wu1*r1(i)+SS1(k))/(2*SS1(k)*wu1*r1(i)+3*SS1(k)^2+A1
(i)*r1(i)^2)*exp(SS1(k)*t1); 
      sigma1_num_temp(k,:)=subs(sigma1(k,1), t1, tt1); 
    end 
    sigma1_num=ones(1,length(sigma1))*sigma1_num_temp; 
    Step_t1=N1-N1*sigma1_num; 
    plot(tt1, abs(Step_t1), 'k'); grid; hold on; 
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    % 0.05 indicates 5% error within N1 * 5% 
    t_settle(i)=tt1(max(find(abs((Step_t1-N1)/N1)>0.0001))); 
    i=i+1; 
    PM(i)=PM(i-1)+Increment; 
end 
  
pause; 
hold off; 
plot(PM(1:(length(PM)-1)), t_settle, 'k'); grid;  
  
% Index of Minimum settling time and the corresponding  
% Phase-Margin, r1, A1 
[t_settle_min, index]=min(t_settle); 
  
  
t_settle_min          %Mininum Settling Time 
PhaseMargin=PM(index) %Phase Margin 
r=double(r1(index))   %r1=wu_wz1 
A=A1(index)  
  
%Parameter when PhaseMargin = 60 degree 
index=30; 
% Phase Margin 
PhaseMargin=PM(index) 
% Settling time for 60 degree phase margin. 
SettleTime_60=t_settle(index) 
%r1=wu_wz1 
r=double(r1(index)) 
A=A1(index)  
 

A.3 Loop Filter Synthesis 

The following Matlab script was used to synthesize each constituent loop’s loop-

filter components for given circuit parameters, preselected ωu1,2 and calculated r1,2 and 

A1,2, as per the design procedures in Section 6.3. 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Synthesis for Loop-filter Components for Each Loop                %% 
%% Author: Xiongliang Lai                                            %% 
%% Date: Mar. 25th 2009                                              %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Initial Circuit Parameters for an Individual Loop 
%Charge Pump Current in Unit of Ampere; Bigger Current -> Smaller R11; 
I1=20e-6;  
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Kphi1=I1/2/pi; 
%VCO Gain in Unit of radian/(sec.*volt.) 
Kv1=2*pi*800e6;  
N1=400; 
  
% Parameters Obtained from "Optimization of Phase Margin for 
Constituent 
% Loops" 
A1=9.5204e9; 
wu1=2*pi*30*10^3; 
r1=3.7321; 
  
wp1=wu1*r1; 
wz1=wu1/r1; 
  
% Solve for Loop Filter Components: C11 C12 R11 
syms C11 C12 R11; 
[C11, C12, R11]=solve((C11+C12)/(R11*C11*C12)-wp1, 1/(R11*C11)-wz1, 
Kphi1*Kv1/(N1*(C11+C12))-A1, C11, C12, R11); 
C11=double(C11) 
C12=double(C12) 
R11=double(R11) 
 

A.4 Architecture Analysis 

The following Matlab script was used to analyze and simulate various properties 

and performances of each of the constituent loops and the overall architecture for the 

proposed frequency synthesizer. The properties and performances of a single constituent 

loop include open-loop zeros, poles and bode plot, closed-loop bandwidth, linear 

frequency-switching settling behavior and the estimated settling time, and linear 

frequency-switching phase capturing behavior and the estimated capture range. The 

properties and performances of the overall architecture include the total bandwidths and 

the total frequency-switching settling behaviors and the estimated settling times. 

Bandwidths have been shown in Figure 7.1 and settling behaviors have been illustrated in 

Figure 7.4. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Analyses for Constituent Loops and the Cascaded Architecture: %% 
%%  1) Closed-loop Bandwidth                                     %% 
%%  2) Closed-loop Poles & Zeros                                 %% 
%%  3) Open-loop Bode Plot                                       %% 
%%  4) Open-loop Poles & Zeros                                   %% 
%%  5) Linear Frequency Switching Settling Behaviors             %% 
%%  6) Lock-in Capture Range and Transients                      %% 
%% Author: Xiongliang Lai                                        %% 
%% Date: Mar. 25th 2009                                          %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Analyses for the 1st Loop 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
syms s A1 r1 wu1 N1; 
syms t w1; 
  
NN1=400;    %%% 
w1=2*pi*(1e3:10:1e7); %%% 
  
% Open-loop Transfer Function 
GH1=A1/s^2*(1+s*r1/wu1)/(1+s/wu1/r1);  % r1=wu_wz1 
  
