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Abstract: The large dimensionality of real data sets usually hampers the interpretability of the results 
of their analysis. In a previous study, some stream data that are part of the knowledge base of an 
environmental decision support system were explored through clustering and visualization. The 
interpretability of these clustering results would be improved by the use of a feature selection strategy based 
on a method capable of ranking the observed features according to their relative relevance. In this paper, we 
use one such a method that is an integral part of a probabilistic model for multivariate data clustering and 
visualization: Generative Topographic Mapping. The feature relevance determination method estimates a 
saliency for each feature, which is a measure of its influence on the clustering structure of the data. It is, 
therefore, a fully unsupervised interpretation of relevance. Its application to the available streams data shows 
that chemical parameters dominate the clustering structure, which is an indication that they might be also 
relevant for the prediction of the streams’ ecological status. Furthermore, no feature is deemed irrelevant by 
the model, fact that supports expert decisions in the pre-processing stage of the mining of these data. 
 
Keywords: Human-altered streams; multivariate data clustering; Generative Topographic Mapping; Feature 
relevance determination; Ecological status.    
 

 
1. INTRODUCTION 

 
The data analysed in this study are part of the 
knowledge base of the environmental decision 
support system (EDSS) that was the object of the 
STREAMES (STream REAch Management, an 
Expert System) European project. The EDSS 
involved: a) the evaluation of water quality and, to 
a larger extent, the ecological status of fluvial 
ecosystems; b) the examination of possible causes 
of ecosystem impairment; and c) the proposal of 
ecologically sound management strategies. These 
strategies dealt with the concept of optimum 
ecological status1 of the stream described by the 
Council of the European Communities (2000).  
The data were obtained from streams affected to 
different degrees by inputs of nutrients from point 
or diffuse sources. Several streams were selected 

                                                 
1 The Water Framework Directive (WFD: Council of the 
European Communities, 2000) considers five categories 
of ecological status: bad / poor / moderate /good / high. 
Year 2015 was set as their target to achieve at least a 
category of “good” for the ecological status of 
freshwater and coastal ecosystems in Europe. 

throughout Europe and Israel, with emphasis on 
streams located in Mediterranean regions, for 
which the effects of nutrient inputs are amplified 
by their usually irregular and relatively low flows.  
In a previous study by Vicente et al. (2004), the 
neural network-inspired Generative Topographic 
Mapping (GTM: Bishop et al. (1998)) model was 
used to cluster and visualize these data (while 
reconstructing their missing values). We wanted to 
examine if the clustering was mostly controlled by 
the geographical distribution of the streams, or by 
the own physical, chemical and biological data 
features available. The results indicated that the 
differences between streams (i.e., mostly 
geographic) dominated, albeit not completely, the 
clustering distribution. 
The interpretability of the GTM results, both in 
terms of clustering and visualization, might be 
rather difficult for data sets of large 
dimensionality, such as the one analysed here. 
This interpretability would be greatly improved by 
the use of a method capable of ranking the 
observed data features according to their relative 
relevance in generating cluster structure and, 
eventually, by the use of a feature selection 



method based on it. Feature selection for 
unsupervised learning has received less attention 
than its supervised counterpart, where relevance is 
understood in relation to classification or 
prediction tasks. A recent main advance on feature 
selection in unsupervised model-based clustering 
was presented by Law et al. (2004) for mixtures of 
Gaussian distributions, and was extended to the 
GTM in Vellido et al. (2006). The proposed 
feature relevance determination (FRD) technique, 
embedded into GTM, allows focusing the 
interpretation of the clustering results only on a 
parsimonious subset of selected relevant features, 
easing considerably the interpretation of the 
resulting clusters. 
The paper is structured as follows. First, the GTM 
model is introduced, and its extension for FRD is 
described in some detail. The analysed stream sites 
and data are then described. This is followed by 
the presentation of the experimental results and 
their discussion. Some brief conclusions are finally 
provided. 
 
