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ABSTRACT

A Lift of Cohomology Eigenclasses of Hecke Operators

Brian Hansen

Department of Mathematics

Doctor of Philosophy

A considerable amount of evidence has shown that for every prime p 6= N observed, a
simultaneous eigenvector v0 of Hecke operators T (`, i), i = 1, 2, in H3(Γ0(N), F (0, 0, 0)) has
a “lift” v in H3(Γ0(N), F (p−1, 0, 0)) — i.e., a simultaneous eigenvector v of Hecke operators
having the same system of eigenvalues that v0 has. For each prime p > 3 and N = 11 and
17, we construct a vector v that is in the cohomology group H3(Γ0(N), F (p − 1, 0, 0)).
This is the first construction of an element of infinitely many different cohomology groups,
other than modulo p reductions of characteristic zero objects. We proceed to show that v
is an eigenvector of the Hecke operators T (2, 1) and T (2, 2) for p > 3. Furthermore, we
demonstrate that in many cases, v is a simultaneous eigenvector of all the Hecke operators.

Keywords: Serre’s Conjecture, Hecke operator, cohomology group, lift, eigenvector
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Chapter 1. Introduction

The study of Galois representations has been very helpful in obtaining important results in

number theory. For instance, in his proof of Fermat’s Last Theorem [36], Wiles employed

some proven cases of Serre’s conjecture on the modularity of Galois representations (see [30]

— we will refer to this as simply “Serre’s conjecture”). More specifically, and perhaps more

importantly due to its implications, the conjecture was used to help prove the modularity

of elliptic curves. In fact, this conjecture has played an important role in number theory for

over three decades; recently it was proven by Khare and Wintenberger [24], and by Kisin

[25, Corollary 0.2].

The question then naturally arises, to what extent can these Galois representations be

wielded; i.e., what generalizations of theorems of classical number theory can be proven,

and which generalities of Galois representations can be found, especially those applicable to

number theory proofs? The introduction to [1] states that the classical law of quadratic reci-

procity is interpretable in terms of Galois representations, motivating a search for a more

generalized reciprocity law that would connect Galois representations with other mathe-

matical objects (which are, in the case of that paper and this, certain group cohomology

classes). One can therefore think of Serre’s conjecture as being one on reciprocity. Serre’s

conjecture is a partial converse to Theorem 6.7 in [14], which states that a classical modular

form of some positive weight has an odd two-dimensional Galois representation “attached”

(see [7, Def. 1.1]) to it. Ash in [2] conjectured a generalization of this theorem and checked

several simple cases. This is, as far as we know, the first formulation of a generalization

of this type. The authors of [1] tested this generalization using a homological analogue

(for computational purposes), provided a partial verification thereof, and proved a similar

conjecture of their own for the cases p = 5, 7.
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The correspondence observed in the two-dimensional case in Serre’s Conjecture naturally

prompted the question about whether there is a connection between Hecke eigenclasses and

higher-dimensional characteristic p Galois representations. The authors of [7] generalized

Serre’s conjecture as a connection between Hecke eigenclasses and n-dimensional Galois

representations in characteristic p, focusing on the case n = 3. A refinement of this gener-

alization, along with a considerable amount of computational evidence supporting it, was

presented in [3] (it is this particular refinement to which we refer as “the generalized con-

jecture”). Since the time of the publication of [3], much more work has been done; several

examples in [4], [5], [6], [17], [19], and [29] provide additional evidence, while [6], [15], [17],

[18], and [21] give further refinements of the conjecture. The only known proven cases of the

generalized conjecture are those presented in [7], which gives a few classes of Galois repre-

sentations attached to the appropriate eigenclasses. There are about 200 specific examples

of these classes shown in [10].

We do not give any further proven cases of the generalized conjecture in this paper,

instead focusing on an apparent correlation we have noticed between Hecke eigenclasses

in the cohomologies of two related weights predicted by the conjecture for certain Galois

representations. Our approach to explaining this correlation is to make it clear enough

that, given one eigenclass, we can make a prediction about the other. We attempt to do

this by (1) rewriting the eigenclasses in a more readable form, (2) carefully choosing the

coset representatives that we use in our calculations, and (3) studying how the eigenclasses

depend on these coset representatives for a few small p to get a formula for the general case.

Throughout, we use a result of Allison, Ash, and Conrad specialized for our situation, along

with a standard isomorphism of cohomology groups, and the natural duality of homology

and cohomology to calculate the cohomology.

We use the given eigenclass alluded to above (which we call v0) to construct an element

v in each of infinitely many cohomology groups, finding strong evidence that it corresponds
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to a Galois representation in the sense of the generalized conjecture. This v is therefore a

kind of “lift” of an eigenclass in a related cohomology group. This is the first time of which

we are aware that such an element has been constructed, the benefit being that we do

not have to calculate the entire cohomology to obtain it. Previous methods of calculating

the cohomology involved computing with modules having dimension in the hundreds of

thousands, even for primes as small as 101. In contrast, we determine v as a relatively

simple function of p.

It turns out that v is also an eigenvector of the Hecke operators T (2, i) for i = 1, 2.

A proof that v is a Hecke eigenclass of all Hecke operators T (`, i) would be of significant

importance, because if we can find a Galois representation corresponding to the already-

known eigenclass v0, we likely will be able to find a Galois representation corresponding to

its lift v, perhaps leading the way to a great source of potential evidence for the generalized

conjecture. In fact, v is an eigenclass for each of the Hecke operators we have observed;

unfortunately, we have not been able to conclude that it is for all `. However, because v is

in a finite-dimensional space, repeated application of Hecke operators on v eventually yields

a Hecke-stable space, guaranteeing the existence of some Hecke eigenclass. Therefore, either

v is a Hecke eigenclass, or we have computed a significant portion of the cohomology using

Hecke operators, enabling us to find more Hecke eigenclasses. Either result gives us useful

elements with which to work to find evidence for the generalized conjecture.

An outline of the paper is as follows: in Chapter 2, we state Serre’s conjecture and

introduce the generalized conjecture in more detail, noting the comparison between the

two and creating the setting for the relation of our work to the problem of establishing the

generalized conjecture. More specifically, as the generalized conjecture connects cohomology

eigenclasses with Galois representations, we also describe, in Example 2, the representation

that appears to correspond to the eigenvector v0 about which we are concerned.

In Chapter 3, we describe the previously-observed relation between eigenclasses in related
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weights, some theorems and notation used in our calculations, and the construction of the

two eigenclasses in question, v0 and v. The construction is determined as follows: first we

identify an eigenclass v0 ∈ H3(Γ0(N), F (0, 0, 0)) of the Hecke operators. We then find a

basis for H3(Γ0(N), F (p− 1, 0, 0)), applying the Hecke operator to each basis element, one

by one. Each result is described in terms of the basis, giving us a transformation matrix. We

examine the eigenvectors of this matrix for a few small p, finding one having a predictable

correlation with v0, which we call v.

We prove in Chapter 4 that this v is, in a sense, a lift of v0, by showing that it is in the

cohomology H3(Γ0(N), F (p− 1, 0, 0)) for each p. We also prove that it is an eigenvector of

the first two Hecke operators.

Finally, the Appendix contains the code to several computer programs which were in-

dispensable as we conducted our research into the solution of this problem.
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Chapter 2. Serre’s Conjecture and a Generalization

2.1 Serre’s Conjecture

In this section we present Serre’s conjecture; see [12]. We begin with a few basic preliminaries

about modular forms. Refer to [26, pp. 222-7] for more detail.

For τ ∈ C with Im τ > 0, let M =
[

a b
c d

]
act on τ by Mτ =

aτ + b

cτ + d
.

Definition 1. Let k ∈ Z, N be a positive integer and ε : (Z/NZ)× → C× be a homomor-

phism. Any analytic function f on the upper half plane H with

f(Mτ) = (cτ + d)kε(d)f(τ)

for all M ∈ Γ0(N) = {
[

a b
c d

]
∈ SL2(Z) | c ≡ 0 mod N} and τ ∈ H is called an unrestricted

modular form of weight k, level N , and nebentype (or character) ε.

It is easy to see that each unrestricted modular form f is periodic, so that it has a

Fourier expansion

f(τ) =
∞∑

n=−∞

anq
n,

where q = e2πiτ . If f satisfies certain growth conditions at the cusps (which imply, among

other things, that an = 0 for negative n in this expansion), f is said to be holomorphic at

the cusps and is a modular form. A normalized modular form has 1 as its first nonzero

Fourier coefficient, and a modular form is said to be an eigenform if it is a simultaneous

eigenvector for Hecke operators T` for ` prime; see [26, p. 280]. Some examples of modular

forms include

G2k(τ) =
∑

(m,n) 6=(0,0)

1

(mτ + n)2k
,
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the Eisenstein Series E2k(τ) =
G2k(τ)

2ζ(2k)
, and ∆ = 1

1728
(E3

4 − E2
6).

As Serre’s Conjecture is a kind of “marriage” of both analytic and algebraic number

theory, we now focus on the algebraic side. Let Q̄ be the algebraic closure of Q, and let p

be prime.

Definition 2. An n-dimensional Galois representation is a continuous homomorphism ρ :

GQ → GLn(F) from GQ = Gal(Q̄/Q) (with the Krull topology [28, p. 2]) to the general

linear group of invertible n×n matrices over a field F of characteristic p (having the discrete

topology). If for all g ∈ GQ we can write ρ(g) = ρ1(g)⊕ ρ2(g) for nontrivial representations

ρ1, ρ2 of GQ, then ρ is said to be reducible.

Given a prime q, let Dq be a decomposition group at q in GQ, and Iq the whole inertia

group above q. The Frobenius of q is a special generator of Dq/Iq, and is denoted Frobq [3,

p. 522]. A Galois representation ρ is said to be ramified at q if Iq does not act trivially on

Fp; i.e., if the image of Iq under ρ is nontrivial.

Let ρ be a two-dimensional Galois representation. If the determinant of the matrix to

which the complex conjugation map is sent is 1, ρ is called even; otherwise, it is odd. We

put the analytic and algebraic sides together with the following

Definition 3. If there exists a normalized eigenform f of weight k ≥ 2, level N , and

character ε with Fourier coefficients an in C such that for all ` which are unramified for ρ and

do not divide Np, the characteristic polynomial of ρ(Frob`) is congruent to x2−a`x+`k−1ε(`)

modulo a prime above p, then ρ is said to be modular, and ρ and f are associated.

As noted in the Introduction, it was previously shown in [14] that any eigenform f has

an associated representation ρ. The general idea of Serre’s conjecture is that the converse

holds also: any odd irreducible representation ρ as above is modular.

Conjecture 1 (Serre’s Conjecture). There exists a normalized mod p eigenform of level
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N(ρ), weight k(ρ), and (when char F > 3) character ε(ρ) which is associated to ρ, where

N(ρ), k(ρ), and ε(ρ) are defined by a formula of Serre [12, p. 3].

