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Abstract

Integrated scheduling and control (SC) seeks to unify the objectives of the various layers of optimiza-

tion in manufacturing. This work investigates combining scheduling and control using a nonlinear

discrete-time formulation, utilizing the full nonlinear process model throughout the entire horizon.

This discrete-time form lends itself to optimization with time-dependent constraints and costs. An

approach to combined SC is presented, along with sample pseudo-binary variable functions to ease

the computational burden of this approach. An initialization strategy using feedback linearization,

nonlinear model predictive control, and continuous-time scheduling optimization is presented. The

formulation is applied with a generic continuous stirred tank reactor (CSTR) system in open-loop

simulations over a 48-hour horizon and a sample closed-loop implementation. The value of time-

based parameters is demonstrated by applying cooling constraints and dynamic energy costs of a

sample diurnal cycle, enabling demand response via combined scheduling and control.
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1. Introduction1

Current process control and optimization strategies are typically divided into major sections in-2

cluding base layer controls, advanced controls, real-time optimization, scheduling, and planning [1].3

Each of these levels works at a different time scale, ranging from milliseconds to seconds for base4

controls, up to weeks or months at the planning level.5
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Each of these levels receives a minimal amount of information to fulfill an objective to simplify6

models and decrease computation time. However, the lack of information communicated between7

the levels creates lost opportunities. For example, scheduling problems have historically focused8

on the quantity and time-line of product manufacturing, without much knowledge of the dynamics9

of the manufacturing process. Thus, the “optimal” solution determined in scheduling is sometimes10

impossible to implement in practice within the required time to transition between products in con-11

tinuous manufacturing [2]. Further, the objectives of different manufacturing layers can sometimes12

counter each other. For example, a control goal to reach a set point could potentially conflict with13

a scheduling goal to maximize profits [3].14

This segregated manufacturing structure is largely an artifact of the development of process15

control and computational limits during these developmental periods [4]. Thus, each level has16

developed within an isolated domain, without much inter-level coordination, sometimes at the17

expense of truly optimal solutions [4].18

1.1. Economic Model Predictive Control and Dynamic Real Time Optimization19

With ever-increasing computational power, the segregation of optimization is being reanalyzed20

through efforts such as model predictive control for supply-chain management [5], combined nonlin-21

ear estimation and control [6, 7], dynamic real-time optimization (DRTO) [8, 9, 10], and economic22

model predictive control (EMPC) [11, 12]. These past efforts have proven valuable in practice [1].23

DRTO has an economic objective function similar to that of a scheduler. DRTO is solved more24

frequently than scheduling problems and leverages the predictive power inherent in a dynamic first-25

principles model to calculate intermediate set points used by MPC for optimal product transitions26

[8, 11].27

EMPC mixes the benefits of the optimization layers with an objective function centered around28

profit or reducing operating expenses, rather than reaching a setpoint, and is therefore similar to29

a scheduler. However, EMPC uses a very short time horizon like MPC [11]. However, both EMPC30

and DRTO only consider one product at a time, and therefore do not replace a scheduler.31

Other researchers are more fully integrating control and scheduling (SC) in an attempt to32

achieve even more optimal solutions. Suggestions for, and early implementation of, fully combined33

scheduling and control go back at least a decade [13].34
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1.2. Integrated Scheduling and Control and Computational Capacity35

The benefits of integrated scheduling and control have been explored extensively in recent work,36

and algorithms and technology which further enable these large-scale problems have been steadily37

advancing during recent years. Today, both computing power and algorithms have advanced so38

far that nonlinear programming problems (NLPs) with over a million variables can be solved [14].39

Not only have solvers grown in capacity, but also in speed [10]. These developments and potential40

for future growth in algorithm capacity and speed prompt investigation of a new paradigm of41

integrated scheduling and control which could lead to improved process solutions through more42

complex problem formulations.43

1.2.1. Previous Work44

Extensive research has been performed in the new field of integrated scheduling and control.45

Multiple review articles have been written on the topic of integrated scheduling and control, ranging46

from reviews on integration feasibility to addressing uncertainty in the integrated problem [3, 15,47

16, 17, 18]. Some researchers have investigated incorporating explicit process dynamics in the48

scheduling model with differential and/or algebraic constraints [13], even for multi-product parallel49

continuous stirred tank reactors (CSTRs) [19]. Multi-objective optimization approaches have also50

been investigated for combined scheduling and control of CSTRs [20]. Another approach called51

the scale-bridging model (SBM) uses a simplified model that encompasses most of the important52

dynamics that can be used in the scheduling framework [21, 22, 23].53

Predictive control system integration into refinery scheduling models has been investigated [24].54

