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Abstract: Ecological and integrative analyses routinely involve the synthesis of a range of information 
sources into a single model.  Bayesian decision networks (BDN) are increasingly being used for this purpose 
because they are flexible, transparent and relatively easy to use. Indeed, BDNs offer a scientific and 
pragmatic approach to improve decision-making in environmental management, directly addressing 
management needs, while promoting stakeholder participatory processes. However, despite their advantages, 
many BDNs developed to meet such needs are not being developed or applied to their full potential. The 
majority of BDNs published to date rely only on expert opinion to parameterise and evaluate ecologically 
relevant endpoints. In contrast, environmental processes in BDNs, such as water quality, are optimised using 
quantitative data. In this paper we discuss the need to better exploit the Bayesian aspect of BDNs.  We use 
examples to discussed the contrast between probability networks and BDNs, the need to use existing data 
where possible for parameterisation and evaluation (in conjunction with knowledge and weighting 
information sources), and the need to incorporate BDNs into an iterative cycle of updating.  We argue that 
the alleged advantages of BDNs in improving the robustness and scientific credibility of ecological decision-
making are questionable if ecological data is not better used in sustainability and risk assessments. 
 
Keywords: Ecology; Bayesian Decision Network; Elicitation; Expert bias   
 

1. SCIENTIFIC UNCERTAINTY AND 
ENVIRONMENTAL MANAGEMENT 
 
Science is defined as a process of acquiring 
knowledge aimed at finding the truth. 
Accordingly, science can bring about differences 
of opinion and uncomfortable levels of uncertainty 
(Bradshaw and Borchers 2000). In the study of 
natural systems, such outcomes are not 
uncommon. Ecosystems are the products of 
complex interactions that, for the most part, are 
poorly understood. Given this, there will always be 
uncertain and unpredictable aspects in our 
understanding of ecosystems, and evolving 
hypotheses of how ecosystems function. 
 
Clearly, an intrinsic feature of ecology is 
uncertainty. This uncertainty can be classified into 
two types: epistemic uncertainty, which is 
analytical, being due to limited information and 
defined as observation error; and aleatory 
uncertainty, which is due to randomness in a 
system (via process stochasticity or natural 
variability) (Burgman 2005). Epistemic sources of 
uncertainty can be reduced by further 
observations, but aleatory uncertainty is 
irreducible, representing the inherent properties of 

a system (Halpern et al. 2006; Schreiber et al. 
2004). 
 
Such uncertainties present a challenge to 
environmental policymakers and managers who 
are charged with making decisions about how our 
natural systems are to be exploited and protected. 
Previously, one of the most serious challenges to 
rational decision-making in environmental 
management was the criticism that individual 
managers face if they admit uncertainty (Walters 
1997). Consequently, many past management 
strategies were inappropriately designed, leading 
to decisions that resulted in population crashes or 
ecosystem failures, causing profound ecological 
and economic impacts (Halpern et al. 2006). 
Today, the importance of quantifying uncertainty 
in decision-making is increasingly being 
recognised as providing a mechanism for 
describing realistic outcomes and adding 
flexibility to the decision process.  
 
Two approaches that are widely promoted as 
sound processes for environmental management 
are risk assessments and sustainability assessments 
(Hart et al. 2005; Jakeman et al. 2003). Both are 
iteratively structured processes centred on defining 
a problem, evaluating the problem, and making 



recommendations on how best to manage the 
problem. Both also explicitly consider uncertainty, 
although the degree to which it is represented in an 
assessment varies considerably. Embodied in each 
approach are the principles of adaptive 
management.  
 
Adaptive management is a process that explicitly 
accounts for uncertainty in ecological systems. It 
requires the documentation of hypotheses about 
responses of ecological systems to management 
interventions, monitoring of ecological responses 
before and after management interventions, and 
adjustment of management actions to account for 
observations (Failing et al. 2004). Ecological 
models are a key component of the adaptive 
management process. According to Walters 
(1997), the use of modelling in adaptive 
management allows one to replace management 
learning by trial and error with learning by 
directed experimentation.  
 