Briefly, the level N(ρ) is the Artin conductor of ρ, with all factors of p removed. The char-

acter ε(ρ) is obtained by identifying det ρ with the Dirichlet character (Z/N(ρ)pZ)× → F×p ,

which by the Chinese remainder theorem may be factored into a product of the characters

ε(ρ) : (Z/N(ρ)Z)× → F×p and φ : (Z/pZ)× → F×p . Our work is restricted to the case where

ρ|Ip is upper triangularizable with cyclotomic characters on the diagonal, say with exponents

a, b. Then

k(ρ) = 1 + a + b + (p− 1)min(a, b) + (p− 1)δ,

where δ = 1 if ρ is unramified at p or if ρ|Ip is “très ramifié” [12, pp. 4-6]; otherwise δ = 0.

We illustrate Serre’s Conjecture with the following

Example 1. Consider the splitting field K of f(x) = x3−x + 1. We have Gal(K/Q) ∼= S3.

Let σ : S3 → GL2(F23) be the homomorphism defined by

σ((1 2)) =

[
0 1

1 0

]
, σ((1 2 3)) =

[
0 − 1

1 − 1

]
.

We then have a Galois representation

ρ : GQ
π→ Gal(K/Q) ∼= S3

σ→ GL2(F23),

where π is the natural projection map. For all primes ` 6= 23, the order of the image of

factorization of f(x) mod ` order of π(Frob`) Tr(ρ(Frob`))

three linear factors 1 2
one linear, one quadratic 2 0

irreducible 3 -1

Table 2.1: Calculation of Tr(ρ(Frob`)) according to factorization of f(x)
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` 2 3 5 7 11 13 17 19 23 29 31 37
Tr(ρ(Frob`)) −1 −1 0 0 0 −1 0 0 * −1 −1 0

a` −1 −1 0 0 0 −1 0 0 1 −1 −1 0

` 41 43 47 53 59 61 67 71 73 79 83 89
Tr(ρ(Frob`)) −1 0 −1 0 2 0 0 −1 −1 0 0 0

a` −1 0 −1 0 2 0 0 −1 −1 0 0 0

Table 2.2: Association of ρ with ∆.

the Frobenius element Frob` under the projection π depends on the factorization of f(x)

modulo `; therefore so does Tr(ρ(Frob`)). This is illustrated in Table 2.1, and justified by a

theorem of Dedekind which relates the cycle structure of Frob` with the factorization of a

polynomial modulo `. (Dedekind’s result follows from [27, Thm. 27], which gives the prime

decomposition of a prime lying above ` in terms of the ideals generated by the prime and

the factors of the polynomial modulo `, and from [27, Thm. 33], which relates the splitting

of a prime with the orbits of Frob` as it acts on the cosets of the Galois subgroup fixing the

field in which the prime lies. The connection is made by a natural bijection between the

cosets and the roots of the polynomial, which preserves the action of the Galois group.)

In this case, ρ is associated with ∆, one of the examples of modular forms mentioned

above. Observe Table 2.2, where a` denotes the coefficient of q` in the q-expansion of ∆,

reduced modulo 23.

2.2 The Generalized Conjecture

We now introduce a generalized version of Serre’s conjecture, which we refer to more simply

as the “generalized conjecture.” This conjecture is based on the refinement of the one made

in [7] due to Ash, Doud, and Pollack (Conjecture 3.1 in [3]), and is focused on the case

n = 3. We proceed exactly as in [3], adopting Definition 2 for an n-dimensional Galois
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representation, taking care to note that in the n-dimensional case, an odd representation ρ

“satisfies strict parity” (see Definition 2.10 in [3]).

In the case of n = 3, Γ0(N) is the subgroup of matrices in SL3(Z) whose first row is

congruent to (∗, 0, 0) modulo N . Let SN be the subsemigroup of integral matrices in GLn(Q)

satisfying the same congruence condition and having positive determinant relatively prime

to N . Let H(N) denote the F̄p-algebra of double cosets Γ0(N)\SN/Γ0(N). Then H(N) is a

commutative algebra that acts on the cohomology and homology of Γ0(N) with coefficients

in any F̄p[SN ]-module. A double coset is called a Hecke operator when it acts on cohomology

or homology. Note that H(N) contains all double cosets of the form Γ0(N)D(`, k)Γ0(N),

where ` is a prime not dividing N , 0 ≤ k ≤ 3, and D(`, k) is the diagonal matrix with the

first 3 − k diagonal entries equal to 1 and the last k diagonal entries equal to `. If viewed

as a Hecke operator, the double coset generated by D(`, k) is abbreviated T (`, k).

Definition 4. Let V be an H(pN)-module and suppose that v ∈ V is a simultaneous

eigenvector for all T (`, k) and that T (`, k)v = a(`, k)v with a(`, k) ∈ F̄p for all prime ` not

dividing pN , and for 0 ≤ k ≤ 3. Let ρ : GQ → GL3(F̄p) be a representation unramified

outside pN and assume that

3∑
k=0

(−1)k`k(k−1)/2a(`, k)Xk = det(I − ρ(Frob`)X)

for all ` not dividing pN . Then we say that ρ is attached to v or that v corresponds to ρ [3,

p. 523].

We may pull ε(ρ) (the Dirichlet character mentioned in Section 2.1 above) back to SN

by defining it to be the composite character

SN → (Z/N(ρ)Z)× → F×p ,
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where the first map takes a matrix in SN to its (1,1) entry. Define Fε to be the F̄p-vector

space F̄p with the action of SN given by ε. Given a GLn(Fp)-module V , define

V (ε) = V ⊗ Fε.

Since Γ0(N) acts on V by reduction modulo p and SpN acts on Fε, V (ε) is both a Γ0(N)-

module and an SpN -module [3, p. 524].

The weights associated to a 3-dimensional Galois representation ρ will be certain irre-

ducible GL3(Fp)-modules. The naturality of this follows from the following chain of ob-

servations: the Eichler-Shimura theorem (see [31]) relates the space of modular forms of

weight k to cohomology with coefficients in Symg(C2) with g = k − 2. Hence, an eigen-

form f of level N , nebentype ε, and weight k gives rise to a collection of Hecke eigenvalues

which, when reduced modulo p, also “occurs” (see [8, Def. 1.2.1(b)]) in H1(Γ0(N), Vg(ε)),

where Vg
∼= Symg(F̄2

p) is the space of two-variable homogeneous polynomials of degree g

over F̄p with the natural action of SL2(F̄p). Ash and Stevens have shown in [8] that any

system of Hecke eigenvalues occurring in the cohomology of Γ0(N) with coefficients in some

GLn(Fp)-module also occurs in the cohomology with coefficients in at least one irreducible

GLn(Fp)-module occurring in a composition series of the original module. Hence, there is

some irreducible GL2(Fp)-module W such that the system of eigenvalues coming from f

also occurs in H1(Γ0(N), W (ε)) [3, p. 525]. Generalizing to the 3-dimensional case, it is

natural to study the cohomology of irreducible GL3(Fp)-modules. Such a module is denoted

as F (a, b, c), where the triple (a, b, c) is p-restricted ; that is,

0 ≤ a− b ≤ p− 1,

0 ≤ b− c ≤ p− 1,

0 ≤ c ≤ p− 2

10



F (2(p− 1), p− 1, 0)

↗ ↖

F (p− 1, p− 1, 0) F (p− 1, 0, 0)

↖ ↗

F (0, 0, 0)

Figure 2.1: Alcove Geometry (see [16, p. 423]). Evidence suggests that an eigenclass in the
cohomology of any one of these modules has a lift in the cohomology of every module shown
here above it.

([16, p. 412]; see also [20, Thm. 6.4b]). There are therefore p2(p − 1) such modules. (The

notation reflects the parametrization of irreducible GL3(Fp)-modules by p-restricted triples

described in [16].)

Definition 5. Let (a1, a2, a3) be a triple of integers. When (a1, a2, a3) is p-restricted, we

define F (a1, a2, a3) to be the associated irreducible GL3(Fp)-module. Denote by (a1, a2, a3)
′

the set of all p-restricted triples (b1, b2, b3) for which ai ≡ bi (mod p−1). Then by F (a1, a2, a3)
′

we mean the set of irreducible GL3(Fp)-modules corresponding to triples in (a1, a2, a3)
′.

Obviously, in certain cases (namely, when some ai ≡ ai+1 (mod p−1)) there may be more

than one triple in (a1, a2, a3)
′. In this case we interpret any statement concerning (a1, a2, a3)

′

to mean that the statement is true for some choice of (b1, b2, b3) as in the definition. For

example, a statement about (a, a, 0)′ is true if it is for either (a, a, 0) or (a + p− 1, a, 0) (or

both). In this paper we are primarily concerned with the class of modules represented by

F (0, 0, 0)′: a statement true for F (0, 0, 0) we wish to prove is also true for F (p − 1, 0, 0).

Ultimately, we would like to prove that similar statements are true for the other two modules

represented by F (0, 0, 0)′, namely, F (p−1, p−1, 0) and F (2(p−1), p−1, 0) [3, p. 526]. See

Figure 2.1.
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Conjecture 2 (Generalized Conjecture for n = 3). If ρ : GQ → GL3(Fp) is an odd

Galois representation with level N and nebentype ε, and is not the sum of an odd 2-

dimensional representation and a character, then ρ is attached to a cohomology class in

H3(Γ0(N), V (ε)) for a weight V of the form F (a, b, c), described above [3, pp. 531-532].

Stated vaguely, the generalized claim (for n = 3) is that ρ is attached to an eigenclass

in H3(Γ0(N), V (ε)). Serre’s conjecture is a special case of the generalized conjecture; see

[3, Thms. 3.7, 3.8]. In particular, as in Serre’s conjecture, the generalized conjecture gives

specific predictions about which weights V yield eigenclasses attached to ρ. In this case, if,

upon upper-triangularizing ρ|Ip , the exponents of the cyclotomic characters on the diagonal

are a, b, and c, the weight predicted is V = F (a− 2, b− 1, c). If, furthermore, ρ is reducible,

the relation of its image with respect to certain Levi subgroups further filters the predicted

weights (for more detail, see the discussion in [3, pp. 526-531]).

The following example describes the Galois representation that is believed to correspond

to an eigenclass v0 ∈ H3(Γ0(N), F (0, 0, 0)) about which we are concerned.

Example 2. By Definition 4, if the Galois representation ρ corresponds to a given eigenclass

β ∈ H3(Γ0(N), F (0, 0, 0)), then the trace of a Frobenius element at ` under the image of

ρ is the eigenvalue a(`, 1). It is therefore easy to verify, by the use of a computer, a claim

that ρ cannot be decomposed into a direct sum of three characters: simply run through all

the possibilities of traces of such direct sums, and if the trace is a(`, 1) for one in particular,

check the trace of that direct sum for higher `, until a case in which they do not match is

found. We run this test on β = v0 (which we will define in Sections 3.1 and 3.3) and find

that in this case ρ cannot be broken up into a direct sum of three characters. We therefore

attempt to find a different decomposition of the ρ corresponding to v0.

