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optimization methods in models calibration 

 

Dimitri P. Solomatine 

UNESCO-IHE Institute for Water Education, Delft,  The Netherlands, sol at ihe.nl 

 

Abstract:- Modelling and decision making related to environmental problems need adequate optimization 
methods and tools. In case the objective function to be minimized is not known analytically and no 
assumption can be made about the number of its extrema, gradient-based methods are inapplicable and direct 
multi-extremum (global) methods must be used. Apart from the popular evolutionary and genetic algorithms, 
other methods appear to be at least as effective and efficient. Nine algorithms were implemented in the 
GLOBE global optimization system, and they are compared in terms of effectiveness (accuracy), efficiency 
and reliability on several benchmark and hydrologic modelling problems.  
 

Keywords: global optimization, evolutionary and genetic algorithms, adaptive cluster covering, models 
calibration.  

 

 

1.  INTRODUCTION 

Many aspects of environmental modelling and 
management are closely linked to the notion of 
optimization. Examples are problems of resources 
allocation, reservoir optimization [Solomatine and 
Torres, 1996], groundwater remediation [Maskey 
et. al., 2002], water distribution [Savic and 
Walters, 1997] and models calibration ([Wang, 
1991; Solomatine, 1995, 1998, 1999; Franchini 
and Galeati 1997]. Models should closely mimic 
reality (or the modelled system), so this 
“closeness” should be minimized. Typically this is 
achieved optimizing (calibrating) both model 
structure and its parameters.  

Traditional (linear and non-linear, gradient-based) 
optimization can be quite successfully applied 
when the problem or a model allows for analytical 
descriptions. However this is often not the case: 
problems and models are encapsulated in software 
and the analytical calculation of derivatives is 
impossible so that direct optimization methods like 
the methods of randomized search should be used. 
Also the assumption of single-extremality 
typically cannot be tested, so the solution methods 
should belong to the class of global (multi-
extremum) optimization (GO) methods (Figure 1).  

 

 

Figure 1. An example of a (multi-extremum) 
model error function which is to be minimized in 

the process of calibration 

A global minimization problem can be formulated 
as follows: find an optimizer vector x* such that 
generates a minimum of the objective function f 
(x) where x∈X and is subject to some constraints. 
In calibration often a simple box constraint is 
used: X={x∈Rn: ai≤xi≤bi, i=1,..,n}. This 
constrained optimization problem can be 
transformed to an unconstrained optimization 
problem by introducing the penalty function with a 
high value outside the specified constraints. In this 
paper the optimization problem is considered to be 



a single-objective one. Many problems are 
formulated, however, as multi-objective ones [Deb 
et al., 2002; Barreto et al., 2006]. 

During the last decade the development of 
evolutionary and genetic algorithms (EGA) has 
lead to successful solution of many optimization 
problems that previously were not even posed. The 
success of EGAs is fully deserved and can be 
explained by their methodological appeal, relative 
simplicity, robustness and the existence of a well-
organized community. The recent developments in 
hybrid EAs, in particular, memetic algorithms, 
lead to improvements in the effectiveness of this 
class of algorithms.  

Among the non-derivative methods for GO EAs 
and GAs seem to be the most popular ones. 
Publications related, for example, to water-related 
applications started to appear already in the 1990s 
[Wang 1991; Cieniawski et al., 1995; Solomatine 
1995, Savic and Walters 1997; Franchini and 
Galeati 1997], and by now EGAs have become a 
widely-spread technology. One can see, however, 
that quite often the use of EGAs is not supported 
by the proper analysis and not always justified.  

The motivation for this paper was sharing the 
experience with various GO methods that were 
used to solve problems related to water and 
environment.  

 

2.  METHODS OF GLOBAL 
OPTIMIZATION 

The strategies employed in the most GO 
algorithms try to perform the two conflicting tasks: 

• exploring the search space – generating points 
in the unexplored regions;  

• exploiting the best solutions – using the best 
points (found so far) to find even better 
points.  

The reader is referred, e.g., to Torn & Zilinskas 
1989, and Pintér 1995 for an extensive coverage of 
various methods. It is possible to distinguish the 
following groups: set (space) covering techniques; 
random search methods, including EGAs; methods 
based on multiple local searches (multistart) based 
on gradients assessments; multistart based on 
clustering; other methods (simulated annealing, 
trajectory techniques, tunneling approach, etc.); 
hybrid methods combining several approaches. An 
overview of different methods was given in 
(Solomatine 1998, 1999, 2005). Here only EGA, 
multistart and ACCO will be briefly described.  