1.1 Ecological Models in Environmental 

Management 
 
In ecology, models serve a variety of purposes, 
ranging from illustrating an idea, to characterising 
a complex real-world situation (Neuhauser 2001). 
In decision making, ecological models are used to 
explicitly describe components of management 
and their relationships to the environment, to 
articulate assumptions and test hypotheses, to 
integrate different levels and types of knowledge, 
and to aid in the identification of salient, necessary 
and sufficient features of a system (Hilborn and 
Mangel 1997; Schreiber et al. 2004). The science 
of management of large systems is less than exact, 
and models can provide a powerful way for 
informing decision makers. Modelling exercises 
can reveal substantial gaps in knowledge about 
key processes and functional relationships 
(Walters 1997).  
 
Many past ecological models were restricted to 
mathematical equations that represented those 
parts of the system for which relationships were 
known (Rykiel 1989; Salles et al. 2006). This 
severely limited the type of knowledge that could 
be represented in models (Salles et al. 2006). 
Given that much of our ecological knowledge is 
incomplete, qualitative, fuzzy, or expressed 
verbally and diagrammatically, ecologists have 
only limited approaches in modelling for using this 
information in a meaningful way (Salles et al. 
2006). These past models also did little to promote 
the value of iterative updating using new data and 
knowledge, which is a key component of the 
adaptive management process.  
 

Recently, advances have been made in using 
Bayesian methods in ecological modelling. 
Bayesian approaches have the potential to meet the 
modelling needs of ecologists and environmental 
managers alike.  
 
1.2 Bayesian Methods 
 
Assessment of causality is at the core of all models 
for environmental management (Newman and 
Evans 2002). A major advantage of using 
Bayesian methods in environmental management 
is their ability to aid causality assessments. 
Bayesian analyses have the ability to guide what is 
predictable, what is inherently unpredictable, and 
where additional data can provide the most benefit 
in understanding and managing a system (Clark 
2005). They have the potential to reduce conflicts 
emerging from less formal integration of available 
evidence and can be used to direct the better use of 
limited resources in management (Newman and 
Evans 2002).  
 
In Bayesian reasoning, it is important to start with 
an appropriate ‘prior’, which is an assumption of 
how a particular system works. This prior 
probability is often derived using the subjective 
belief an expert has in a distribution before an 
analysis. Using Bayes’s Theorem (Equation 1), 
this prior probability is then combined with new 
data resulting in a posterior probability. The 
posterior probability of a hypothesis is given by 
the product of the prior probability, and the 
relative likelihood of the data having been 
recorded if the hypothesis were true: 

( | ) ( )( | )
( )

P A B P BP B A
P A

=                            (1) 

 
Where P(B|A) is the posterior probability of B 
given A, P(A|B) represents the conditional 
probability of A given B (likelihood), P(B) is the 
prior probability of B, and P(A) is the marginal 
distribution of A.  
 
According to Dorazio and Johnson (2003), there 
are virtually no limits to the complexity of 
Bayesian models. Indeed, the Bayesian process 
can be used to address the need to better 
understand and model complex systems (Pollino et 
al. accepted). Bayesian models have the ability to 
drive research to start answering fundamental 
questions in ecology, addressing the big questions 
on how systems work (Pollino et al. accepted). 
They are also a central component in the 
implementation of adaptive management (Dorazio 
and Johnson 2003; Pollino et al. in press). 

2. BDNS: ASSESSMENT OF CAUSALITY 
 



Bayesian Decision Networks (BDNs) offer a 
modelling framework that has the capacity to 
explore causality in ecological systems (Pollino et 
al. accepted; Pollino et al. in press). A BDN is 
similar to a hierarchical model in conventional 
Bayesian statistical models (i.e. models in 
WinBUGS), but they are graphical representations 
of probability. BDNs are made up of nodes 
(variables) connected by arcs (arrows) that 
represent dependencies. Nodes are random 
variables that can be continuous, discrete, or 
categorical. A full description of BDNs can be 
found elsewhere (e.g. (Korb and Nicholson 
2004)). The power of network models, such as 
BDNs, lies in their simplicity (Green and Sadedin 
2005). They have the potential to capture the 
patterns of connections and interactions within an 
ecosystem (Green and Sadedin 2005) in a 
parsimonious style.  
 