From a table of elliptic curves, we find the elliptic curve E of conductor N given by the

12



equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

(For N = 11, a1 = 0, a2 = −1, a3 = 1, a4 = −10, a6 = −20; for N = 17, a1 = 1, a2 =

−1, a3 = 1, a4 = −1, a6 = −14.) According to [26, Thm. 6.14], we have E(C) ∼= C/Λ, where

Λ is a lattice of points in C. In the interior of each parallelogram of Λ in the complex plane,

there is a p×p lattice of p-torsion points; therefore, the p-torsion subgroup of this curve over

C is isomorphic to the two-dimensional vector space Z/pZ× Z/pZ (see [32, Prop. VI.5.4a,

p. 163]).

The group addition law can be described in terms of rational functions with coefficients

in Q. As the Galois group GQ permutes the roots of polynomials over Fp, it commutes with

these rational functions and therefore acts linearly on the p-torsion subgroup; hence for all

prime p - N we obtain a two-dimensional Galois representation ρE,p sending σ ∈ GQ to

a matrix in GL2(Fp). From [13, Section 2.2], we have Tr(ρE,p(Frob`)) = ` + 1 − #E(Fp),

where Tr is the trace, Frob` is a Frobenius of `, and #E(Fp) is the number of Fp-rational

points on the elliptic curve E. By adding ω2, where ω is the cyclotomic character, we get

the three-dimensional representation ρ = ρE,p ⊕ ω2, and since ρE,p is similar to

 ω

1


when restricted to inertia at p (see [13, Prop. 2.11(c)]), this gives us

ρ|Ip ∼


ω2

ω

1

 =


ω2

ω1

ω0


and therefore a predicted weight of F (0, 0, 0).
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` 2 3 5 13 17 19 23 29 31 37 41
Tr(ρ(Frob`)) 2 1 5 5 0 4 3 1 2 0 0

a(`, 1) 2 1 5 5 0 4 3 1 2 0 0

T2(ρ(Frob`)) 1 1 2 3 6 5 5 1 3 0 5
`a(`, 2) 1 1 2 3 6 5 5 1 3 0 5

Table 2.3: Comparison of Tr(ρ(Frob`)) and T2(ρ(Frob`)) with Hecke eigenvalues of v0, re-
duced modulo p = 7, for 2 ≤ ` ≤ 41.

Had we instead multiplied ρE,p by ω and then added the trivial character, we would have

obtained ρ = ωρE,p ⊕ 1, which also corresponds to an eigenclass in H3(Γ0(N), F (0, 0, 0)).

We can show, however, that this second ρ does not actually correspond to v0 by checking

that the relations Tr(ρ(Frob`)) = a(`, 1) and T2(ρ(Frob`)) = `a(`, 2) (where T2 is the cotrace

function, defined as the sum of all products of pairs of eigenvalues) do not hold for every `.

Therefore, ρ = ρE,p ⊕ ω2 is the only representation that could possibly correspond to v0, if

one corresponds at all.

We calculate Tr(ρ(Frob`)) = `2+Tr(ρE,p(Frob`)) and T2(ρ(Frob`)) = `+`2Tr(ρE,p(Frob`));

their comparison with the Hecke eigenvalues of v0 for p = 7 and several ` is depicted in Ta-

ble 2.3. Note that for these `, the conditions of Definition 4 are satisfied, giving evidence

that ρ is attached to v0.

14



Chapter 3. A Lifted Cohomology Eigenclass

3.1 Computational Evidence

Extensive computational evidence indicates that for every eigenvector

v0 ∈ H3(Γ0(N), F (a, a, 0))

of the Hecke operators, there is an eigenvector

v ∈ H3(Γ0(N), F (a + p− 1, a, 0))

having the same system of eigenvalues. In this paper a = 0, which is the only case we

have considered thus far. Ultimately, we would like to be able to prove that this correlation

occurs in all cases. With such a proof in hand, then whenever a Galois representation ρ0

attached to v0 can be found, this would give us a good idea where to look for a similar

Galois representation ρ attached to v. This could also help us specify which weights should

be predicted in the conjecture. All of this would be of great service in helping us find

additional evidence for the generalized conjecture.

The existence of v0 is guaranteed by [22, Lemma 1.3.17], which says there must be at

least one simultaneous eigenvector of every member of a commuting family of operators,

and the Hecke operators are such a family. There may therefore be several eigenvectors, so

our choice of v0 is somewhat arbitrary; Definition 6, at the beginning of Section 3.3, is an

explicit description of the v0 that we actually choose.

We have constructed an element v ∈ H3(Γ0(N), F (p − 1, 0, 0)) for p > 3 and N = 11

and 17, and have proved (for every p - 6N) that it is an eigenvector of the Hecke operators

15



T (2, 1) and T (2, 2). Though we were unable to prove that v is an eigenvector for every Hecke

operator, we have nevertheless observed that in the range 3 < p < 47, v is an eigenvector

of all T (`, i) such that ` - pN , i = 1 or 2, and N = 11 or 17, in each case having the same

system of eigenvalues as our given v0.

The method of our approach to this problem involves performing computations of v0

and v and then comparing the two for several different values of p, to find patterns which

we carefully formulate so that we can prove the existence of v for all primes p > 3. This

necessitates the use of bases for v0 and v that are easily manageable, the notation for which

is described in the following section.

3.2 Notation and Preliminary Theorems

Let p be prime, and let the level N be relatively prime to p. For convenience, we set

tp = 1
2
p(p + 1). The only coefficient modules V we are concerned with in this paper are

F (0, 0, 0) and F (p− 1, 0, 0). By [3, p. 569], bases for these are the sets of monomials in the

spaces of homogeneous polynomials over F̄p in three variables x, y, z of total degree 0 and

p− 1, respectively. Hence there is only one element in the basis in the former case, and tp

elements in the basis in the latter.

We will not actually calculate the cohomology, but rather the homology, and then employ

the natural duality (see [11, Prop. VI.7.1, p. 145]), as was done in [3] (following [9]), to

obtain the cohomology. Shapiro’s Lemma [35, p. 171] gives

H3(Γ0(N), V ) ∼= H3(SL3(Z), Ind
SL3(Z)
Γ0(N) V ),

where the induced module Ind
SL3(Z)
Γ0(N) V is defined by

Ind
SL3(Z)
Γ0(N) V = {f : SL3(Z) → V : f(xg) = f(x) · g for g ∈ Γ0(N)},
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the dot denoting the (right) action of SL3(Z) by left translation on V . In [3, p. 573] the basis

for this induced module is expressed in terms of the basis elements vα of V (monomials in

the variables x, y, z, as discussed above) and the coset representatives rk in SL3(Z)/Γ0(N).

More precisely, the functions φrk,vα : SL3(Z) → V defined by

φrk,vα(x) =


vα · r−1

k x if x ∈ rkΓ0(N),

0 otherwise,

constitute the basis for Ind
SL3(Z)
Γ0(N) V . For each of the two induced modules with which we

are concerned, we express a given element as a vector, whose components correspond to the

φrk,vα . The labelling order of these components is described below. In essence, they are

arranged first by coset representative, then by monomial in x, y, z. Since for V = F (0, 0, 0)

there is only one monomial for each coset representative, the components in this case are

labelled simply by coset representative. Thus we can assume for the purposes of the following

discussion that V = F (p− 1, 0, 0).

Theorem 1. Suppose N 6= p is prime, and let N ′ be the unique positive integer less than p

such that NN ′ ≡ 1 mod p. Define m = (NN ′ − 1)/p. Then each element of SL3(Z)/Γ0(N)

can be represented by the inverse of a matrix having one of the following three forms:

(i)


1 i(1−NN ′) j(1−NN ′)

0 1 0

0 0 1

 , i, j ∈ {0, ..., N − 1}

(ii)


NN ′ 1−NN ′ i(1−NN ′)

p(3m + i) NN ′ p(8m2 + 3mi)

−p 0 −2mp + 1

 , i ∈ {0, ..., N − 1}
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(iii)


NN ′ 0 1−NN ′

−p −2mp + 1 0

3mp 8m2p NN ′


Proof. The set of coset representatives is in one-to-one correspondence with distinct points

in the projective space

P2(Z/NZ) = {(a, b, c) ∈ (Z/NZ)3 \ {0} : (a, b, c) = (λa, λb, λc) for λ ∈ (Z/NZ)×}.

This is because Γ0(N) is the stabilizer in SL3(Z) of the point (1, 0, 0) and P2(Z/NZ) is its

orbit. Each representative is uniquely characterized by the reduction of its top row modulo

N . Since N is prime, each triple (a, b, c), a 6= 0, can be “normalized” by multiplying by the

inverse of a modulo N , so that those cosets corresponding to these triples can be represented

by a triple of the form (1, ∗, ∗). There are therefore N2 such representatives; observe that

they are of form 1. A similar normalization is carried out in case a = 0, b 6= 0, giving triples

of the form (0, 1, ∗). There are N of these representatives, and they fall in the class of form

2. Finally, when a = 0, b = 0, c 6= 0, we get the unique triple of the form (0, 0, 1), which is

in the class of form 3.

Remark 1. Note that the representatives have all been chosen so that they are congruent

modulo p to the 3 × 3 identity matrix. The importance of this choice will be seen in our

determination of the action matrices, beginning in Section 4.1.

We index the set of representatives rk as follows: form 1, k = Ni + j + 1 for 0 ≤ i, j ≤

N − 1; form 2, k = N2 + i + 1 for 0 ≤ i ≤ N − 1; form 3, k = N2 + N + 1. We therefore

likewise index the components of a vector in V , recalling that each coset representative must

correspond to tp (consecutive) components, one for each possible monomial in the variables

x, y, z having total degree p−1. Considering the exponents α, β, γ of each monomial xαyβzγ,
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we have ordered the components in the vector as follows: for each fixed α, β increases from

0 to p− 1− α, and γ decreases from p− 1− α to 0. Each monomial of total degree p− 1 is

accounted for as α then increases from 0 to p−1. Hence for α = 0, there are p monomials; for

α = 1, there are p− 1; etc., for a total of 1
2
p(p+1) = tp monomials altogether. The relation

between the exponent α and the variable j ∈ {1, ..., tp} indexing the set of monomials is

therefore quadratic; in fact, we use a quadratic fitting to find

α =

⌊
1

2

(
2p + 1−

√
4p2 + 4p + 9− 8j

)⌋
,

where b c denotes the floor function. For quick reference, we also list the exponents β and

γ in terms of α and j:

β = j +
1

2
(α2 − (2p + 1)α− 2),

γ = −j − 1

2
(α2 − (2p− 1)α− 2p− 2)− 1.