Evolutionary and genetic algorithms. There are 
various versions of EGAs varying in the way 
crossover, selection and construction of the new 

population is performed. In EAs, for example, 
mutation of coordinates is performed with respect 
to corresponding variances of a certain n-
dimensional normal distribution, and various 
versions of recombination are introduced.  

Multistart and clustering. The basic idea of the 
family of multistart methods is to apply a search 
procedure several times, and then to choose an 
assessment of the global optimizer. The region 
(area) of attraction of a local minimum x* is the 
set of points in X starting from which a given local 
search procedure P converges to x*.  

For the global optimization tool GLOBE used in 
the present study, we developed two multistart 
algorithms – Multis and M-Simplex. They follow 
the following scheme: (1) generate a set of N 
random points and evaluate f at these points; (2) 
reduce the initial set by choosing p best points 
(with the lowest fi); (3) launch local search 
procedures from each of p points. The best point 
reached is the minimizer assessment. In Multis, at 
step 3 the Powell-Brent local search (Press et al., 
1991) is started. In M-Simplex the downhill 
simplex descent [Melder and Nead 1965] is used. 

One of the versions of multistart used in global 
optimization is based on clustering, that is creating 
groups of mutually close points that hopefully 
correspond to regions of attraction [Torn & 
Zilinskas 1989]. The ACCO strategy developed by 
the author and covered below, also uses clustering 
as the first step, but it is followed by the global 
randomized search, rather than local search. 

Adaptive cluster covering (ACCO) (Solomatine 
1995, 1998, 1999) combines reduction, clustering 
and covering (Figure 2). 

1. Clustering. Clustering is used to identify the 
most promising subdomains in which to continue 
the global search by active space covering. 

2. Covering shrinking subdomains. Each 
subdomain is covered randomly. The values of the 
objective function are then assessed at the points 
drawn from some distribution. Covering is 
repeated and each time the subdomain is 
progressively reduced in size. 

3. Adaptation. Adaptive algorithms update their 
behaviour depending on the new information 
revealed about the problem. In ACCO, adaptation 
is formed by shifting the subregion of search, 
shrinking it, and changing the density (number of 
points) of each covering – depending on the 
previous assessments of the global minimizer. 

4. Periodic randomization. Any strategy of 
randomized search may miss a promising region 
for search. In order to reduce this danger, the 



problem is solved several times with the re-
randomization of the initial population.  

Depending on the implementation of each of these 
principles, it is possible to generate a family of 
various algorithms, suitable for certain situations, 
e.g. with non-rectangular domains (hulls), non-
uniform sampling and with various versions of 
cluster generation and stopping criteria. Figure 1 
shows the example of an initial sampling, and 
iterations 1 and 2 for one of the clusters in a two 
dimensional case.  

 

Figure 2. Adaptive cluster covering 
 

ACCOL algorithm is the combination of ACCO 
with the multiple local searches:  

1. ACCO phase. ACCO strategy is used to find 
several regions of attraction, represented by the 
promising points that are close (‘potent’ points). 
The potent set P1 is formed by taking one best 
point from each cluster found during the progress 
of ACCO. After ACCO stops, the set P1 is reduced 
to P2 by leaving only several m (1...4) best points 
which are also distant from each other; 

2. Local search (LS) phase. An accurate algorithm 
of local search is started from each point of P2 
(multistart) to find accurately the minimum; a 
version of the Powell-Brent search is used. 

Experiments have shown, that in comparison to 
traditional multistart, ACCOL brings significant 
economy in the number of function evaluations. 

ACD algorithm [Solomatine, 1998] is also a 
random search algorithm combining ACCO with 

the downhill simplex descents (DSD) of Nelder & 
Mead [1965]. Its basic idea is to identify the area 
around the possible local optimizer by using 
clustering, and then to apply covering and DSD.  

ACDL algorithm combining ACD with the 
multiple local searches has been developed as 
well. 

This author developed GLOBE software 
(http://www.data-machine.com) incorporating nine 
GO algorithms. GLOBE can be configured to use 
an external program as a supplier of the objective 
function values. The number of independent 
variables and the constraints imposed on their 
values are supplied by the user in the form of a 
simple text file. Currently, GLOBE includes the 
following algorithms (with variations, nine): 

• controlled random search: CRS2 [Price 1983] 
and CRS4 [Ali & Storey 1994]; 

• Simple GA; 

• multistart algorithms: Multis and M-Simplex; 

• adaptive cluster covering (ACCO) and ACCO 
with local search (ACCOL); 

• adaptive cluster descent (ACD) and ACD with 
local search (ACDL). 