Integrating scheduling and control has been shown to optimize transition times in a polymeriza-55

tion reactor model, although the optimization problem grows rapidly with an increasing number56

of products [25]. Combined scheduling and controller selection for optimal grade transitions in57

polymerization processes has also been investigated [26, 27]. Closed-loop implementation of simul-58

taneous scheduling and control has been shown to effectively re-calculate an optimal schedule in59

the presence of significant disturbances [28]. Fast model predictive control [29] and dual feedback60

structures [30] have been proposed to reduce the computational requirements of on-line, closed-61

loop implementation of combined scheduling and control. A traveling salesman approach has also62

recently been suggested [31].63

Some researchers employ decomposition techniques to the SC problem. Past research in this64
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field includes segregating production sequence and product demand [32], applying Benders’ decom-65

position framework to particular problems [33, 34, 35], using Dinkelbach’s algorithm to find a global66

optimum in on-line implementations [36], and using Lagrangian heuristic decomposition to reduce67

the computational burden of the combined problem [37].68

Some researchers have explored the integration of scheduling and control in batch processes.69

The possibilities of direct inclusion of process dynamics into batch scheduling was first discussed70

over a decade ago [38]. Recent research continues to explore integrating process dynamics into batch71

scheduling [2]. Multi-parametric model predictive control [39], state equipment networks [40], and72

two-phase (off-line and on-line) architectures [41] have been applied to integrate scheduling and73

control for batch processes. Chu and You investigated scheduling and control in batch processes,74

investigating moving horizon approaches [30], decomposition through surrogate modeling [42], and75

decomposition into a bi-level problem solvable with a game theory approach [43].76

Work has also been done to integrate design, scheduling, and control [44, 45, 46] as well as to inte-77

grate planning, scheduling, and control [47, 48]. Several review articles have outlined organizational78

and other challenges to integrating scheduling and control in chemical processes [3, 4, 15, 16]. This79

work considers the simultaneous integration of scheduling and control for multi-product continuous80

chemical processes.81

1.3. Demand Response82

Demand response (DR) is an illustrative example of the benefit of considering dynamic con-83

straints and parameters in SC optimization for chemical processes. As the electrical grid transitions84

to a smart grid and dynamic electricity prices become available, stakeholders are being empowered85

to perform more informed energy transactions [49, 50, 51]. Along with residential and commercial86

systems, industrial systems are among those that can increasingly take advantage of the variable87

price of electricity [52].88

Demand response seeks to manage both volatile demand and renewable energy in order to89

increase efficiency of the electrical grid. DR incentivizes consumers to behave in ways that benefit90

the electrical grid as well as themselves by utilizing variable pricing to reduce consumption during91

peak hours when the reliability of the grid is jeopardized [53]. Generation should match consumption92

in order to maintain grid reliability [54]. DR is a major reason why variability of energy prices is93

expected to increase [55]. Industrial manufacturing processes can benefit from DR by decreasing94
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energy consumption when the cost of electricity is high and increasing consumption when electricity95

costs are low. The possibility of demand-side pricing and constraints in energy markets creates new96

opportunities to achieve economic benefit from SC in chemical processes [15].97

Although residential consumers make up the largest portion of electrical grid consumers, tremen-98

dous opportunities exist for industrial participants [54]. Previous efforts to quantify the benefits of99

DR for the industrial sector include petroleum refining [54], chemical processing [56], gas production100

(Air Separation Unit) [57], aluminum smelting [58], and steel production [59]. The idea that chem-101

ical processes can be used as a “battery” to store energy from the grid generated during non-peak102

hours in the form of chemical products was introduced by Baldea [60]. He discusses methods to en-103

able chemical process operators to interact optimally with utility operators to enable effective DR.104

Mendoza-Serrano and Chmielewski [54] introduce the concept of using economic model predictive105

control (EMPC) to respond to demand in electric power systems, using a refinery as an example106

application. Xu and Wang [61] investigate a feedback control approach to address energy consump-107

tion in a job-shop scheduling problem. Tong et al. [52, 62] incorporates chemical process dynamics108

in formulations accounting for DR in chemical process scheduling and control. Tong et al. account109

for process dynamics during transition periods and incorporate DR in their objective; however, the110

process is considered at steady-state during production periods, not allowing the optimization to111

alter operation during production periods to respond to dynamic constraints and dynamic energy112

price. Additionally, Tong et al. consider parameter tuning for linear controllers rather than utilizing113

nonlinear model predictive control in the SC formulation [62]. The SC problem is decomposed into114

a scheduling problem with constant transitions and a control problem (optimal parameter tuning).115

The authors mention the results are sub-optimal, but are progress toward true optimality.116