Alternatively, if two of α, β, γ are known, the third is obtained by simply subtracting the

other two from p − 1. Note that the first in each block of tp components corresponds to

zp−1; the pth, to yp−1; and the tthp , to xp−1.

Having concluded the outline of our notation, we allow for V to be either of F (0, 0, 0)

or F (p− 1, 0, 0) again, and calculate the desired homology using the following

Theorem 2 (Allison, Ash, and Conrad [1, Thm. 2.1]). Let p > 3 be prime, and let V

be a finite-dimensional vector space over Fp on which SL3(Z) acts linearly, with · denoting

the action. Then H3(SL3(Z),V) is the subspace of all v ∈ V such that

(i) v · a = v,

(ii) v · b = −v,
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(iii) v + v · h + v · (h2) = 0,

where

a =


0 0 1

1 0 0

0 1 0

 , b =


0 1 0

−1 0 0

0 0 1

 , and h =


0 −1 0

1 −1 0

0 0 1

 .

Conditions 1 and 2 are called the semi-invariant condition and condition 3 is the h-

condition.

Proof. See [1, Thm. 2.1].

A couple of notes about Theorem 2:

(i) Our statement of the theorem is actually closer to the analogue in [3, p. 568], which

states the semi-invariant condition for diagonal matrices and monomial matrices of

order 2 in SL3(Z). These are equivalent statements because a and b generate the

subgroup of such matrices in SL3(Z). See also [4, pp. 666-667].

(ii) The condition p > 3 is necessary because the statement of the theorem in [1] is for

“daggered” homology, which may differ from the usual homology for primes dividing

possible orders of elements in SL3(Z) (see [1, p. 363]).

Recall that in this paper we are concerned with calculating H3(Γ0(N), V ) in particular,

where V = F (0, 0, 0) or F (p−1, 0, 0). Since Theorem 2 does not directly calculate homology

of this form, we will actually compute H3(SL3(Z), Ind
SL3(Z)
Γ0(N) V ), where Ind

SL3(Z)
Γ0(N) V is as

defined above, whence we obtain H3(Γ0(N), V ) using Shapiro’s Lemma, as mentioned before.
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3.3 Construction of the Lift

The notation outlined in the previous section helps us express the vectors v0 and v mentioned

in Section 3.1 in a more manageable way. We can do this for specific (small) p and N = 11

or 17 by first calculating a basis for H3(SL3(Z), Ind
SL3(Z)
Γ0(N) V ) for V = F (p−1, 0, 0) using our

program ADP-F(p-1,0,0) (see Appendix — a similar program is used for V = F (0, 0, 0)).

We then apply the Hecke operators to the basis elements using [1, Lemma 9.1], expressing

the results in terms of the original basis, which gives us a transformation matrix. When

V = F (0, 0, 0), the eigenvectors of the corresponding transformation matrix include what we

will choose to be v0; when V = F (p−1, 0, 0), they include the corresponding v. (Comparing

systems of eigenvalues, it is easy to determine which of the eigenvectors in weight F (p −

1, 0, 0) is the v which interests us.) We compare the components of v0 for a few different p,

enabling us to define v0 explicitly in the next definition. (We find that some components

involve division by 2, which is taken to mean multiplication by the multiplicative inverse of

2 modulo p. Therefore, we scale by 2 to eliminate denominators.)

Definition 6. Following the indexing outlined in Section 3.2, as i ranges through the

N2 + N + 1 cosets of SL3(Z)/Γ0(N), the components of 2v0 for N = 11 are as listed in

Table 3.1, where k = −5. For N = 17, the components for 2v0 are listed in Table 3.2, where

k = −4.

Comparing components of v for a few different p, we are able to construct a vector v

that we will show is in H3(Γ0(N), F (p − 1, 0, 0)) for every p > 3. The description of this

construction follows: as described in Section 3.2, we order the components of v into blocks

corresponding to coset representatives, with the components of each block corresponding to

monomials; thus, v consists of N2 + N + 1 blocks of tp components each. The only nonzero

entries in each block are found in the first, pth, and tthp positions. (For simplicity, we will

use the notation u[i, j] to mean the jth component of the ith block of the vector u. Thus,
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i mod N
1 2 3 4 5 6 7 8 9 10 0

⌈
i

N

⌉

1 0 0 −2 −1 1 2 2 1 −1 −2 0
2 0 0 0 0 0 0 0 0 0 0 0
3 2 0 0 0 −k −k −k −k 0 0 0
4 1 0 0 0 0 −k −k 0 0 0 0
5 −1 0 k 0 0 0 0 0 0 k 0
6 −2 0 k k 0 0 0 0 k k 0
7 −2 0 k k 0 0 0 0 k k 0
8 −1 0 k 0 0 0 0 0 0 k 0
9 1 0 0 0 0 −k −k 0 0 0 0
10 2 0 0 0 −k −k −k −k 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0
12 0 0 2 1 −1 −2 −2 −1 1 2 0
13 0

Table 3.1: Components of 2v0 for N = 11 (see Definition 6).

i mod N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0

⌈
i

N

⌉

1 0 0 −2 −1 0 −1 1 1 2 2 1 1 −1 0 −1 −2 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 2 0 0 0 −k 0 −k −k −k −k −k −k 0 −k 0 0 0

4 1 0 0 0 0 0 −k 0 −k −k 0 −k 0 0 0 0 0

5 0 0 k 0 0 0 0 0 −k −k 0 0 0 0 0 k 0

6 1 0 0 0 0 0 0 −k −k −k −k 0 0 0 0 0 0

7 −1 0 k k 0 0 0 0 0 0 0 0 0 0 k k 0

8 −1 0 k 0 0 k 0 0 0 0 0 0 k 0 0 k 0

9 −2 0 k k k k 0 0 0 0 0 0 k k k k 0

10 −2 0 k k k k 0 0 0 0 0 0 k k k k 0

11 −1 0 k 0 0 k 0 0 0 0 0 0 k 0 0 k 0

12 −1 0 k k 0 0 0 0 0 0 0 0 0 0 k k 0

13 1 0 0 0 0 0 0 −k −k −k −k 0 0 0 0 0 0

14 0 0 k 0 0 0 0 0 −k −k 0 0 0 0 0 k 0

15 1 0 0 0 0 0 −k 0 −k −k 0 −k 0 0 0 0 0

16 2 0 0 0 −k 0 −k −k −k −k −k −k 0 −k 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0 0 2 1 0 1 −1 −1 −2 −2 −1 −1 1 0 1 2 0

19 0

Table 3.2: Components of 2v0 for N = 17 (see Definition 6).
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the first, pth, and tthp positions of the ith block of v may be denoted v[i, 1], v[i, p], and v[i, tp],

respectively.) To generate these three entries, let i index the set of coset representatives

as in Section 3.2. There are six nonzero values assumed by the components of v: ±1, ±k,

and ±k/2, where k is an integer depending on N (for N = 11, k = −5; for N = 17,

k = −4). Where they appear in v is outlined in Tables 3.3 through 3.8. (The tables for

N = 11 are shown here; for N = 17, they are at the end of this section. Also, for display

purposes, we opt to leave the components as they are, instead of scaling by 2 to eliminate

denominators, as in the case of v0 above.) Evidently v[i, 1] depends on d i
N
e (where d e is

the ceiling function), and, when i < N2, v[i, p] is a function of i mod N . There may be a

similar way to describe v[i, tp], but thus far a relation more concise than those depicted in

Tables 3.5 and 3.8 has eluded us.

d i
N
e 1 3, 10 4, 9 5, 8 6, 7 12

v[i, 1] 1 −k −k/2 k/2 k −1

Table 3.3: Nonzero v[i, 1] for N = 11.

i mod N 1 3, 10 4, 9 5, 8 6, 7

v[i, p] −1 k k/2 −k/2 −k

Table 3.4: Nonzero v[i, p] for N = 11 (i < N2). If i > N2 + 1, v[i, p] = 1. (If i = N2 or
N2 + 1, v[i, p] = 0.)

All the remaining entries that are as yet unspecified are left as 0. Programs explicitly

generating v are located in the appendix, one for each of the levels 11 and 17. The question

may arise as to how all of these vector entries were determined; recall that we observed

the same patterns in the cases where p was small enough that we could find v by directly

calculating H3(SL3(Z), V ). These patterns of symmetry are especially apparent when the

components corresponding to a particular monomial are grouped according to congruence

classes of i mod N , N consecutive i, or even the entire table of such components of v.

One apparent relation, which we now describe, connects the first and pth positions of

23



i mod N

1 2 3 4 5 6 7 8 9 10 0

⌈
i

N

⌉

1 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
2 1 0 −k −k/2 k/2 k k k/2 −k/2 −k 0
3 1 k 0 k/2 −k −k/2 −k/2 −k k/2 0 k

4 1 k/2 −k/2 0 k −k −k k 0 −k/2 k/2
5 1 −k/2 k −k 0 k/2 k/2 0 −k k −k/2
6 1 −k k/2 k −k/2 0 0 −k/2 k k/2 −k

7 1 −k k/2 k −k/2 0 0 −k/2 k k/2 −k

8 1 −k/2 k −k 0 k/2 k/2 0 −k k −k/2
9 1 k/2 −k/2 0 k −k −k k 0 −k/2 k/2
10 1 k 0 k/2 −k −k/2 −k/2 −k k/2 0 k

11 1 0 −k −k/2 k/2 k k k/2 −k/2 −k 0
12 1 0 −k −k/2 k/2 k k k/2 −k/2 −k 0
13 −1

Table 3.5: v[i, tp] for N = 11.

the blocks of v with most of the first N components of v0, which attain five values, namely,

−1, −1/2, 0, 1/2, and 1. Where these values appear in v0 for 1 < j ≤ N has a bearing with

where they appear, scaled by k, in v; specifically, one observes for j in this range that

(i) v[i, 1] = kv0[j, 1] when d i
N
e = j, and

(ii) v[i, p] = −kv0[j, 1] when i ≡ j mod N and i < N2.

These relations hold for both N = 11 and 17.

For an observation involving v[i, tp], notice in Tables 3.5 and 3.8 the square matrix

having 1
2
(N − 1) rows and columns which ranges from 2 through 1

2
(N + 1) on both axes.