 

3.  COMPARING ALGORITHMS 

Our experience of using GO algorithms includes: 

• traditional benchmark functions used in GO 
with known global optima [Dixon & Szegö 
1978; Duan et al. 1993]; 

• optimization of water-related problems: 
dynamic programming for reservoir 
optimization [Lee, 1997]; groundwater 
remediation [Maskey et al 2002]; optimization 
of pipe networks [Abebe & Solomatine 1998]; 

• calibration of various models: lumped 
hydrological model [Solomatine 1995], 2D 
free-surface hydrodynamic model 
[Constantinescu 1996]; hydrologic model 
[Solomatine, 1998]; distributed groundwater 
model (Solomatine et al., 1999); electrostatic 
mirror model; ecological model of plant 
growth.  

GLOBE uses the implementation of a Simple GA 
[Michalewicz, 1999]. Fitness rank elitist selection 
is used together with a complex stopping rule 
preventing premature termination. Several 
versions of GAs and sets of parameters were 
compared, and the one that performed the best was 
chosen for this study. This is a variant of GA with 
the ‘fitness rank’ selection, one-point crossover, 



15-bit coding of variables, bit mutation, 
preservation of the best points discovered so far. 
To prevent redundant re-evaluations, in each 
generation checks are made for the appearance of 
repetitive points.  

The most comprehensive experiments with all 9 
algorithms were set up for the standard benchmark 
problems [Dixon & Szegö 1978, Duan et al. 
1993]. The size of this paper does not allow to 
present all the results (see [Solomatine, 1998, 
1999, 2005]; 
www.ihe.nl/hi/sol/p_jogo/allplots.htm). Figure 2 
shows two typical examples of the process of 
minimization (averaged on 5 runs).  

Performance indicators investigated were: 

• effectiveness (how close the algorithm gets to 
the global minimum); 

• efficiency (running time) of an algorithm 
measured by the number of function 
evaluations needed; 

• reliability (robustness) of the algorithms 
measured by the number of successes in 
finding the global minimum, or at least 
approaching it sufficiently closely. 

Effectiveness and efficiency. For the functions of 
2 variables, ACCOL, CRS4 and M-Simplex are the 
most efficient. With the functions of higher 
dimensions, ACCOL and CRS4 again performed 
best, and had a similar performance, but M-
Simplex was the worst with all Shekel 4-variable 
functions. With other benchmark functions it was 
a bit better than ACCOL and CRS4. ACDL was on 
average the third best in performance after ACCOL 
and CRS4, being a ‘slow starter’. However, on 
some runs ACDL showed very high efficiency. GA 
is the least efficient method, and is also ineffective 
with all Shekel functions. Multis and CRS2 are 
both effective, reaching the global minimum in 
most cases, but much slower than other 
algorithms.  

Reliability (robustness). Reliability can be 
measured as the number of successes in finding 
the global minimum with the predefined accuracy. 
No random search algorithm can be 100% reliable. 
For the most functions of two variables most 
algorithms were quite reliable (with the exception 
of GA which often converged prematurely). With 
the functions of three and more variables CRS2 
and Multis algorithms appeared to be the most 
reliable but were the least efficient. ACDL was not 
always reliable even though it showed high 
efficiency on some runs. In most cases, the found 
minimizer estimate is normally quite close to the 
global minimum (GA that was failing more often 
than others).  

 

4.  DISCUSSION 

Algorithms which are permanently oriented 
towards the whole function domain have to 
perform more function evaluations, that is, have 
low efficiency (CRS2 and Multis). ACDL on some 
runs has shown high efficiency but not the 
reliability.  

The observed lower efficiency of GA can be partly 
attributed to the fact that the population size and 
mutation probabilities were not optimized 
(whereas different types of crossover and selection 
strategies were tried.)  

There are however, deeper reasons why GA is not 
the fastest algorithm. In comparison with the 
strategy used, for example, in ACCO, GA uses an 
operation that is not necessarily optimal: the 
‘crossover’ (exchange of some of the parents’ 
coordinate values) often leads to the redundant 
evaluations of the ‘offspring’ in the search space 
quite far from their (highly fit) parents, and hence 
normally with lower fitness. In fact, cutting 
through the bit string representing variable xi leads 
to the new offspring that has effectively random 
value of xi.  