 
2. Feature relevance determination for 
GTM 

 
In general finite mixture of distributions models, 
the observed data are assumed to be generated by a 
combination, or finite mixture, of k=1,…,K 
components, weighted by unknown priors ( )kP . 
The data associated to each component can be 
thought of as forming a cluster. Given a D-
dimensional data set ,  is said to 
follow a K-component mixture distribution if the 
corresponding mixture density can be defined as: 

{ }N
nn 1== xX X

where each mixture component k is parameterized 
by kθ . For continuous data, the choice of 
Gaussian distributions is a straightforward option. 
One of the practical drawbacks of general finite 
mixture models is their lack of data visualization 
capabilities. The GTM was defined as a 
constrained mixture of distributions precisely to 
provide such visualization capabilities, akin to 
those of the widely used SOM by Kohonen (2001). 
The GTM is a constrained mixture of distributions 
model in the sense that all the components of the 
mixture are equally weighted by the constant term 
( ) Kp k 1=u , and all components share a common 

variance . The GTM can also be seen as a 
non-linear latent variable model that defines a 
mapping from a low dimensional latent space onto 
the multivariate data space. As such, it is further 
constrained in that the centres of the mixture 

components do not move independently from each 
other, as they are limited by definition to reside on 
a low-dimensional manifold embedded in the D-
dimensional space. This is made explicit through 
the definition of a prior distribution in the latent 
space: 

1−β
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where δ  is the Kronecker’s delta, and the K latent 
points  are sampled from the latent space, 
forming a regular grid. This latent space 
discretization makes the model computationally 
tractable and provides an alternative to the 
clustering and visualization space of the SOM. 
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For each data feature d, the functional form of the 
mapping from a low dimensional latent space onto 
the multivariate data space is the generalized linear 
regression model: 
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M

m
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where Φ  is a set of M basis functions 
( ) ( ) ( )( )uuu Mφφ ,...,1=Φ , originally defined as 

spherically symmetric Gaussians, and  is the 
matrix of adaptive weights  that specifies the 
mapping. The probability distribution for a data 
point x, induced by the latent distribution in (2) 
and given the adaptive parameters of the model, 
which are the matrix  and the inverse variance 
of the Gaussians 

W
mdw

W
β , can be written as: 
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where the D elements of y are given by (3). Using 
(2) to integrate the latent variables out, we obtain: 
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(5)

leading to the definition of the log-likelihood: 
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Now we can resort to the Expectation-
Maximization (EM) algorithm to obtain the 
Maximum Likelihood estimates of the adaptive 
parameters of the model: and W β . For details on 
this procedure, see Bishop et al. (1998). 
 
 
2.1 FRD-GTM 
 
The GTM was originally defined as a constrained 
mixture of distributions to provide the 



visualization capabilities that general finite 
mixtures of distributions lack. Even the 
interpretability of the clustering results provided 
by the GTM through visualization can be limited 
for data sets of large dimensionality, such as the 
one analysed in this study. A method for FRD 
should help to alleviate this problem. 
Recently, a method for feature selection in 
unsupervised model-based clustering with 
Gaussian mixture models was presented by Law et 
al. (2004) and extended to GTM (FRD-GTM) by 
Vellido et al. (2006). This method estimates an 
unsupervised saliency as part of the EM algorithm. 
The saliency measures the importance of each 
feature on the definition of the cluster structure 
yielded by the model. Formally, the saliency of 
feature d can be defined as ( 1== dd P )ηρ , where 