The entries in the first row of the matrix are the second through the 1
2
(N + 1)th entries of

v0, scaled by a factor of k. The remaining rows are permutations of these same entries; the

permutations seem to depend on N . This matrix, which turns out to be skew-symmetric,

is reflected about the lines between 1
2
(N + 1) and 1

2
(N + 3) on both axes, so that the

rows and columns for 1
2
(N + 3), ..., N − 1, 0 (mod N) mirror the rows and columns for

1
2
(N + 1), ..., 3, 2, respectively. So nearly all of the information in the table can be derived
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from this skew-symmetric matrix, and the rest of it is easily predictable. Thus, if we could

ascertain precisely what the aforementioned permutations would be for each N , then in

each case the skew-symmetric matrix would follow, and this may lead to a determination of

a lift of v0 for all N .

d i
N
e 1 3, 16 4, 6, 13, 15 7, 8, 11, 12 9, 10 18

v[i, 1] 1 −k −k/2 k/2 k −1

Table 3.6: Nonzero v[i, 1] for N = 17.

i mod N 1 3, 16 4, 6, 13, 15 7, 8, 11, 12 9, 10

v[i, p] −1 k k/2 −k/2 −k

Table 3.7: Nonzero v[i, p] for N = 17 (i < N2). If i > N2 + 1, v[i, p] = 1. (If i = N2 or
N2 + 1, v[i, p] = 0.)
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i mod N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0

⌈
i

N

⌉

1 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

2 1 0 −k −k/2 0 −k/2 k/2 k/2 k k k/2 k/2 −k/2 0 −k/2 −k 0

3 1 k 0 k/2 −k k/2 −k/2 −k/2 0 0 −k/2 −k/2 k/2 −k k/2 0 k

4 1 k/2 −k/2 0 k/2 0 −k k −k/2 −k/2 k −k 0 k/2 0 −k/2 k/2

5 1 0 k −k/2 0 −k/2 k/2 k/2 −k −k k/2 k/2 −k/2 0 −k/2 k 0

6 1 k/2 −k/2 0 k/2 0 k −k −k/2 −k/2 −k k 0 k/2 0 −k/2 k/2

7 1 −k/2 k/2 k −k/2 −k 0 0 k/2 k/2 0 0 −k −k/2 k k/2 −k/2

8 1 −k/2 k/2 −k −k/2 k 0 0 k/2 k/2 0 0 k −k/2 −k k/2 −k/2

9 1 −k 0 k/2 k k/2 −k/2 −k/2 0 0 −k/2 −k/2 k/2 k k/2 0 −k

10 1 −k 0 k/2 k k/2 −k/2 −k/2 0 0 −k/2 −k/2 k/2 k k/2 0 −k

11 1 −k/2 k/2 −k −k/2 k 0 0 k/2 k/2 0 0 k −k/2 −k k/2 −k/2

12 1 −k/2 k/2 k −k/2 −k 0 0 k/2 k/2 0 0 −k −k/2 k k/2 −k/2

13 1 k/2 −k/2 0 k/2 0 k −k −k/2 −k/2 −k k 0 k/2 0 −k/2 k/2

14 1 0 k −k/2 0 −k/2 k/2 k/2 −k −k k/2 k/2 −k/2 0 −k/2 k 0

15 1 k/2 −k/2 0 k/2 0 −k k −k/2 −k/2 k −k 0 k/2 0 −k/2 k/2

16 1 k 0 k/2 −k k/2 −k/2 −k/2 0 0 −k/2 −k/2 k/2 −k k/2 0 k

17 1 0 −k −k/2 0 −k/2 k/2 k/2 k k k/2 k/2 −k/2 0 −k/2 −k 0

18 1 0 −k −k/2 0 −k/2 k/2 k/2 k k k/2 k/2 −k/2 0 −k/2 −k 0

19 −1

Table 3.8: v[i, tp] for N = 17.
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Chapter 4. Properties of the Lift

For the entirety of this chapter, we assume N is 11 or 17, with corresponding v0 and v as

specified in Section 3.3. The proofs and results of this chapter are valid for both values of

N ; we will make clear mention in case they differ.

4.1 The Lift is in the Cohomology

We now prove that the v constructed in Section 3.3 satisfies the conditions of Theorem 2

above and therefore is in H3(Γ0(N), F (p− 1, 0, 0)) for all p > 3 and N = 11 and 17. First,

some terminology:

Definition 7. The matrix representing the action of a matrix m on V is called the ac-

tion matrix of m on V , where our choice of basis for the action matrix is as described in

Section 3.2. When V is clear from the context, we will omit its mention.

We now elaborate upon the computation of these action matrices. (Note that we com-

puted these same action matrices above, for specific p, to calculate the basis for the homol-

ogy, aiding us in finding a prediction for v. The description that follows entails determining

the action matrices and proving a result about v for p in general.)

Incidentally, there is no need to go into significant detail about this for the v0 of Defi-

nition 6. As a matter of fact, v0 is a characteristic 0 object (whereas v is not), which we

usually display reduced modulo p. Therefore, v0 does not actually depend on p, and neither

do the action matrices of any m ∈ {a, b, h, h2} on Ind
SL3(Z)
Γ0(N) F (0, 0, 0), where a, b, and h

are as in Theorem 2. A simple calculation then shows that for all p and N = 11 and 17,

v0 ∈ H3(Γ0(N), F (0, 0, 0)). There may be other vectors satisfying this condition; however,

the only one we are concerned with in this paper is this particular v0, defined in Definition 6.
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So we concern ourselves only with the lift v of v0, where v is as defined in Section 3.3.

However, the action matrices of matrices acting on Ind
SL3(Z)
Γ0(N) F (0, 0, 0) are required in our

notation for the action matrices of matrices acting on Ind
SL3(Z)
Γ0(N) F (p−1, 0, 0). We determine

all these action matrices following [3, p. 573]. These are indexed in the same way as

v0 for Ind
SL3(Z)
Γ0(N) F (0, 0, 0), and as v for Ind

SL3(Z)
Γ0(N) F (p − 1, 0, 0). Let A0, B0, H0, and H2

0

denote the action matrices of a, b, h, and h2, respectively, on Ind
SL3(Z)
Γ0(N) F (0, 0, 0). (Note that

H2
0 6= H0H0.) Each of these, then, has N2 + N + 1 rows and columns.

On the other hand, the action matrices of a, b, h, and h2 on Ind
SL3(Z)
Γ0(N) F (p − 1, 0, 0) are

all square matrices with (N2 + N + 1)tp rows and columns, since there are tp monomials

for each coset representative. The rows and columns of these action matrices are therefore

partitioned into N2 +N +1 blocks of tp rows and columns. (We will call the resulting blocks

of rows and columns “block rows” and “block columns.”) Therefore, each action matrix on

Ind
SL3(Z)
Γ0(N) F (p− 1, 0, 0) is a block matrix, where each block is a tp × tp matrix, and there is

a total of (N2 + N + 1)2 of them for each action matrix.

There is exactly one nonzero entry, a 1, in each row and column of each of A0, B0, H0,

and H2
0 . This follows simply from the uniqueness of a coset representative ri for a given

x ∈ SL3(Z). Similarly, there is exactly one nonzero tp × tp matrix block in each block row

and column of the action matrices on Ind
SL3(Z)
Γ0(N) F (p− 1, 0, 0). Furthermore,

Lemma 1. If m is a matrix acting on Ind
SL3(Z)
Γ0(N) F (p−1, 0, 0), then each of the nonzero tp×tp

matrix blocks in the action matrix of m on Ind
SL3(Z)
Γ0(N) F (p − 1, 0, 0) is the same throughout

each action matrix.

Proof. Recall from Remark 1 in Section 3.2 that the coset representatives ri are each con-

gruent modulo p to the 3 × 3 identity matrix. Because of this, all coset representatives

involved in the product in the calculation of the action (detailed in [3, p. 573]) can be

eliminated. Hence each action matrix is independent of i. As the block rows are indexed
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by i, the lemma follows.

We will call this unique nonzero tp × tp matrix block Mm, where m is a matrix acting

on Ind
SL3(Z)
Γ0(N) F (p − 1, 0, 0). In this section, m ∈ {a, b, h, h2}. (This block Mm, considered

alone, actually represents the action of m on F (p − 1, 0, 0).) For each m, the locations of

Mm throughout the larger action matrix coincide with the locations of the nonzero entries

in the corresponding action matrix for Ind
SL3(Z)
Γ0(N) F (0, 0, 0). That is, if there is a 1 in the (i, j)

entry of the action matrix of m on Ind
SL3(Z)
Γ0(N) F (0, 0, 0), then there is an Mm in the ith block

row and jth block column of the action matrix of the action of m on Ind
SL3(Z)
Γ0(N) F (p− 1, 0, 0).

Therefore, the action matrices for Ind
SL3(Z)
Γ0(N) F (0, 0, 0) and Ind

SL3(Z)
Γ0(N) F (p − 1, 0, 0) have the

same basic structure, allowing us to employ the following notation: if A is an m-by-n matrix

and B is a p-by-q matrix, the Kronecker product A⊗B is the mp-by-nq block matrix

A⊗B =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB


(see [23, Def. 4.2.1]). The action matrices of a, b, h, and h2 on Ind

SL3(Z)
Γ0(N) F (p− 1, 0, 0) may

therefore be denoted A0⊗Ma, B0⊗Mb, H0⊗Mh, and H2
0⊗Mh2 , respectively. This notation

will prove to be especially useful later on.

Remark 2. Because for each block of tp entries in v that corresponds to one of the N2+N+1

coset representatives, there are nonzero values in only the first, pth, and tthp entries, it is not

necessary to determine each Mm in full detail. For our purposes it suffices to determine

only the first, pth, and tthp columns.

The respective sizes of the Mm and v depend on p, and therefore so does our method

of calculating the action of m on Ind
SL3(Z)
Γ0(N) F (p− 1, 0, 0). Through the following lemma, we

are able to alter the calculation to eliminate this dependency, if the Mm are simple enough.
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Lemma 2. Let L be a square matrix with N2 + N + 1 rows and columns. Suppose that

the only nonzero entries in the first, pth, and tthp columns of a tp× tp matrix M are found in

the first, pth, and tthp rows. Then the calculation (L⊗M)v may be determined, independent

of p, by calculating (L ⊗M ′)v′, where M ′ is an appropriately chosen 3 × 3 matrix and v′

is the truncation of v obtained by eliminating all but the first, pth, and tthp entries in each

block of tp components in v corresponding to one of the N2 + N + 1 coset representatives.

See the accompanying commuting diagram.

v
L⊗M

−−−−→ (L⊗M)v

′
y y ′

v′
L⊗M ′

−−−−→ (L⊗M ′)v′

Proof. Because there are nonzero values in only the first, pth, and tthp entries in each block

of tp components in v corresponding to one of the N2 + N + 1 coset representatives, the

calculation of (L ⊗ M)v is completely independent of all columns of M except the first,

pth, and tthp . Therefore, we discard all of the columns of M except these three, leaving a

tp × 3 matrix. Since all but the first, pth, and tthp rows of this resulting matrix are zero,

they contribute nothing to the calculation as well, and so we may discard them also, leaving

a 3 × 3 matrix, which we call M ′. Then the calculation (L ⊗ M ′)v′ is independent of p,

since everything in (L⊗M)v dependent on p has been replaced by something independent

of p. After the calculation is carried through, we obtain the original (L ⊗M)v by simply

replacing the 0’s in all but the first, pth, and tthp entries in each block of tp components in v

corresponding to one of the N2 + N + 1 coset representatives.