BDNs are effective frameworks for (Dorner et al. 
2006): 
1. capturing the structural aspects of the decision 

problem and serving as a framework for an 
efficient quantitative analysis of a problem; 

2. enabling an efficient representation and 
exploitation of the conditional independence 
in a decision model; 

3. expressing linkages in probabilistic terms, 
enabling management strategies to be 
identified with explicit certainty, despite 
imperfect knowledge; 

4. communicating decision models among 
decision makers. 

 
Bayesian approaches, including BDNs, allow 
scientists to combine new data with existing 
knowledge or expertise, thus providing a 
systematic procedure for pooling and combining 
knowledge in order to make decisions (Pollino et 
al. in press; Reckhow 2002). Sensitivity analyses 
can be used as a tool to identify sensitive variables 
in a BDN (Pollino et al. in press).  
 
2.1 BDN Information Sources  
 
According to Popper, scientific methods producing 
quantitative information are superior to qualitative 
methods (Popper 1972). Quantitative measures 
allow for more explicit statement of models, more 
rigorous testing of models, and clearer statements 
of confidence in models (Newman and Evans 
2002). However, in complex ecological models, 
such as for river systems, often there is only 
limited data available. Analyses of historical and 
comparative empirical data rarely provide the 
range and resolution of data needed for predictive 
models (Pollino and Hart 2005). Often, such data 
is also situation-specific and scale-dependent, not 
accommodating the range of influences that can 

operate in different settings at different scales 
(Clark 2005). Unfortunately, available empirical 
data can also be of variable quality, and relying on 
limited or suspect data alone can have implications 
for the accuracy and reliability of models (Pollino 
and Hart 2005; Sobehart et al. 2001). Nonetheless, 
that does not mean that we should forgo the use of 
such data entirely. Historical data have an 
important role in model parameterisation and 
validation, adding to the rigor of ecological 
models (Pollino et al. in press). 
 
If data are inadequate or lacking, the development 
and evaluation of a BDN model can continue 
using heuristic methods and domain experts. 
Bayesian models offer a process where 
quantitative knowledge or data can be integrated 
with expert knowledge, as has been demonstrated 
previously (Pollino et al. in press; Sikder et al. 
2006). There is no doubt that the use of expert 
judgement has a particularly important role in 
environmental management (Rykiel 1989). Expert 
judgement can often be one of the few identifiable 
ways to introduce sound ecological knowledge 
into environmental management.  
 
Unfortunately, the way in which expert judgement 
is introduced into a BDN can lack transparency 
and rigour. This has been observed in many 
existing BDNs, with ecological variables often 
only being defined qualitatively. The justification 
for this is either to simplify an assessment or due 
to the lack of robust data. When inherently 
quantitative variables (such as ecological 
variables) of BDNs are kept qualitative, they 
cannot be used in adaptive management processes, 
and arguably add little rigour to environmental 
management processes.  
 
A key virtue of the Bayesian approach is the 
iterative aspect of model development. The 
reliance on purely qualitative assessments in BDN 
models can introduce bias into an assessment, 
which can have a negative influence on decision 
making. Sources of bias are explored in the next 
section.  We argue that by defining ecological 
variables qualitatively and encouraging little 
capacity for model updating, many existing BDNs 
are really only probabilistic propagation models.  

3. EXPERT BIAS 
 
The role of experts in ecological assessments is not 
to make value judgements, but to present 
information about consequences and probabilities 
in a manner clear enough to allow decision makers 
to make better decisions (Burgman 2005; Failing 
et al. 2004). For this to be possible, well-reasoned, 
probabilistic judgements must have the potential to 
guide the evolution of scientific thought, be 



formed as rationally as possible, and be able to 
coincide with some unobservable, but objective 
reality (Baddeley et al. 2004). Despite this 
rhetoric, expert opinion is still subject to cognitive 
and knowledge-based bias (Anderson 1998; 
Baddeley et al. 2004; Burgman 2005). Given this, 
it is useful to understand the typical human biases 
that may occur in the opinion-forming cognitive 
processes used by experts so that their effects can 
be reduced rather than propagated (Baddeley et al. 
2004). 
 