( D )ηη ,...,1=η  is a set of binary indicators that can 
be integrated in the EM algorithm as missing 
variables. A value of 1=dη  ( 1=dρ ) corresponds 
to the maximum relevance of feature d. According 

to this definition, we can define a mixture density 
for FRD-GTM, similar to that in (5), as: 
where  is the vector of  corresponding to 
feature d and 

dw W
{ D}ρρ ,...,1≡ρ . The distribution p is 

a feature- and component-specific version of (4). A 
feature d will be considered irrelevant if 
( ) ( )dodooddkd wxqxp ,, ,,,, ββ uwu =  for all the 

mixture components k, where ( )dodood wxq ,, ,, βu   
is a common density followed by feature d. Notice 
that this is the same as saying that the distribution 
for feature d does not follow the cluster structure 
defined by the model. This common component 
requires the definition of two extra adaptive 
parameters: { }Dooo ww ,1, ,...,≡w  (so that 

( ) oooo wuy φ= ) and { }Dooo ,1, ,..., ββ≡β ), and it 
should reflect any prior knowledge we might have 
regarding irrelevant features. It accounts for data 
observations that the GTM constrained mixture 
components cannot explain well; in other words, 
data observations that do not fit with the cluster 
structure described by the model. 
The Maximum Likelihood criterion can now be 
stated as the estimation of those model parameters 
that maximize the log-likelihood: 

where 
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We can resort again to the EM algorithm to 
calculate the model parameters. The complete log-
likelihood of the model can be written as: 

( ) ( )∑ ∑ +=
=

kn kndknd

D

d
knooc bar,L ,

1
log,,, ZX,ρβwW β

 
(11)

where the responsibility  is defined as: knr

( )
( )

( )∑ ∏

∏

=
=

=

+

+
==

K
k

D

d
ndkndk

D

d
kndknd

oonkn

ba

ba
kpr

1'
1

''

1,,,,, ρβwWx β

 
(12)

The maximization of this expected log-likelihood 
yields the following update formulae for the model 
parameters: 
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The maximum relevance ( 1→dρ ) of a feature, 
makes the corresponding common component 
variance vanish: ( ) 01

, →−
doβ . The elements of 

matrix , for each feature d, are obtained as 
the solution of the following system of equations: 
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∗d , knr* . Further details of all these 

calculations can be found in Vellido et al. (2006). 
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2.2 GTM visualization  
 
As previously mentioned, GTM was explicitly 
defined as a constrained mixture model in order to 
provide simultaneous data clustering and 
visualization. Each of the points  in the GTM 
latent space (or visualization space) can be 
considered as a representative of a cluster 
containing the subset of observed data assigned to 
it. The responsibility in (12) can be used to assign 
each data record to a cluster. For simplicity, we 
assign  to the cluster representative  that 
takes maximum responsibility for it: 

ku

nx ∗k

knnku ∗ , (20)

The centres of the GTM mixture components , 
are usually known as reference vectors or 
prototypes of a cluster. Each of the D components 
of these vectors corresponds to one of the features 
of the observed data and, given their one-to-one 
relation to the latent points , their values over 
the visualization space can be plotted using colour-
coding. These plots are known as reference maps 
and they provide intuitive visual information on 
the behaviour of each feature and its influence on 
the clustering results. 

ky

ku

 
 
3. STREAMS DATA 

 
The STREAMES project focussed on the effects of 
high nutrient loads on low-order streams. Eleven 
third-order streams were selected across seven 
European countries plus Israel. Two of them were 
discarded for this study due to extreme data 
incompleteness for the data features selected in 
this study. Sites were selected to cover a broad 
range of climate, geomorphology and 
environmental conditions. Scenarios were 
differentiated according to hydrologic conditions 
(mesic and xeric regions) and the dominant land-
use within the selected water catchment 
(agriculture-dominated and non-agriculture 
dominated). In addition, and in order to estimate 
the effect of nutrient inputs from point sources on 
the structure and function of the streams, two 
reaches located upstream and downstream of a 
wastewater treatment plant (WWTP) effluent input 
were selected for each stream. Further details can 
be found at www.streames.org. 
In every reach, six (on average) experimental 
campaigns were conducted over a year to cover a 
wide range of environmental conditions. In each 