Lemma 3. The vector v constructed in Section 3.3 satisfies the semi-invariant condition of

Theorem 2 for H3(Γ0(N), F (p− 1, 0, 0)) for p > 3 and N = 11 and 17.

30



Proof. The actions of a and b, up to a change in sign, amount simply to permutations of

x, y, and z, so each monomial will be mapped by the action to exactly one other monomial;

therefore, in each of Ma and Mb, each row and column will have exactly one nonzero entry.

For example, since a[x, y, z]T = [z, x, y]T , xp−1 will map to zp−1, and so we obtain a 1 in

the (1, tp) entry of Ma. (Recall from Section 3.2 that the first, pth, and tthp positions of each

block correspond to zp−1, yp−1, and xp−1, respectively.) Similarly, we find 1’s in the (p, 1)

and (tp, p) entries of Ma, and since b[x, y, z]T = [y,−x, z]T , they appear in the (1, 1), (p, tp),

and (tp, p) entries of Mb. Therefore, in the notation of Lemma 2, we have

M ′
a =


1

1

1

 , M ′
b =


1

1

1


(all omitted entries are 0). Applying Lemma 2, we reduce the calculation of v · a to (A0 ⊗

M ′
a)v

′ and v · b to (B0⊗M ′
b)v

′. The advantage of this is that the sizes of M ′
a, M ′

b, and v′ are

independent of p. We may therefore calculate the respective actions of a and b directly; we

use a computer to do so and find that v · a = v and v · b = −v. Therefore, v satisfies the

semi-invariant condition.

Theorem 3. v ∈ H3(Γ0(N), F (p− 1, 0, 0)) for p > 3 and N = 11 and 17.

Proof. Having already checked in Lemma 3 that v satisfies the semi-invariant condition of

Theorem 2, we need only check the h-condition; i.e., that v · h + v · (h2) = −v. We must

therefore determine Mh and Mh2 for p > 3. We find, by the same method as in the proof of

Lemma 3, 1’s in the (1, 1) and (p, tp) entries of Mh, and in the (1, 1) and (tp, p) entries of Mh2 .

In the case of Mh, however, there are several extra 1’s in the pth column, whereas for Mh2 ,

they occur in the same rows in the tthp column. This is because h[x, y, z]T = [−y, x− y, z]T ,

so that yp−1 maps to (x−y)p−1; and likewise, since h2[x, y, z]T = [−x+y,−x, z]T , xp−1 maps
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to (−x + y)p−1. Since p > 3, this is the same polynomial; furthermore, for 0 ≤ i ≤ p− 1,

(
p− 1

i

)
=

(p− 1) · · · (p− i)

i!
≡ (−1)ii!

i!
≡ (−1)i mod p,

so each of the coefficients of

(x− y)p−1 =

p−1∑
i=0

(−1)ixp−1−i(−y)i =

p−1∑
i=0

xp−1−iyi

is congruent, modulo p, to 1. Therefore, the pth column of Mh is identical to the tthp column

of Mh2 .

In summary, Mh and Mh2 take on the following forms, where the rows and columns

shown are the first, pth, and tthp :

Mh =



1

1 1

...

1


, Mh2 =



1

1

...

1 1


(In this case, the vertical points of ellipsis between the pth and the tthp rows denote that

there are 1’s in some, but not necessarily all, of those rows in that particular column; the

remainder are 0’s. The important thing is that the two columns having the points of ellipsis

are identical.)

We cannot apply Lemma 2 to our current situation, so we rewrite Mh = Ch + Dh and
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Mh2 = Ch2 + Dh2 , where

Ch =


1

1

 , Ch2 =


1

1

 ,

and Dh and Dh2 are the respective remainders upon subtracting Ch from Mh and Ch2 from

Mh2 (as before, the rows and columns shown in Ch and Ch2 are the first, pth, and tthp — all

other entries in Ch and Ch2 are left as 0). We thus have

(H0 ⊗Mh)v = (H0 ⊗ (Ch + Dh))v = (H0 ⊗ Ch)v + (H0 ⊗Dh)v

and

(H2
0 ⊗Mh2)v = (H2

0 ⊗ (Ch2 + Dh2))v = (H2
0 ⊗ Ch2)v + (H2

0 ⊗Dh2)v.

Our purpose in doing this is to cancel all terms involving Dh or Dh2 , so we now focus

on H0 ⊗ Dh and H2
0 ⊗ Dh2 . If vi is the vector with N2 + N + 1 entries we obtain by

taking the ith entry of each successive block of tp entries in v (i.e., the jth component of

vi is v[j, i], where j runs through the N2 + N + 1 coset representatives), then we find by

direct calculation that H0vp + H2
0vtp = 0. But calculating H0vp + H2

0vtp is essentially the

same as calculating (H0 ⊗Dh)v + (H2
0 ⊗Dh2)v, since each entry in H0vp and H2

0vtp will be

repeated several times in corresponding blocks in (H0⊗Dh)v and (H2
0 ⊗Dh2)v, respectively.

This is because the only entries in H0 ⊗ Dh and H2
0 ⊗ Dh2 relevant (or that contribute a

nonzero value) to the multiplication by v are the nonzero entries they have in, respectively,

their pth and tthp columns, all of which are 1. Since they are all in the same column, they

are all multiplied by the same component in v, so they all yield the same result. Hence
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(H0 ⊗Dh)v + (H2
0 ⊗Dh2)v = 0. This implies that

v · h + v · (h2) = (H0 ⊗Mh)v + (H2
0 ⊗Mh2)v

= (H0 ⊗ Ch)v + (H0 ⊗Dh)v + (H2
0 ⊗ Ch2)v + (H2

0 ⊗Dh2)v

= (H0 ⊗ Ch)v + (H2
0 ⊗ Ch2)v.

We apply Lemma 2 to this last expression on the right, obtaining

v · h + v · (h2) = (H0 ⊗ C ′
h)v

′ + (H2
0 ⊗ C ′

h2)v′.

Since now none of the sizes of the factors of this expression depend on p, we may calculate

directly by simply multiplying v′ on the left by the matrices H0 ⊗ C ′
h and H2

0 ⊗ C ′
h2 and

adding the results together. With the aid of a computer performing all these calculations,

we thus find that v · h + v · (h2) = −v. Therefore, the h-condition is satisfied, and v ∈

H3(Γ0(N), F (p− 1, 0, 0)).

4.2 The Lift is an Eigenvector of T (2, i)

The next question is whether or not v is an eigenvector of the Hecke operators T (`, 1),

T (`, 2), where ` is a prime not dividing Np. We have the following result for ` = 2:

Theorem 4. The vector v as defined in Section 3.3 is an eigenvector of the Hecke operators

T (2, 1) and T (2, 2).

Proof. It was ascertained in [1, Lemma 9.1] that v · T (`, i) =
∑
j

v · q`,i,j for each i, the

q`,i,j being 3 × 3 matrices determined by a method in [34]. We will use this method to

directly calculate T (`, i), implementing it in the program LLLMatrixFind (see Appendix),

where we find that there are thirteen such matrices q2,1,j and twelve q2,2,j. (Note that these
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matrices are not necessarily unique; a different choice of matrices will result in relations

differing from those shown at the end of this proof. However, because the Hecke operators

are well-defined, that v is an eigenvector is independent of this choice.)

The rest of the proof is very similar to the proof of Theorem 3 above. We begin with

T (2, 1). We determine the action of the thirteen matrices on Ind
SL3(Z)
Γ0(N) F (0, 0, 0) as in the

case of the other matrices above, calling the resulting action matrices Q2,1,j. Then, for each

action matrix of the q2,1,j acting on Ind
SL3(Z)
Γ0(N) F (p − 1, 0, 0), we again have by Lemma 1 a

unique nonzero tp × tp matrix (which we call M2,1,j) in each “block row” and “column.”

Remark 2 for Mm ∈ {M2,1,j}, where 1 ≤ j ≤ 13, also applies.

For a few M2,1,j the first, pth, and tthp columns each have exactly one nonzero value

in the first, pth, and tthp rows, respectively, and this because the corresponding q2,1,j fix

the monomials corresponding to these columns and rows, which are zp−1, yp−1, and xp−1,

respectively. We can therefore apply Lemma 2 to these, which have j = 1, 10, and 13.

In the remaining ten M2,1,j we find, however, that there are other rows having nonzero

entries in the first, pth and tthp columns. To use Lemma 2, we will need to show that these

additional entries cancel. To do this, we determine, for each j ∈ S = {2, 3, ..., 8, 9, 11, 12},

the placement of nonzero entries in the first, pth, and tthp columns of each M2,1,j as a function

of p. We demonstrate this for j = 6; the rest are calculated similarly. From our program

we get q2,1,6[x, y, z]T = [x − z,−y − z, 2z]T ; therefore, in the tthp column (corresponding to

xp−1), we have 1’s in all the rows where y does not appear in the monomial. In the pth

column (corresponding to yp−1), we get alternating 1’s and −1’s in the appropriate rows for

yp−1−izi, since reduced modulo p, (−y − z)p−1 =
p−1∑
i=0

(−1)iyp−1−izi (which we calculate as

before). In summary, we obtain the following, where the only rows and columns shown are
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the first, pth, and the tthp :

M2,1,6 =



1 1 1

...

1

...

1


(In this case, the vertical points of ellipsis between the given rows denote that there are

nonzero entries in at least some of the intermediary rows in the particular column in which

the points appear. These values need not necessarily be 1’s.)

As in the proof of Theorem 3, we break apart, for each j, the nonzero tp × tp block

matrices M2,1,j as

M2,1,j = C2,1,j + D2,1,j,

where C2,1,j is the tp × tp matrix consisting of the column(s) among the first, pth, and tthp

of M2,1,j having exactly one nonzero entry among the first, pth, and tthp rows, with all other

columns being zero; and D2,1,j is the remainder upon subtracting C2,1,j from M2,1,j. (For

the purposes of this calculation, we take C2,1,j for j /∈ S to be the corresponding M2,1,j,

so that the resulting D2,1,j = 0.) Explicitly, this decomposition for the case j = 6 would

therefore be

C2,1,6 =


1

 , D2,1,6 =



1 1

...

1

...

1


.

In a manner similar to the way we found the relation between (H0 ⊗Mh)v and (H2
0 ⊗

Mh2)v, in the proof of Theorem 3 above, we then calculate
∑
S

(Q2,1,j ⊗ D2,1,j)v = 0 using
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the following relations:

[(Q2,1,2 ⊗D2,1,2) + (Q2,1,3 ⊗D2,1,3)]v = 0,

[(Q2,1,4 ⊗D2,1,4) + (Q2,1,5 ⊗D2,1,5)]v = 0,

[(Q2,1,11 ⊗D2,1,11) + (Q2,1,12 ⊗D2,1,12)]v = 0,

and

[(Q2,1,6 ⊗D2,1,6) + (Q2,1,7 ⊗D2,1,7) + (Q2,1,8 ⊗D2,1,8) + (Q2,1,9 ⊗D2,1,9)]v = 0.