% Closed-Loop Transfer Function 
%Closed-Loop Impulse Response in s Domain 
ClosedLoop_s1=simple(N1*GH1/(1+GH1));   
%Closed-Loop Impulse Response in t Domain 
ClosedLoop_t1=simple(ilaplace(ClosedLoop_s1, s, t));   
%Closed-Loop Step Response in s Domain 
Step_s1=simple(1/s*ClosedLoop_s1);   
%Closed-Loop Step Response in t Domain 
Step_t1=simple(ilaplace(Step_s1, s, t));  
%r=wu_wz1 
Step1_tt01=subs(Step_t1, {A1, N1, wu1, r1}, {9.5204e+009, 400, 
2*pi*30*10^3, 3.7321});  %%% 
  
% Linear Frequency Switching Settling Behavior for a Unit Input  
% Frequency Step 
tt=1e-6:1e-6:1e-3/2; 
Step1_tt02=subs(Step1_tt01, t, tt); 
Step1_tt03=double(Step1_tt02); 
plot(tt, Step1_tt03, 'k--'); hold on; grid; 
% 0.05 indicates 5% error within N1 * 5%; 1.3333e-006 
t1_settle=tt(max(find(abs((Step1_tt03-NN1)/NN1)>.01e-2)));  
  
% Open-Loop Bode Plot 
open1_freq01=subs(GH1, {A1, N1, wu1, r1}, {9.5204e+009, 400, 
2*pi*30*10^3, 3.7321}); %%% 
open1_freq02=subs(open1_freq01, {s}, {j*w1}); 
plot(w1, 20*log10(abs(open1_freq02))); hold on; 
  wu_1=2*pi*30*10^3; r_1=3.7321; wp1=wu_1*r_1; wz1=wu_1/r_1; %%% 
  zero1_freq=subs(open1_freq01, {s}, {j*wz1});  
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  unity1_freq=subs(open1_freq01, {s}, {j*wu_1}); 
  pole1_freq=subs(open1_freq01, {s}, {j*wp1}); 
  plot(wz1, 20*log10(abs(zero1_freq)), 'o'); hold on; 
  plot(wu_1, 20*log10(abs(unity1_freq)), 'd'); hold on; 
  plot(wp1, 20*log10(abs(pole1_freq)), '*'); hold off; grid; 
plot(w1, angle(open1_freq02)/pi*180); hold on; 
  plot(wz1, angle(zero1_freq)/pi*180, 'o'); hold on; 
  plot(wu_1, angle(unity1_freq)/pi*180, 'd'); hold on; 
  plot(wp1, angle(pole1_freq)/pi*180, '*'); hold off; grid 
   
% Closed-Loop Bode Plot (Bandwidth) 
closed1_freq01=subs(ClosedLoop_s1, {A1, N1, wu1, r1}, {9.5204e+009, 
 400, 2*pi*30*10^3, 3.7321}); %%% 
closed1_freq02=subs(closed1_freq01, {s}, {j*w1}); 
plot(w1/2/pi, 20*log10(abs(closed1_freq02)), 'k--'); hold on; grid; 
%Find 3dB Frequency in Closed-loop Magnitude Transfer Function 
f1_3dB=w1(max(find(abs(closed1_freq02)>NN1*sqrt(2)/2)))/2/pi;   
  
% Closed-Loop Poles and Zeros 
syms n1 d1; 
[n1 d1]=numden(simple(closed1_freq01)); 
poles1=double(solve(d1, s)); 
zeros1=double(solve(n1, s)); 
  
% Lock-In Transfer Function 
LockIn_s1=simple(1/s^2*(1-GH1/(1+GH1))); 
LockIn_t1=simple(ilaplace(LockIn_s1, s, t)); 
LockIn1_tt01=subs(LockIn_t1, {A1, N1, wu1, r1}, {9.5204e+009,  
 400, 2*pi*30*10^3, 3.7321}); %%%%%%%%%%%%%%%%%%% 
  
% Lock-in Transients with Phase Variation and Calculation of  
% Lock-In Range in Hz 
LockIn1_tt02=subs(LockIn1_tt01, t, tt/2); 
LockIn1_tt03=double(LockIn1_tt02); 
plot(tt, LockIn1_tt03); grid; hold on; 
LockInRange1=2*pi/max(LockIn1_tt03)/(2*pi); % Unit in Hz 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Analyses for the 2nd Loop 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
syms s A2 r2 wu2 N2; 
syms t w2; 
  