reach and on each date, physical (hydrology, 
hydraulics, morphology), chemical (nutrient and 
major ions concentrations), and biological (both 
structural: biofilm biomass and chlorophyll; and 
functional: nutrient retention and ecosystem 
metabolism) parameters were measured. In 
summary, the available data set for this study 
comprises 11 sites × 2 reaches × 6 (on average) 
sampling dates. 
The original records-to-features ratio was far too 
low to implement any reliable analytical model. 
Therefore, experts in the areas of chemistry, 
biogeochemistry and stream ecology agreed on a 
far more parsimonious dataset, consisting on 110 
records and 22 descriptive features, detailed in 
table 1. 
 

TYPE FEATURE 
Cations (Na+ + K+ + Mg2+ + Ca2+ 
+ NH4+) 
Anions (Cl - + SO42- + NO3-) 

Ion 
Concentrations 

(chemical) 
Alkalinity 
NH4+-N 
NO3- -N 
PO4 3--P 
Dissolved Organic Carbon 
(DOC) 
Conductivity 

Nutrient 
Concentrations 

(chemical) 

Dissolved Inorganic Nitrogen 
(DIN) 
Depth (Wet channel average 
depth) 
Wet Perimeter 
Substrate Ratio (Percentage of 
{Cobbles + Pebbles} substrata, 
divided by percentage of {Gravel 
+ Sand + Silt} substrata) 
Wet Perimeter / Depth Ratio 
K1 (Water transient storage 
exchange coefficient: from water 
column to transient storage zone) 

Hydrological, 
Hydraulic & 
Morphologic 

(physical) 

K2 (Water transient storage 
exchange coefficient: from 
transient storage zone to water 
column) 
Respiration (Daily rate of 
ecosystem respiration) 
G.P.P. (Daily rate of gross 
primary production) 
G.P.P.:R. (G.P.P. to Respiration 
ratio per day) 
Daily Light (P.A.R.) 
Temperature 
Chlorophylla 

Stream 
Metabolism & 

Biofilm 
(biological) 

Biomass 
Table 1. List of the 22 features selected for this 

study, grouped by their typology. 
 
 
4. EXPERIMENTAL RESULTS AND 
DISCUSION 

 

http://www.streames.org/


All the GTM adaptive parameters were initialized, 
following a standard procedure (see Bishop et al. 
(1998)), as to minimize the difference between the 
reference vectors ( )Wuy kk Φ=  and the 
projections into data space that would be generated 
by a partial PCA, mk uVy' 2= , where the columns 
of matrix V2 are the two principal eigenvectors 
(given that the latent space considered in this study 
is 2-dimensional). The grid of latent points  
was fixed to a square 10x10 layout and the 
corresponding square grid of basis functions 

ku

( )uΦ  
was fixed to a 5x5 layout. 
Figure 1 provides the saliency results 
( { D}ρρ ,...,1≡ρ ) for the 22 features of the data 
set. 
 

 
 
Figure 1. Saliency (13) results for the 22 features 

in the order they are listed in table 1. Bars 
stretching from the mean (stars) -over 30 runs of 

the algorithm using different random 
initializations- plus one standard deviation, to 

mean minus one standard deviation. 
 
Several conclusions can be drawn from this figure. 
The first, and most general, is that the FRD-GTM 
model estimates that none of the features is too 
irrelevant: in fact, the mean saliency is not lower 
than 0.5 for any of them. To some extent, this 
validates the preliminary selection of features 
carried out by experts (as explained in section 3) in 
the pre-processing stage of the mining of these 
data.  
All features seem to have a reasonable contribution 
to the cluster structure of the data. Nevertheless, 
only a few show consistently high relevance: The 
two features with 9.0>Dρ  (NO3

--N: nitrate 
concentration, and Conductivity) belong to the 
chemical features typology. These are followed in 
relevance by yet another pair of chemical features 
(D.O.C. and PO4