This reduces v · T (2, 1) from
∑
j

(Q2,1,j ⊗M2,1,j)v to
∑
j

(Q2,1,j ⊗ C2,1,j)v, the advantage

of this being that we can now apply Lemma 2. As in the proof of Theorem 3, we then use

a computer to calculate the latter expression to be 2v, for N = 11, and therefore v is an

eigenvector of T (2, 1) with eigenvalue 2. Similarly, for N = 17, we find v has eigenvalue 3.

Proving that v is an eigenvector of T (2, 2) is also similar: in this case we have twelve

matrices q2,2,j. Through the same method as before, we first find that we can already apply

Lemma 2 to M2,2,1, M2,2,9 and M2,2,12, and among the others we find the following relations:

[(Q2,2,2 ⊗D2,2,2) + (Q2,2,3 ⊗D2,2,3)]v = 0,

[(Q2,2,4 ⊗D2,2,4) + (Q2,2,5 ⊗D2,2,5)]v = 0,

[(Q2,2,10 ⊗D2,2,10) + (Q2,2,11 ⊗D2,2,11)]v = 0,

and

[(Q2,2,6 ⊗D2,2,6) + (Q2,2,7 ⊗D2,2,7) + (Q2,2,8 ⊗D2,2,8)]v = 0.

The eigenvalue of v for T (2, 2) for N = 11 is −3; for N = 17 it is −1.
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Chapter 5. Future Work

We could probably continue to prove v is an eigenvector of T (`, i), i = 1, 2, in the method

of Section 4.2 for each individual ` - Np, but the number of action matrices to include in the

computations balloons rather quickly. For instance, for ` = 3, there are about 30, and for ` =

5, there are over 100, giving an excessively complicated calculation already. Furthermore,

this method of direct calculation does not seem to reveal any promising avenues to follow

in proving it for general `.

In an effort to prove it for general `, we have tried looking at the whole computation

more explicitly: first we considered the matrices that make up the Hecke action, and then we

tried to outline the action exactly. The method of [34] uses a choice of the `2 + ` + 1 coset

representatives of SL3(Z)/Γ0(`) to determine the matrices used in computing the Hecke

action. We noticed, in implementing this method in the proof of Theorem 4, that in each

individual relation of those used to eliminate the D`,i,j terms, the matrices involved all arise

from the same coset representative. Proving this could be useful in establishing v as an

eigenvector for all Hecke operators T (`, i). We were unfortunately not able to do this, as

computations were extremely complicated, even in proving small steps along the way.

Another notion is to make use of the bilinear map Hn(G, A)×Hm(G, B) → Hn+m(G, C)

known as the “cup product,” as well as perhaps other maps of group cohomology and

important pre-established results. This idea stems from a corresponding proof in the two-

dimensional case: given α ∈ H1(Γ0(N), F (0, 0)), there is a modular form f of weight 2

having the same eigenvalues. Multiplying f by the Eisenstein Series Ep−1, we get a modular

form of weight p + 1, which corresponds to some eigenclass β ∈ H1(Γ0(N), F (p − 1, 0)).

Since by the Claussen-von Staudt theorem, Ep−1 ≡ 1 (mod p), we have fEp−1 ≡ f (mod p),

so β has the same eigenvalues as α. The cup product may help us achieve a similar result
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in the three-dimensional case.

There is also a possibility of a dimension argument, which seems to require more theoret-

ical evidence than we have yet compiled. In any case, the problem of determining whether

v is an eigenvector for all Hecke operators T (`, i) appears to be a much more difficult one

and may take considerably more work.

For both N = 11 and 17 the “eventual” dimension of H3(Γ0(N), F (0, 0, 0)) — that

is, the dimension of the cohomology for almost all p — appears to be 2. The only other

prime level for which we have observed this to be the case is 19, thus we may be able to

find a prediction for this level. We don’t have sufficient evidence to make a prediction,

however, largely because the computational power necessary is not readily available. A few

computations on a supercomputer could probably reveal a pattern for a prediction and then

yield this case fairly easily. Furthermore, with such computational power we may also be

able to make a similar prediction about other prime levels with higher “eventual” dimension.

This could be a major step in finding a lift for all N , and not just prime N , for a given v0.

There was another eigenclass in H3(Γ0(N), F (0, 0, 0)), for which we unsuccessfully tried

to find a lift. It is not out of the question, however, that a lift similar to the one described

above for the first eigenclass could be found. If so, this could help provide more evidence to

the generalized conjecture, which would be enhanced even more if we could also prove that

the two lifts are eigenvectors of the Hecke operators for all `.

Among the several Hecke eigenvectors that we found in the cohomology of the higher

weight, we found one for p = 5, N = 11 that appears to correspond to a reducible Galois

representation, with its eigenvalues for T (`, 1) equal to those for T (`, 2). This arises due

to the fact that the 5-torsion subgroup of a particular elliptic curve of conductor 11 is

nontrivial. There is likely one for N = 17 also (the 2-torsion subgroup has order 4 for

one elliptic curve, for instance), but our programs were not equipped to verify this. These

exceptional eigenclasses may lend information as to why for N = 11 we had k = −5, whereas
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for N = 17, k = −4. This could also help us find a lift for v0 for all N .
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Appendix: Computer Software

In the following GP/PARI [33] program, the first, second, and third entries of w cor-

respond to the first, pth, and tthp , respectively, of each block in v indexed by N2 + N + 1

coset representatives. Recall that all other components of v are 0. Division by 2 here means

multiplication by the multiplicative inverse of 2 modulo p.

N=11;

w=vector(N^2+N+1,X,vector(3));
for(i=1,N,w[i][1]=1);
for(i=N^2+1,N^2+N,w[i][1]=-1);
for(i=N^2+2,N^2+N+1,w[i][2]=1);
for(i=2,N,w[i][3]=-1);
for(i=1,N^2,if(i%N==1,w[i][2]=-1));
for(i=N+1,N^2+1,if(i%N==1,w[i][3]=1));
w[N^2+N+1][3]=-1;

k=-5;
A=-k;B=-k/2;C=k/2;D=k;

for(i=2*N+1,3*N,w[i][1]=A);
for(i=3*N+1,4*N,w[i][1]=B);
for(i=4*N+1,5*N,w[i][1]=C);
for(i=5*N+1,6*N,w[i][1]=D);
for(i=(N-2)*N+1,(N-1)*N,w[i][1]=A);
for(i=(N-3)*N+1,(N-2)*N,w[i][1]=B);
for(i=(N-4)*N+1,(N-3)*N,w[i][1]=C);
for(i=(N-5)*N+1,(N-4)*N,w[i][1]=D);

for(i=1,N^2,if((i%N==6)||(i%N==7),w[i][2]=A));
for(i=1,N^2,if((i%N==5)||(i%N==8),w[i][2]=B));
for(i=1,N^2,if((i%N==4)||(i%N==9),w[i][2]=C));
for(i=1,N^2,if((i%N==3)||(i%N==10),w[i][2]=D));

sA=[14,21,27,30,39,40,48,53,57,66,68,77,81,86,
94,95,104,107,113,120,124,131];
sB=[15,20,28,29,36,43,46,55,60,63,71,74,79,88,
91,98,105,106,114,119,125,130];
sC=[16,19,26,31,35,44,50,51,58,65,69,76,83,84,
90,99,103,108,115,118,126,129];
sD=[17,18,24,33,38,41,47,54,59,64,70,75,80,87,
93,96,101,110,116,117,127,128];
sA=Set(sA);
sB=Set(sB);
sC=Set(sC);
sD=Set(sD);
for(i=1,N^2+N+1,if(setsearch(sA,i),w[i][3]=A));
for(i=1,N^2+N+1,if(setsearch(sB,i),w[i][3]=B));
for(i=1,N^2+N+1,if(setsearch(sC,i),w[i][3]=C));
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for(i=1,N^2+N+1,if(setsearch(sD,i),w[i][3]=D));

For N=17, the corresponding program is very similar, the only differences coming as a

result of the larger number of blocks to be specified.

N=17;

w=vector(N^2+N+1,X,vector(3));
for(i=1,N,w[i][1]=1);
for(i=N^2+1,N^2+N,w[i][1]=-1);
for(i=N^2+2,N^2+N+1,w[i][2]=1);
for(i=2,N,w[i][3]=-1);
for(i=1,N^2,if(i%N==1,w[i][2]=-1));
for(i=N+1,N^2+1,if(i%N==1,w[i][3]=1));
w[N^2+N+1][3]=-1;

k=-4;
A=-k;B=-k/2;C=k/2;D=k;

for(i=2*N+1,3*N,w[i][1]=A);
for(i=3*N+1,4*N,w[i][1]=B);
for(i=5*N+1,6*N,w[i][1]=B);
for(i=6*N+1,7*N,w[i][1]=C);
for(i=7*N+1,8*N,w[i][1]=C);
for(i=8*N+1,9*N,w[i][1]=D);
for(i=(N-2)*N+1,(N-1)*N,w[i][1]=A);
for(i=(N-3)*N+1,(N-2)*N,w[i][1]=B);
for(i=(N-5)*N+1,(N-4)*N,w[i][1]=B);
for(i=(N-6)*N+1,(N-5)*N,w[i][1]=C);
for(i=(N-7)*N+1,(N-6)*N,w[i][1]=C);
for(i=(N-8)*N+1,(N-7)*N,w[i][1]=D);

for(i=1,N^2,if((i%N==9)||(i%N==10),w[i][2]=A));
for(i=1,N^2,if((i%N==7)||(i%N==8)||(i%N==11)||(i%N==12),w[i][2]=B));
for(i=1,N^2,if((i%N==4)||(i%N==6)||(i%N==13)||(i%N==15),w[i][2]=C));
for(i=1,N^2,if((i%N==3)||(i%N==16),w[i][2]=D));

sA=[20,33,39,48,58,63,77,78,93,96,108,115,123,134,138,153,155,170,174,
185,193,200,212,215,230,231,245,250,260,269,275,288,292,305];
sB=[21,23,30,32,41,42,45,46,54,60,61,67,72,74,81,83,88,94,95,101,104,
107,116,119,121,124,133,136,143,144,147,148,160,161,164,165,172,175,
184,187,189,192,201,204,207,213,214,220,225,227,234,236,241,247,248,
254,262,263,266,267,276,278,285,287,293,295,302,304];
sC=[24,25,28,29,38,40,47,49,53,56,65,68,75,76,79,80,87,90,99,102,105,
111,112,118,122,128,129,135,140,142,149,151,157,159,166,168,173,179,
180,186,190,196,197,203,206,209,218,221,228,229,232,233,240,243,252,
255,259,261,268,270,279,280,283,284,296,297,300,301];
sD=[26,27,36,51,59,62,71,84,92,97,106,117,125,132,141,150,158,167,176,
183,191,202,211,216,224,237,246,249,257,272,281,282,298,299];
sA=Set(sA);
sB=Set(sB);
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sC=Set(sC);
sD=Set(sD);
for(i=1,N^2+N+1,if(setsearch(sA,i),w[i][3]=A));
for(i=1,N^2+N+1,if(setsearch(sB,i),w[i][3]=B));
for(i=1,N^2+N+1,if(setsearch(sC,i),w[i][3]=C));
for(i=1,N^2+N+1,if(setsearch(sD,i),w[i][3]=D));

