


results hint that the momentum-theory far field velocity is applicable through most of the transition region,
but it is inadequate for predicting the induced velocity after vortex breakdown. This indicates a potential
limitation of momentum theory in conceptual analysis especially important for small diameter propellers as
used in distributed propulsion. As a reference, vortex breakdown on the APC 10x7 at a Reynolds number of
1:5 � 106 was observed approximately 8 diameters downstream at an advance ratio J of 0.35, 12 diameters
at J = 0:45, and 20 diameters at J = 0:55.

IV.D. Multirotor Wake Mixing

A multirotor configuration of two propellers was simulated with no separation between tips to facilitate
wake mixing. We observed that the wake attains a different topology depending on whether the rotors are
co-rotating or counter-rotating. In the counter-rotating case, the vortex filaments meet at the tips creating
a sequence of ellipsoidal vortex rings as the wake is shed downstream. In the co-rotating case, the vortex
filament meet at the tips creating a helicoidal filament that extends downstream from the plane of rotation.
Since helicoids are subject to a greater vortex stretching than a closed-loop ring, the co-rotating case showed
issues of numerical stability. In future work we expect these issues to be eased by implementing a scheme of
particle splitting. The counter-rotating case was numerically stable and is hereby reported.

Figure 17 shows the wake developed two diameters downstream of a pair of counter-rotating APC 10x7
propellers at an advance ratio of 0:35 and Reynolds number of 1:5 � 106. At the plane of rotation, vortex
filaments cancel each other as blade tips meet, and reconnect creating a closed-loop ring. In between the
propellers it can be seen the mixing of vortextubes in a von-Kármán-like pattern further downstream (left
figure). Figure 16 compares axial and swirl velocities of the counter-rotating VPM wake to the near/far
field velocities of momentum theory (which ignores wake interactions). The hub of the propellers are located
in the r=R positions � 1 and 1. The simulation shows that both axial and swirl velocities have local peaks
inboard of both propellers (� 1 < r=R < 1) that oscillate between right and left propeller in a periodic
pattern as the wake is shed downstream. These unsteady periodic dynamics develop very close to the plane
of rotation, which significantly affect the accuracy of a simplistic analysis tool as momentum theory, while
highlighting the strength of the vortex particle method.

V. Conclusion

Unsteady wake dynamics of individual propellers were successfully modeled through the vortex particle
method, replicating the instabilities that lead to vortex breakdown as observed experimentally. Comparing
the method with results from momentum theory, it was shown that VPM is consistent with theoretical values

Figure 17: Wake mixing of counter-rotating APC 10x7 propellers at J = 0:35.
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of near and far field induced velocities in the stable region, and a notable feature is its ability to model
near/far field transition, which cannot be captured by momentum theory. Furthermore, VPM is able to fully
characterize induced velocities across the wake, from the stable region where momentum theory operates,
through transition and unstable vortex-breakdown regions where momentum theory is not applicable. VPM
simulations hint that momentum theory predictions are applicable through most of the transition region,
but they are inadequate for predicting induced velocities after vortex breakdown, indicating a potential
limitation of momentum theory in conceptual analysis, especially important for small diameter propellers as
used in distributed propulsion. The simulation of a multirotor configuration of two tip-to-tip propellers was
shown, displaying the capacity of VPM to model wake mixing.

In future work, wake velocity in the unstable region and transition will be further validated quantitatively,
enabling to use of VPM in analysis of prop-on-wing interaction after vortex breakdown. Also, we will close
the loop between unsteady wake dynamics and load distribution, and perform a parametric study of propeller
performance affected by prop-on-prop interaction. The development of this vortex particle code is still a work
in progress, but the results presented here are an intermediate step towards a robust tool for the modeling
of wake interaction in distributed propulsion.
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