This work utilizes a case study of a CSTR model with a first-order, irreversible reaction to117

illustrate the benefits of adjusting operations based on periodic electricity price changes. Moreover,118

periodic effective maximum cooling is added to the model. During the heat of the day, effective119

maximum cooling is reduced compared to night-time operation. To simulate these dynamic cooling120

and price conditions, periodic constraints of both effective maximum cooling and electricity price are121

utilized in the optimization. The discrete-time optimization is able to adjust manipulated process122

variables throughout the entire horizon to respond to these dynamic energy price and dynamic123

cooling constraints.124
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2. Problem Formulation in Discrete-time125

Typical scheduling optimization seeks to maximize profit (P ) by changing scheduling variables126

(xs) such as the order of products, subject to scheduling constraints such as demand, production127

rate, storage costs, etc. There are two main types of models for scheduling of chemical processes:128

discrete-time and continuous-time [63]. The majority of previous work on integrated scheduling129

and control utilizes continuous-time scheduling formulations with integrated process dynamics to130

enable dynamic optimization of both scheduling and control [13, 19, 20, 21, 22, 23, 28, 29, 30, 32,131

33, 36, 39, 64, 65, 66]. Recent work also demonstrates the possibilities of using discrete-time formu-132

lations to integrate scheduling and control [67, 68, 69]. To account for dynamic process constraints133

and dynamic scheduling parameters (e.g. dynamic market conditions), this work utilizes a fully134

discrete-time method for the integrated scheduling and control problem. The discrete-time formu-135

lation enables dynamic constraints and dynamic market conditions to be considered in integrated136

optimization of both production sequence and process operation during and between production137

slots, enabling optimization of effective demand response during production periods, effective op-138

timization of grade transition timing, and effective optimization of process control during both139

production and transitional periods. A generalized scheduling optimization is shown in Equation140

1, where time is discrete.141

maximize
xs

P (xs, y, t)

subject to scheduling constraints

(1)

Unlike scheduling which considers economic constraints but not process dynamics, MPC includes142

process dynamics but inherently contains no economic considerations. MPC drives a process to a143

setpoint by manipulating process variables (xc) such as flow rates, subject to the process model144

(e.g. reaction rates, mass balance), generalized by Equation 2, where time is discrete.145

minimize
xc

||ymodel − ysp||

subject to process model

(2)

EMPC adjusts MPC by maximizing profit (P ) rather than minimizing error to a setpoint using146

the same dynamic process model. The economic objective is reminiscent of a scheduler.147
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maximize
xc

P (xc, y, t)

subject to process model

(3)

By combining the constraints from EMPC (the process model) and the scheduling optimization148

(scheduling variables such as prices and demand), with an economic objective function over the149

same discretized time horizon, a fully unified control and scheduling optimization is achieved.150

However, schedulers do not consider the same set of process variables that a controller pro-151

cess model considers. Thus, a link is required between scheduling variables and process variables.152

Namely, linking a product on/off binary variable (Bi,t, representing production of product i at time153

t) from typical scheduling formulations to the associated process variable (yp), as defined by product154

specifications. Production (B) is typically a binary variable while process variables are typically155

continuous. Since most product specifications include a tolerance, this linking can be done through156

a step function. Figure 1 shows this relationship for a sample product whose specification is x = 1.5157

with a tolerance of 0.5.158
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Figure 1: A generic linking function between the continuous process specification variable x and the binary scheduling

variable for the associated product b.

159

With the linking function in place, economic optimization based on both scheduling and control160

economics is possible with both a process model and scheduling constraints, as shown in Equation161

4. This is the proposed paradigm of combined scheduling and control explored in this work.162
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maximize
xs,xc

P (xs, xc, y, B)

subject to scheduling constraints

process model

linking function B(yp)

(4)

The formulation in this work consists of a large-scale set of nonlinear differential and algebraic163

equations (DAE) that describe a MIDO problem. The continuous horizon of the problem is dis-164

cretized by orthogonal collocation onto finite elements (see Figure 2), becoming a large system of165

algebraic equations containing binary variables Bi,t, which determine the current on-specification166

production of each product i at time t.167

Time

Input (u)

Variable (x)

Figure 2: Variables are discretized over a horizon onto finite elements by orthogonal collocation.