The next GP/PARI program, ADP-F(p-1,0,0), calculates a basis for the homology

H3(SL3(Z), Ind
SL3(Z)
Γ0(N) V ), where V = F (p− 1, 0, 0), listed as the matrix kernel. (A similar

program calculates the same for V = F (0, 0, 0).) The program essentially calculates the

actions for the matrices a, b, h, and h2 (mentioned in Section 3.2), stacks them into one

matrix bigmatrix, and finds the kernel.

p=3;
N=11;

install(FpM_ker,GG);

allocatemem(300000000);

\\Matrix holding all of the matrix kernels
bigmatrix=matrix(3*(N^2+N+1)*p*(p+1)/2,(N^2+N+1)*p*(p+1)/2);

\\Matrices for which to find the action
actingmatrices=vector(2,X,matrix(3,3));
actingmatrices[1][1,3]=1;actingmatrices[1][2,1]=1;
actingmatrices[1][3,2]=1;
actingmatrices[2][1,2]=1;actingmatrices[2][2,1]=-1;
actingmatrices[2][3,3]=1;

\\Form coset reps
for(i=1,p-1,if((N*i)%p==1,Ninv=i));
K=N*Ninv;
m=(K-1)/p;
r=matrix(1,N^2+N+1,X,Y,matrix(3,3));
{for(i=0,N-1,
for(j=0,N-1,
r[1,N*i+j+1][1,1]=1;
r[1,N*i+j+1][2,2]=1;
r[1,N*i+j+1][3,3]=1;
r[1,N*i+j+1][1,2]=i*(1-K);
r[1,N*i+j+1][1,3]=j*(1-K);
r[1,N*i+j+1]=matadjoint(r[1,N*i+j+1])
);
r[1,N^2+i+1][1,1]=K;
r[1,N^2+i+1][1,2]=1-K;
r[1,N^2+i+1][1,3]=i*(1-K);
r[1,N^2+i+1][2,1]=p*(3*m+i);
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r[1,N^2+i+1][2,2]=K;
r[1,N^2+i+1][2,3]=p*(8*m^2+3*i*m);
r[1,N^2+i+1][3,1]=-p;
r[1,N^2+i+1][3,2]=0;
r[1,N^2+i+1][3,3]=-2*m*p+1;
r[1,N^2+i+1]=matadjoint(r[1,N^2+i+1])
);}
r[1,N^2+N+1][1,1]=K;
r[1,N^2+N+1][1,2]=0;
r[1,N^2+N+1][1,3]=1-K;
r[1,N^2+N+1][2,1]=-p;
r[1,N^2+N+1][2,2]=-2*m*p+1;
r[1,N^2+N+1][2,3]=0;
r[1,N^2+N+1][3,1]=p*(3*m);
r[1,N^2+N+1][3,2]=p*(8*m^2);
r[1,N^2+N+1][3,3]=K;
r[1,N^2+N+1]=matadjoint(r[1,N^2+N+1]);

\\Find the action for each of the above matrices
{for(k=1,2,
print(gettime());
g=actingmatrices[k];
action=matrix(p*(p+1)*(N^2+N+1)/2,p*(p+1)*(N^2+N+1)/2);
for(i=1,N^2+N+1,
j=1;
while(((matadjoint(r[1,i])*g*r[1,j])[1,2]%N!=0)||
((matadjoint(r[1,i])*g*r[1,j])[1,3]%N!=0),j=j+1);
xyztrans=matadjoint(r[1,i])*g*r[1,j]*[x,y,z]~;
for(a=0,p-1,
for(b=0,p-1-a,
c=p-1-a-b;
(f(x,y,z)=x^a*y^b*z^c);
F=f(xyztrans[1],xyztrans[2],xyztrans[3]);
for(eye=0,p-1,
for(jay=0,p-1-eye,
kay=p-1-eye-jay;
coef=polcoeff(polcoeff(polcoeff(F,eye,x),jay,y),kay,z)%p;
if(coef!=0,action[((j-1)*p*(p+1)+eye*(2*p-eye+1))/2+jay+1,
((i-1)*p*(p+1)+a*(2*p-a+1))/2+b+1]=coef)
)
)
)
)
);
if(k==1,
for(i=1,(N^2+N+1)*p*(p+1)/2,
action[i,i]=action[i,i]-1;
for(j=1,(N^2+N+1)*p*(p+1)/2,
bigmatrix[i,j]=action[i,j]
)
),
for(i=1,(N^2+N+1)*p*(p+1)/2,
action[i,i]=action[i,i]+1;
for(j=1,(N^2+N+1)*p*(p+1)/2,
bigmatrix[(N^2+N+1)*p*(p+1)/2+i,j]=action[i,j]
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)
)
);
print(k)
);}

\\Now for the h-condition
print(gettime());
h=matrix(3,3);
h[1,2]=-1;h[2,1]=1;h[2,2]=-1;h[3,3]=1;

g=h;
ginv=g^(-1);

action=matrix((N^2+N+1)*p*(p+1)/2,(N^2+N+1)*p*(p+1)/2);0;
{for(i=1,N^2+N+1,
j=1;
while(((matadjoint(r[1,j])*ginv*r[1,i])[1,2]%N!=0)||
((matadjoint(r[1,j])*ginv*r[1,i])[1,3]%N!=0),j=j+1);
xyztrans=matadjoint(r[1,i])*g*r[1,j]*[x,y,z]~;
for(a=0,p-1,
for(b=0,p-1-a,
c=p-1-a-b;
(f(x,y,z)=x^a*y^b*z^c);
F=f(xyztrans[1],xyztrans[2],xyztrans[3]);
for(eye=0,p-1,
for(jay=0,p-1-eye,
kay=p-1-eye-jay;
coef=polcoeff(polcoeff(polcoeff(F,eye,x),jay,y),kay,z)%p;
if(coef!=0,action[((j-1)*p*(p+1)+eye*(2*p-eye+1))/2+jay+1,
((i-1)*p*(p+1)+a*(2*p-a+1))/2+b+1]=coef)
)
)
)
)
);}

g=h^2;
ginv=g^(-1);

actionsquared=matrix((N^2+N+1)*p*(p+1)/2,(N^2+N+1)*p*(p+1)/2);0;
{for(i=1,N^2+N+1,
j=1;
while(((matadjoint(r[1,j])*ginv*r[1,i])[1,2]%N!=0)||
((matadjoint(r[1,j])*ginv*r[1,i])[1,3]%N!=0),j=j+1);
xyztrans=matadjoint(r[1,i])*g*r[1,j]*[x,y,z]~;
for(a=0,p-1,
for(b=0,p-1-a,
c=p-1-a-b;
(f(x,y,z)=x^a*y^b*z^c);
F=f(xyztrans[1],xyztrans[2],xyztrans[3]);
for(eye=0,p-1,
for(jay=0,p-1-eye,
kay=p-1-eye-jay;
coef=polcoeff(polcoeff(polcoeff(F,eye,x),jay,y),kay,z)%p;
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if(coef!=0,actionsquared[((j-1)*p*(p+1)+eye*(2*p-eye+1))/2+jay+1,
((i-1)*p*(p+1)+a*(2*p-a+1))/2+b+1]=coef)
)
)
)
)
);}

action=action+actionsquared;0;
{for(i=1,(N^2+N+1)*p*(p+1)/2,
action[i,i]=action[i,i]+1;
for(j=1,(N^2+N+1)*p*(p+1)/2,
bigmatrix[(N^2+N+1)*p*(p+1)+i,j]=action[i,j]
)
);}

print("bigmatrix put together");

kill(action);
kill(actionsquared);

kernel=FpM_ker(bigmatrix,p);
print(gettime())

This GP/PARI program, LLLMatrixFind, uses the method of [34] to find matrices qp,i,j to

use in calculating the action of the Hecke operators. The “LLL” in the program name refers

to the fact that we use the LLL-reduction algorithm to determine optimal vectors to use as

replacement “candidates” for columns in the matrices of the original coset representatives.

The use of this algorithm is not required in the method of [34], and thus there are many

different possibilities for sets of matrices to use to calculate the Hecke action. After we find

the matrices, we determine their respective action matrices using the method outlined in

the program ADP-F(p-1,0,0) above.

\\preliminaries

p=2;

R=matrix(2,p^2+p+1);

{for(i=0,p-1,
for(j=0,p-1,R[1,p*i+j+1]=[p,0,0;i,1,0;j,0,1]);
R[1,p^2+i+1]=[1,0,0;0,p,0;0,i,1]
);}
R[1,p^2+p+1]=[1,0,0;0,1,0;0,0,p];
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{for(i=0,p-1,
for(j=0,p-1,R[2,p*i+j+1]=[p,0,0;0,p,0;i,j,1]);
R[2,p^2+i+1]=[p,0,0;i,1,0;0,0,p]
);}
R[2,p^2+p+1]=[1,0,0;0,p,0;0,0,p];

C=matrix(2,p^2+p+1);

{for(j=1,2,
for(i=1,p^2+p+1,
C[j,i]=matadjoint(R[j,i])
)
);}

{candidate(A)=
m=vector(3);
U=qflll(A);
for(n=1,3,
tally=0;
for(j=1,3,
m[j]=A*U;
m[j][j,]=matid(3)[n,];
if(abs(matdet(m[j]))<abs(matdet(A*U)),tally=tally+1);
);
if(tally==3,
return(matid(3)[n,]*U^-1);
break
);
);
}

{reduce(A)=
for(i=1,3,
B=A;
B[i,]=candidate(A);
if(abs(matdet(B))==1,list=concat(list,[B]);count=count+1);
if(abs(matdet(B))>1,reduce(B));
);
}

\\main program

{for(k=1,2,
count=0;
list=[[]];
for(i=1,p^2+p+1,
reduce(C[k,i]);
list[1]=concat(list[1],[count]);
if(i==1,
for(j=1,list[1][i],print(list[j+1]*R[k,i])),
for(j=list[1][i-1]+1,list[1][i],print(list[j+1]*R[k,i],";",count))
)
);
);}
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