In establishing a prior, Bayesian approaches 
assume some sort of order in the process of 
forming subjective beliefs. Unfortunately, human 
cognitive processes do not bide well with Bayesian 
concepts (Anderson 1998; Baddeley et al. 2004; 
Piattelli-Palmarini 1994). There is considerable 
research showing that most ordinary people make 
mistakes in making probabilistic judgements 
(Anderson 1998; Bier et al. 1999; Piattelli-
Palmarini 1994). These mistakes or biases reflect 
the cognitive limitations of processing ability 
within the human mind (Anderson 1998; Baddeley 
et al. 2004). Experts are similarly susceptible to 
biases, both as individuals and in groups, 
suggesting that perhaps expert opinion may not be 
the outcome of rational, systematic calculation. 
 
The two main types of individual bias are 
motivational bias and cognitive bias (Baddeley et 
al. 2004; Burgman 2005):  
• Motivational biases reflect the interests and 

circumstances of the expert. For example, 
technical experts can advocate a position or 
underestimate potential risks because their 
research and career prospects are tied to an 
outcome (Walters 1997). As motivational 
biases are often under rational control, they 
can be manipulated. This can be done by 
explaining that an honest assessment is 
required. It may also be possible to construct 
incentive structures encouraging honest 
assessments.  

• Cognitive biases are more problematic 
because they emerge from incorrect 
processing of the information and are not 
under conscious control. In making 
judgements, humans employ heuristics (rules 
of thumb) to aid analysis and interpretation of 
data.  Heuristics are commonly used to make 
relatively quick decisions in uncertain 
situations. These are used because a full 
assessment of available information is 
difficult, time consuming, or information is 
sparse. 

 
In making judgements, at least four types of 
heuristics are commonly employed (Baddeley et 
al. 2004; Burgman 2005):  

• Availability is the heuristic of assessing an 
event’s probability by the ease with which an 
occurrence of the event is recalled.  

• Anchoring and adjustment involves making 
an initial estimate of a probability using an 
anchor, and then revising or adjusting it up or 
down in the light of new information. This 
typically results in assessments that are biased 
towards the anchor value.  

• Control is the tendency of people to act as 
though they can influence a situation. If it is 
perceived that a person can control a situation, 
higher risks tend to be tolerated. 

• Representativeness is where people use the 
similarity between two events to estimate the 
probability of one from the other. This is 
linked to conjunctive fallacy, where the 
probability of two co-occurring events is 
erroneously considered to be more probable 
than a single event. 

 
In employing these heuristics, experts are often 
overconfident about their knowledge (Anderson 
1998; Baddeley et al. 2004; Burgman 2005). 
Biases are believed to be amplified when 
probabilities are extreme (i.e. at the tails of a 
distribution - close to 0 or 1) (Baddeley et al. 
2004).  
 
To limit individual bias, it is widely recommended 
that elicitation of probabilities should involve 
multiple experts. In addition to addressing bias, it 
is best to obtain a diversity of independent 
judgements as previous research suggests that 
accuracy of experts is not necessarily a function of 
the level of expertise (particularly for extreme 
events) (Bier et al. 1999). However, when experts 
collect and confer in groups, they can generate and 
perpetuate complex forms of bias associated with 
group interactions (Baddeley et al. 2004), resulting 
in lack of independence (Burgman 2005).  
 
Group biases can be compounded when mistakes 
and misjudgements are communicated amongst 
experts (Baddeley et al. 2004). If group expert 
opinion evolves along a particular path just 
because others have started on that path, then the 
link between subjective probabilities and 
underlying objective probability distributions may 
be completely broken (Baddeley et al. 2004). If a 
situation does arise where there is substantial 
differences of opinion exist amongst experts, it is 
preferable that these differences be kept explicit in 
a BDN model (Pollino et al. accepted). 
 