NN2=250;    %%% 
w2=2*pi*(1e3:10:1e7);  %%% 
  
% Open-loop Transfer Function 
GH2=A2/s^2*(1+s*r2/wu2)/(1+s/wu2/r2);  % r=wu_wz2 
  
% Closed-Loop Transfer Function 
%Closed-Loop Impulse Response in s Domain 
ClosedLoop_s2=simple(N2*GH2/(1+GH2));   
%Closed-Loop Impulse Response in t Domain 
ClosedLoop_t2=simple(ilaplace(ClosedLoop_s2, s, t));   
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%Closed-Loop Step Response in s Domain 
Step_s2=simple(1/s*ClosedLoop_s2); 
%Closed-Loop Step Response in t Domain 
Step_t2=simple(ilaplace(Step_s2, s, t));  
%r=wu_wz2 
Step2_tt01=subs(Step_t2, {A2, N2, wu2, r2}, {1.2958e+010, 250, 
2*pi*35*10^3, 3.7321});  %%% 
  
% Linear Frequency Switching Settling Behavior for a Unit Input  
% Frequency Step 
tt=1e-6:1e-6:1e-3/2; 
Step2_tt02=subs(Step2_tt01, t, tt); 
Step2_tt03=double(Step2_tt02); 
plot(tt, Step2_tt03, 'k-.'); hold on; grid; 
% 0.05 indicates 5% error within N1 * 5% 
t2_settle=tt(max(find(abs((Step2_tt03-NN2)/NN2)>.01e-2)));  
  
% Open-Loop Bode Plot 
open2_freq01=subs(GH2, {A2, N2, wu2, r2}, {1.2958e+010, 250, 
2*pi*35*10^3, 3.7321}); %%% 
open2_freq02=subs(open2_freq01, {s}, {j*w2}); 
plot(w2, 20*log10(abs(open2_freq02))); hold on; 
  wu_2=2*pi*35*10^3; r_2=3.7321; wp2=wu_2*r_2; wz2=wu_2/r_2; %%% 
  zero2_freq=subs(open2_freq01, {s}, {j*wz2}); 
  unity2_freq=subs(open2_freq01, {s}, {j*wu_2}); 
  pole2_freq=subs(open2_freq01, {s}, {j*wp2}); 
  plot(wz2, 20*log10(abs(zero2_freq)), 'o'); hold on; 
  plot(wu_2, 20*log10(abs(unity2_freq)), 'd'); hold on; 
  plot(wp2, 20*log10(abs(pole2_freq)), '*'); hold off; grid; 
plot(w2, angle(open2_freq02)/pi*180); hold on; 
  plot(wz2, angle(zero2_freq)/pi*180, 'o'); hold on; 
  plot(wu_2, angle(unity2_freq)/pi*180, 'd'); hold on; 
  plot(wp2, angle(pole2_freq)/pi*180, '*'); hold off; grid 
  
% Closed-Loop Bode Plot (Bandwidth) 
closed2_freq01=subs(ClosedLoop_s2, {A2, N2, wu2, r2}, {1.2958e+010, 
 250, 2*pi*35*10^3, 3.7321}); %%% 
closed2_freq02=subs(closed2_freq01, {s}, {j*w2}); 
plot(w2/2/pi, 20*log10(abs(closed2_freq02)), 'k-.'); hold on; grid; 
% 3dB Frequency in Closed-loop Magnitude Transfer Function 
f2_3dB=w2(max(find(abs(closed2_freq02)>NN2*sqrt(2)/2)))/2/pi;   
  
% Lock-In Transfer Function 
LockIn_s2=simple(1/s^2*(1-GH2/(1+GH2))); 
LockIn_t2=simple(ilaplace(LockIn_s2, s, t)); 
LockIn2_tt01=subs(LockIn_t2, {A2, N2, wu2, r2}, {1.2958e+010, 250, 
2*pi*35*10^3, 3.7321}); %%% 
  
% Lock-in Transients with Phase Variation and Calculation of  
% Lock-In Range in Hz 
LockIn2_tt02=subs(LockIn2_tt01, t, tt/2); 
LockIn2_tt03=double(LockIn2_tt02); 
plot(tt, LockIn2_tt03, 'm'); grid; hold on; 
LockInRange2=2*pi/max(LockIn2_tt03)/(2*pi); % Unit in Hz 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Analyses for the Cascaded Architectrue 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
M=1000; 
N_Cas=NN1*NN2/M;    %%% 
% A1 N1 wu1 r1 & A2 N2 wu2 r2 replaced by numerical values 
CasLoop=closed1_freq01*closed2_freq01/M; 
% Cascaded Loop Step Response in s Domain 
CasLoopStep_s=simple(1/s*CasLoop); 
% Cascaded Loop Step Response in t Domain 
CasLoopStep_t=simple(ilaplace(CasLoopStep_s, s, t));  
  