3--P: phosphate concentrations), 
anions concentration, and a couple of physical 
features (depth and wet perimeter), all of them 

with 8.0>Dρ . Note that these are the features 
that contribute most to the cluster structure of the 
data. 
At the other end of the relevance range, amongst 
the least relevant, we find all the biological 
features from table 1, as well as the alkalinity. 
Previous results, in Vicente et al. (2004), using 
GTM, indicated that clustering was dominated by 
stream geographic distribution. The current FRD 
results help refining this interpretation, and suggest 
that these geographic differences are linked to the 
amount of nutrients, in particular through the NO3

- 
and D.O.C. concentrations for each stream. Many 
previous studies have shown that variation in these 
nutrients among human-altered streams is 
ultimately caused by catchment land use 
composition. In addition, the lowest saliency found 
for biological parameters indicates that ecological 
controls beyond nutrient availability may constrain 
variability in metabolic responses among streams. 
The feature relevance ranking in Figure 1 can be 
used as the basis for feature selection, which will 
ease the interpretation of the clustering results. To 
illustrate this, the clustering results are displayed, 
in Figure 2 (left), on the visualization space, 
according to the cluster membership attribution 
procedure described in section 2.2. We would like 
to interpret the clusters according only to the most 
relevant features. For illustrative purposes, a 
restrictive selection threshold might be set at 

89.0=Dρ ; this way, the clusters will be 
interpreted using the reference maps (see section 
2.2) of a selection of three features: NO3

--N and 
D.O.C. concentrations, and Conductivity, as seen 
in Figure 2 (right), instead of using the whole set 
of 22 reference maps available. As an example, 
three individual clusters (left) are selected and 
interpreted: large cluster ‘1’ is characterized by 
very low levels of NO3

--N, and low levels of 
D.O.C. and Conductivity. Cluster ‘2’ is 
characterized by high levels of NO3

--N, and 
medium-to-high levels of D.O.C. and 
Conductivity. Finally, cluster ‘3’ is characterized 
by medium levels of NO3

--N, high levels of 
D.O.C., and very high levels of Conductivity. 
 
 
5. CONCLUSION 

 
The interpretation of the clustering results for 
large-dimensional data sets is usually difficult or, 
at least, cumbersome. The data analysed in this 
study are part of the empirical information of the 
knowledge base of the EDSS that was the object of 
the STREAMES European project. Even after a 
pre-selection carried out by experts, the dimension 
of the resulting data set makes the interpretation of 
the clustering results complicated. A method, 
based on the GTM model, capable of ranking the 



observed features according to their relative 
relevance to explain the data cluster structure, has 
been introduced. This approach allows focusing 
the interpretation of the clustering results only on a 
parsimonious subset of selected relevant features. 
The proposed FRD-GTM has shown that, although 
none of the pre-selected features is irrelevant, most 
of the relevance is conveyed by chemical features. 
This result suggests that chemical features might 
be also relevant for the prediction of the streams’ 
ecological status, if we understand this according 
to functional attributes, such as stream nutrient 
retention metrics. 
The current study should be considered as work-
in-progress, and the conclusions drawn in the 
previous section should be considered as 
preliminary. An extension of this work would 
benefit from comparative experiments using 
alternative unsupervised feature selection methods.  
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Figure 2. (left): GTM cluster map in the square visualization space where all 110 data records have 
been mapped onto. The relative size of each cluster (square) indicates the ratio of records assigned to it. As 
explained in section 2.2, such assignment is based on (12) and (20). The axes of the plot are the elements of 
the latent vector u  and convey no meaning by themselves. For that reason, axes are kept unlabeled. Three 
clusters, labelled as ‘1’, ‘2’, and ‘3’, are selected to illustrate their interpretation using (right): the 

1010×

1010×  
reference maps of the data features with highest saliency according to Figure 1. The reference maps are 



coded in grey-scale, from black (lowest values) to white (highest values) and, therefore, any cluster can be 
interpreted using the values of the reference maps corresponding to its location.  
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