Obviously, given these multiple sources of biases, 
the question of how best to elicit and incorporate 
expert input into a BDN model is crucial, having 
implications for the overall model robustness and 
representativeness of a system.  



 
In Bayesian statistical models, where enough 
information is known about a problem to define an 
appropriate probability distribution, then formal 
methods of elicitation are considered appropriate 
(Bier et al. 1999). Expert judgements are used to 
define parameters quantitatively (e.g. probability 
distribution function with moments). A number of 
formal methods for eliciting probabilities have 
been described previously (e.g. (Baddeley et al. 
2004; Cooke 1991; Morgan and Henrion 1990; 
Savage 1971; Wang et al. 2002)). The use of 
formal elicitation methods can also help shift 
judgements from positional to performance-based 
debates (Failing et al. 2004). Although these 
methods can reduce expert bias, a method to 
estimate the uncertainties in expert judgements 
remains elusive (Baddeley et al. 2004).  
 
3.1 Expert Input into BDNs 
 
Unlike classical Bayesian models, in BDNs 
variables are often defined qualitatively. In this 
section, we seek to identify the problems that can 
arise in BDN models when variables are only 
defined qualitatively (if such variables are 
inherently quantitative).  
 
In BDN software platforms, variables have the 
capacity to (and often need to be) discretised. A 
discrete variable can take on one of several values, 
and these values are called states.  These states can 
be defined qualitatively or quantitatively. 
Conditional probabilities describe how a set of 
states of parent variables combine in a child 
variable. Consequently both the states of the 
variable and the conditional probabilities need to 
be elicited (Pollino et al. in press). For the sake of 
simplicity or using lack of data as a justification, 
published BDNs often define the states of an 
ecological variable as qualitative ratings (e.g. Low, 
Medium, High), despite the inherently quantitative 
nature of the measure (e.g. success of fish 
recruitment or algal biomass). This can introduce 
ambiguity and bias into the assessment.  
 
Using ratings to describes risks associated with 
animal anti-microbials, Cox et al. (2006) found 
that qualitative risk ratings did not provide 
sufficient information to discriminate accurately 
between quantitatively small and qualitatively 
large risks. The use of qualitative rankings is also 
likely to result in linguistic ambiguities, value 
judgements and expert biases (Burgman 2005). 
Likewise, in a study by Failing et al. (2004), 
quantitative estimates of biomass response were 
considered to be vastly superior to qualitative 
biomass estimates as the latter placed no bounds 
on the range of benefits possible given for 
alternative scenarios (Failing et al. 2004).  

 
We argue that BDN models for environmental 
management purposes should strive not to fall into 
the qualitative criterion. States of ecological 
variables that are defined qualitatively (e.g. Low, 
Medium, High), limit the potential for future 
updating of models with empirical data so that the 
‘Bayesian’ aspect of the BDNs is lost. Although 
qualitative/expert models are often considered to 
be complementary to quantitative model-based 
assessments, these latter models rarely have the 
capacity to accommodate, or be informed by, 
rapidly growing data sets (Clark 2005). 
Comparison of expert and data derived parameters 
against existing (and future) data is also limited 
(Pollino et al. in press). 
 
In BDNs, expert judgment should not been seen as 
a substitute for data or research, rather it can assist 
decision-making before all the necessary science is 
known (Morgan and Henrion 1990). We argue that 
all ecological models for environmental 
management should fit into a cycle of adaptive 
management, exploiting the Bayesian method of 
model parameterisation (and evaluation). 
 
3.2 Imprecise Probabilities 
 
We recognise that often precise estimates of 
probability cannot be elicited due to considerable 
knowledge gaps and inherent uncertainties. To 
address this, Failing et al. (2004) elicited 
quantitative estimates of fish biomass responses to 
flow regimes, but bounded these estimates within a 
confidence interval. This promoted the assessment 
of the benefits of management alternatives, given 
considerable uncertainties. Although this was done 
for a decision tree, a similar approach could be 
used for BDNs. A similar approach to elicitation 
was used in Pollino et al. (in press). 
 