The question of usefulness of such crossover 
operator can be posed. What is the main role of 
crossover – exploration, or exploitation? 
Crossover helps in exploring the search space 
(since this typically leads to a random jump in 
direction of xi). We claim however that using this 
operator is not the best way to exploit the best 
solutions since the high fit of the offspring and the 
parents are not necessarily inherited by many of 
their offspring. It is the selection operator, rather 
than the crossover, that ensures the effective 
exploitation of the good solutions found so far.  

Evolution is a robust way of pushing the fit 
individuals forward, but there are no reasons to 
assume that it is the fastest or most efficient way 
of finding the fittest organism. Many processes in 
nature, are redundant since the “objective” of 
nature is a reliable reproduction and evolution, and 
reliability is achieved through the high redundancy 
which is typically in conflict with efficiency.  

Many other GO algorithms do not suffer from the 
mentioned deficiency of Simple GA. ACCO 
separates the tasks of exploring the space (initial 
random search and covering) and exploiting the 
best solutions (by reduction, and increased density 
of covering close to the best points). The relatively 
higher efficiency of ACCOL and CRS4 can be also 
explained by their orientation towards smaller 
search domains which is especially efficient for 
high dimensions. Multis follows a much more 
direct strategy of seeking the points with the lower 



function value, requiring, however, more function 
evaluations.  

The mentioned features of the Simple GAs were 
gradually recognized by the research community, 
and during the last 5-10 years a number of 
methods that follow an idea of combining the 
appealing features of GA with the best features of 
other methods were developed (see, e.g., Yao et al. 
[1999]; Oh [2004]). Among such hybrid GAs (or 
EAs) there is a group that is particularly relevant 
to the topic of this paper – that of memetic 
algorithms (MA), evolutionary algorithms that 
include local search (for an overview, see Eiben 
and Smith [2003]. Indeed, the local search used in 
MA is basically a version of covering (used in 
ACCO) or descent based on the assessment of 
gradient, like it is done in Multix described above.  

One of the important differences between ACCO 
and hybrid GA or MA is that ACCO does not 
explicitly use the crossover operator. This 
however does not mean that ACCO cannot be seen 
as following an evolutionary approach. It is a 
population-based algorithms and the generation of 
points in the proximity of good points (covering) 
can be interpreted as asexual reproduction 
(reproduction by division), and adaptation 
(shifting the domains) plays the role of selection. 
Note that any iterative optimization scheme 
implements a process that can be treated as 
evolution: with every population the generated 
instances obtain higher and higher fit, the weakest 
perish and the fit survive.  

 

5.  CONCLUSIONS 

1. Using GO techniques are often the only way to 
solve complex optimization problems where the 
objective function is calculated by software. 
Among the GO algorithms compared, ACCOL and 
CRS4 showed the highest effectiveness, efficiency 
and reliability. M-Simplex performs well with the 
functions of low dimension but in higher 
dimensions it often converges prematurely to a 
local minimum.  

Simple GA, CRS2, and Multis provide reasonable 
solutions as well. However, all of them require 
more function evaluations. Our other experiments 
[Abebe and Solomatine, 1998] however, show that 
for certain classes of problems with highly discrete 
variables, GA, due to its inherently discrete nature, 
can actually be more accurate than other 
algorithms built originally for continuous variables 
(being still less efficient than for example, ACCO).  

2. The choice between the various methods of 
global optimization may depend on the type of 
problem, and more research is needed to compare 

the reportedly efficient methods like simulated 
annealing, topological multilevel linkage, shuffled 
simplex evolution [Duan et al., 1993] and others 
(see, e.g., Neumaier [2005]. The best results can 
probably be achieved by adaptation of an 
algorithm in relation to the information about the 
response surface (e.g., Fogel et al. [2001]), or by 
structural adaptation, that is, switching in the 
process of search between different algorithms;  

3. It is suggested that many of GO algorithms, e.g. 
ACCO and CRS, can be seen as evolutionary 
algorithms. Such attribution can be quite fruitful; 
one of the possibilities is the extension of hybrid 
EGAs and memetic algorithms with covering, 
reduction and adaptation – the approaches that 
ensure the high efficiency of the ACCO algorithm.  
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Figure 3. Typical examples of the algorithms performance:  
(a) Shekel5 function of (4 variables);(b) rainfall-runoff model error (8 variables).  
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