% Linear Frequency Switching Settling Behavior for a Unit Input  
% Frequency Step 
tt=1e-6:1e-6:1e-3/2; 
CasLoopStep_tt01=subs(CasLoopStep_t, t, tt); 
CasLoopStep_tt02=double(CasLoopStep_tt01); 
plot(tt, CasLoopStep_tt02, 'k'); hold off; grid; 
%Calculate settling time within 5% of the final frequency 
%0.05 indicates 5% error within N1 * 5% 
tCas_settle=tt(max(find(abs((CasLoopStep_tt02-N_Cas)/N_Cas)>.01e-2)));  
  
% Cascaded-Loop Bode Plot (Bandwidth) 
wCas=2*pi*(1e3:10:1e7); %%% 
CasLoop_freq01=subs(CasLoop, {s}, {j*wCas}); 
plot(wCas/2/pi, 20*log10(abs(CasLoop_freq01)), 'k'); grid; hold on; 
% 3dB Frequency in Closed-loop Magnitude Transfer Function 
fCas_3dB=wCas(max(find(abs(CasLoop_freq01)>N_Cas*sqrt(2)/2)))/2/pi;   
 

A.5 Continuous Phase-noise Analysis 

The following Matlab script was used to simulate continuous close-in phase-noise 

variations in the components of the proposed architecture. Its application to the 1st-loop 

VCO continuous phase noise was explained in Section 6.5 as filtering by the constituent 

loops of the architecture and the simulation results was illustrated in Figure 7.3. 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Analysis of 1st-loop VCO Continuous Phase Noise               %% 
%% Author: Xiongliang Lai                                        %% 
%% Date: Mar. 25th 2009                                          %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear 
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% Leeson's Phase-Noise Polynomial 
fm=1e3:5e3:1e9; %(Hz)  %%% 
wm=2*pi*fm; 
nVCO=9.8e-15+21.7./fm.^2+7.6e6./fm.^3; 
plot(fm, 10*log10(nVCO), '--k'); hold on;  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  1st-loop Continuous Output Phase-Noise Spectrum   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
syms s A1 r1 wu1; 
  
N1=400;  %%% 
w1=wm;  %%% 
  
% 1st-loop Open-Loop Transfer Function 
GH1=A1/s^2*(1+s*r1/wu1)/(1+s/wu1/r1);  % r1=wu_wz1 
  
% 1st-loop H_L Function in s Domain 
H_L_s1=simple(GH1/(1+GH1));   
H_L_s1_freq01=subs(H_L_s1, {A1, wu1, r1}, {9.5204e9, 2*pi*30*10^3, 
3.7321}); %%% 
H_L_s1_freq02=subs(H_L_s1_freq01, {s}, {j*w1}); 
  
% plot(fm, 10*log10(abs(H_L_s1_freq02))); hold on; 
% plot(fm, 10*log10(abs(1-H_L_s1_freq02))); grid; 
  
% 1st-loop Output Phase-Noise Spectrum 
n1=abs(1-H_L_s1_freq02).^2.*nVCO; 
  
plot(fm, 10*log10(n1), '-.k'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Bridging-divider Continuous Output Phase-Noise Spectrum   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
M=1000; 
n_bridge=(1/M)^2.*n1; 
plot(fm, 10*log10(n_bridge), ':k');  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  2nd-loop Continuous Output Phase-Noise Spectrum   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
syms s A2 r2 wu2; 
  
% Pick N2 maximum for worst case 
N2=250;  %%% 
w2=wm;  %%% 
  
% 2nd-loop Open-Loop Transfer Function 
GH2=A2/s^2*(1+s*r2/wu2)/(1+s/wu2/r2);  % r2=wu_wz2 
  
% 2nd-loop H_L Function in s Domain 
H_L_s2=simple(GH2/(1+GH2));%Closed-Loop Impulse Response in s domain 
H_L_s2_freq01=subs(H_L_s2, {A2, wu2, r2}, {1.2958e10, 2*pi*35*10^3, 
3.7321}); %%% 
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H_L_s2_freq02=subs(H_L_s2_freq01, {s}, {j*w2}); 
  
% 2nd-loop Output Phase-Noise Spectrum 
n2=abs(N2.*H_L_s2_freq02).^2.*n_bridge; 
plot(fm, 10*log10(n2), 'k'); grid; 
 