Sikder et al. (2006) developed a formal approach 
to combining expert information with empirical 
data. They used elicited quantitative information 
on the risk of species invasions from experts using 
rough set and evidence theory (via imprecise 
probabilities and Bayesian reasoning). Other 
elicitation and analysis methods that may be useful 
in such situations are imprecise probabilities, 
interval analysis, fuzzy set theory and Dempster-
Shafer theory (Bier et al. 1999).  
 
In complex BDNs models, it may be feasible to 
focus elicitation efforts on defining quantitative 
thresholds of importance, concentrating on the 
important parts of a probability curve (e.g. the tails 
in a risk assessment) (Bier et al. 1999). This can 
be particularly relevant for ecological parameters, 
such as setting thresholds of toxicity to fish in a 
mine-impacted stream. 



4. MODEL EVALUATION 
 
Model evaluation is another critical element often 
overlooked in building BDNs. Testing a detailed 
model against empirical data is a crucial aspect of 
the modelling process (Walters 1997). Where 
possible, models should be tested with datasets 
that are as independent as possible from the ones 
used to define the model (Holling and Allen 2002; 
Pollino et al. in press). Bayesian methods can be 
used to test expert predictions against empirical 
data, assess expert bias and provide a framework 
for the efficient accumulation and use of evidence 
(Newman and Evans 2002; Pollino et al. in press). 
 
Unfortunately, large data sets are not always 
available (often the case for ecological/biological 
assessments), but some testing is better than none. 
Indeed, without empirical data, the benefits of 
implementing and using quantitative models 
cannot be fully realised, particularly as the 
accuracy of how well a model represents a system 
cannot be assessed. The acquisition of empirical 
data, collected via adaptive management 
processes, should be seen as crucial for model 
evaluation (Sobehart et al. 2001).  Indeed, the use 
of Bayesian statistical inference demands that not 
only are models confronted with empirical data, 
but also their assumption on how systems are 
structured is also challenged.  
 
Although peer review of models by independent 
experts is another form of model evaluation 
(Morgan and Henrion 1990; Pollino et al. in 
press), complex models that have not or cannot be 
tested with data should not be relied on for their 
management implications. 

4. CONCLUSION 
 
Expert elicitation is a useful process for revealing 
weaknesses in existing knowledge and serving as 
an indication of the quality of decision-making 
that is possible based on existing knowledge 
(Rykiel 1989). In contrast to conventional 
Bayesian models, many BDNs used or promoted 
for use in decision-making incorporate unbounded 
subjective and qualitative endpoints.  
 
In BDNs, an often-perceived advantage of 
qualitative over quantitative systems is that their 
inputs (e.g. ratings of Low, Medium, High) better 
reflect the rough, imprecise, but useful knowledge 
available in practice than do overly precise 
numerical inputs (Cox et al. 2005). However, 
expert knowledge and judgements that are 
represented in value-laden terms can lead to bias, 
logical inconsistencies or paradoxical inference 
(Burgman 2005; Sikder et al. 2006), which can 

lead to conclusions that are extreme or false. For 
this reason we emphasise the importance of being 
aware of such bias.  
 
Expert judgements in BDNs should provide an 
explicit and quantitative estimates about the 
probability and magnitude of an ecological 
variable (Failing et al. 2004). We recommend 
defining quantitative bounds for nodes, resulting 
in less ambiguity in the model, and facilitating the 
Bayesian updating process when new knowledge, 
such as empirical data, is acquired. Model 
evaluation should be a crucial and mandatory 
process in building a BDN. 
 
To improve decision making in environmental 
management, expert judgment should not be 
regarded as a substitute for empirical data. We 
believe that the challenge for developers of BDNs 
is to: (a) produce BDN models that have the ability 
to combine expert knowledge with existing and 
future datasets (including monitoring data) and 
system models, and (b) to exploit the ‘Bayesian’ 
feature of BDNs by ensuring models promote 
adaptive management processes, along with the 
need for investments in directed and improved 
monitoring and research (Morgan and Henrion 
1990; Pollino et al. accepted). 
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