A.6 Discrete Phase-spur Analysis 

The following Matlab script was used to analyze phase-spur variations when 

passing through the components in the proposed architecture. The spur generation 

mechanism in fractional-N PLLs was explained in Section 3.2; the filtering effects 

applied to the spurs by the constituent loops of the architecture and the measuring 

principles of the spur strengths were discussed in Section 6.4; and the resulted 

performances were illustrated in Figure 7.2. 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Analysis of Discrete Phase Spurs from Fractional-N Mechanism in %% 
%%  Mini-denominator Mode                                          %% 
%% Author: Xiongliang Lai                                          %% 
%% Date: Mar. 25th 2009                                            %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear; 
% Circuit Parameter Initialization 
A=1; 
Q=12; 
N1=380;  %%% 
N1_star=N1+A/Q; 
I=20e-6; % amp; Charge Pump Current 
Kd=I/(2*pi); % amp/rad; Phase Detector Gain  
  
% Fractional-N Compensation & Overflow Realization 
Compen=zeros(1,Q); 
overflow=zeros(1,Q); 
for cycle=2:Q 
    Compen(cycle)=rem(Compen(cycle-1)+A,Q); 
    if Compen(cycle-1)>Compen(cycle) 
        overflow(cycle-1)=1; 
    end 
end 
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PhaseError=-Compen;  % Phase Error 
n_DET=1/N1_star*2*pi/Q*Kd*PhaseError;  % amp; Phase Detector Noise 
  
% Sample the continuous-time phase detector noise. 
fr=10e6; % Hz; Reference Frequency  
Tr=1/fr; 
N=100;   % Number of Samples in One Tr 
tau=Tr/N; 
pointer=1; 
  
for cycle=1:Q % Q*Tr is the period of the phase detector noise,. 
    x(pointer:pointer+N-1)=n_DET(cycle); 
    pointer=N+pointer; 
end 
  
% Define the number of repetitions in the piecewise continuous time 
signal. 
Repetition=1024; 
Rep=log2(Repetition); 
  
for l=1:Rep 
    x=[x x]; 
end 
  
% Discrete Time Fourier Transform 
N=length(x); 
% !!! Multiplying tau to recover the original non-sampled signal 
continuous 
% time fourier transform. 
X=1/N*fft(x);   
  
% Swap the order in X. 
X=fftshift(X); 
  
% Corresponding Frequencies of Discrete Time Fourier Transform 
k=0:1:N-1; 
W=(k*(2*pi/N)-pi)/tau; % Frequency in radian/s 
F=W/2/pi; % Frequency in /s 
  
% Plot the power spectrum (CTFT). 
plot(F,abs(X).^2); 
grid; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Output Discrete Phase Spurs from the 1st-loop   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
syms s A1 r1 wu1; 
  
w1=W; 
  
% 1st-loop Open-Loop Transfer Function 
GH1=A1/s^2*(1+s*r1/wu1)/(1+s/wu1/r1);  % r1=wu_wz1 
  
% 1st-loop H_L Function in s Domain 
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H_L_s1=simple(GH1/(1+GH1)); 
H_L_s1_freq01=subs(H_L_s1, {A1, wu1, r1}, {9.5204e9, 2*pi*30*10^3, 
3.7321}); %%% 
H_L_s1_freq02=subs(H_L_s1_freq01, {s}, {j*w1}); 
  
% 1st-loop Output Phase Spurs 
theta_n_stage1=abs(N1_star/Kd*H_L_s1_freq02).^2.*abs(X).^2+1e-12; 
  
% Plot Spurs in dB(or equivalently dBc). 
plot(F, 10*log10(theta_n_stage1),'k'); 
grid; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Output Discrete Phase Spurs from the Bridging Divider   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
M=1000;  %%% 
theta_n_bridge=(1/M)^2*theta_n_stage1; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Output Discrete Phase Spurs from the 2nd Loop   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
syms s A2 r2 wu2; 
  
w2=W; 
N2=250; % Pick N2 maximum for worst case %%% 
  
% 2nd-loop Open-Loop Transfer Function 
GH2=A2/s^2*(1+s*r2/wu2)/(1+s/wu2/r2);  % r2=wu_wz2 
  
% 2nd-loop H_L Function in s Domain 
H_L_s2=simple(GH2/(1+GH2));   
H_L_s2_freq01=subs(H_L_s2, {A2, wu2, r2}, {1.2958e10, 2*pi*35*10^3, 
3.7321}); %%% 
  
H_L_s2_freq02=subs(H_L_s2_freq01, {s}, {j*w2}); 
  
% 2nd-loop Output Phase Spurs 
theta_n_stage2=abs(N2*H_L_s2_freq02).^2.*theta_n_bridge; 
  
% Plot Spurs in dB(or equivalently dBc). 
plot(F, 10*log10(theta_n_stage2),'k'); 
grid; 
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