168

The objective function is shown in Eq. 5, where B is the binary variable that determines if169

product i is produced at time t, Π is the price of product p, q is the rate of production at time t,170

n is the number of finite elements, and O is the operational expenditure at time t.171

maximize

n∑
t

[
n∑
i

(qtΠiBi,t)−Ot

]
(5)

This discrete-time SC formulation is inherently able to account for dynamic constraints and172

parameters throughout a prediction horizon by modifying constraint or parameter values at each173

finite element across the horizon. This improves upon continuous-time, slot-based formulations174

in which a system is traditionally considered steady-state or constant during production periods,175
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ruling out the possibilities for consideration of dynamic constraints or parameters during production176

slots [52].177

2.1. Linking Functions178

The full discrete-time integrated scheduling and control problem accounting for full nonlinear179

process dynamics presented in this work produces a complex and difficult mixed-integer nonlinear180

(MINLP) problem. Fine-time resolution of the discrete-time SC problem dictates a large number181

of integer variables Bi,t. However, on-line or frequent implementation of integrated scheduling182

and control is beneficial for rejecting process disturbances and responding effectively to market183

fluctuations [4, 28, 15]. This requires a sufficiently light computational time requirement for the184

SC problem.185

To reduce the computational requirements of the nonlinear discrete-time problem accounting for186

nonlinear process dynamics, this work recommends continuous relaxations of the linking function187

(or a “pseudo-binary” approach) to ease the computational requirements of the MINLP problem to188

enable solution via gradient-based NLP. This section provides various options for linking functions.189

A few selected methods are tested on the SC problem (Equation 4) with sample results of profit190

and solution time reported.191

The first recommended linking function (a “hard constraint”) could be formulated as shown in192

Equation 6 or 7, where spec is the product specification with tolerance tol. In this form, B is zero193

outside of product specs, but will be driven to one (the upper variable bound) by the economic194

objective function when on spec —effectively producing a step in B. These constraints are simple195

and linear or quadratic.196

B(|spec− x| − tol) ≤ 0, B ∈ [0, 1] (6)
197

B((spec− x)2 − tol2) ≤ 0, B ∈ [0, 1] (7)

Similarly, mathematical programming with complementarity constraints (MPCC) can be used198

to simulate a step function by combining two modified “signum” MPCC formulations, as shown in199

Equation 8 [67]. This formulation provides derivatives for the solver to seek out the product and200

B is fixed at one when on-spec through constraints rather than objective function encouragement.201

However, mathematical programming with equilibrium constraints (MPEC) naturally include de-202

pendent active inequality constraints which add significant difficulty for the solver (although this203
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can be partially resolved through structured regularization [70]). Further, this method introduces204

six slack variables (s) per product, per time discretization. All the slack variables must be positive205

and s5 and s6 must additionally be less than or equal to one.206

x− spec− tol = s1 − s2 (8a)

x− spec+ tol = s3 − s4 (8b)

s1 ∗ (1− s5) + s2 ∗ s5 ≤ 0 (8c)

s3 ∗ (1− s6) + s4 ∗ s6 ≤ 0 (8d)

B = s6 − s5 (8e)

In contrast to these binary methods, we also present continuous relaxations to the binary step207

function (or a “pseudo-binary” approach). For example, Eq. 9 provides a continuous gradient208

with immediate objective function benefit for the solver to recognize the location of products with209

respect to process state x. In Eq. 9a, h represents the max height of the function and must exceed210

1. In this format, f exceeds 1 in the range of product specifications and is within [0,1] elsewhere.211

f(x) = h10log(1/h)/tol2(spec−x)2 (9a)

B(x) ≤ f(x), B ∈ [0, 1] (9b)

Low values of h present a short, wide hill with clean, far-reaching gradients. To force a square212

function like a true binary variable, h is increased so f goes to 0 outside the product specifications.213

Then, through Eq. 9b, the function is capped at 1. The economic objective function maximizes B214

to 1 whenever the concentration is within the associated product specification. Figure 3 shows the215

resulting linking function, demonstrating the wide reach provided by low values of h to the steep216

binary approximation of large h.217
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Figure 3: A sample plot of Function 9 with increasingly large h, beginning with a gentle slope for clean, far-reaching

derivatives, progressing towards a strict binary step function.

218

In this work, h is manually increased and resolved iteratively, with each solution initializing219

the next. This also helps avoid the numerical difficulties presented by the steep gradients of large220

h values by being very close to the solution as the numerical challenges increase. This method is221

related to, but has the opposite effect of, the barrier method used in interior point solvers [71]. It222

is the authors’ opinion that this form would be better implemented within a solver where h could223

be updated on a per-iteration basis. This is a point of future work.224

This function is suitable for this use because product specification variables are typically within225

a known, relatively small bound. Thus, the function f can provide a gradient through the entire226

range with initially small h.227

Similar to Equation 9, Equation 10 provides a continuous relaxation by combining two sigmoid228

functions, scaled to a maximum value of one.229

B(x) =

1
1+exp(k(spec−tol−x)) + 1

1+exp(k(−spec−tol+x)) − 1

1
1+exp(k(−tol)) + 1

1+exp(k(−tol)) − 1
(10)

In Equation 10, low values of k provides clean, far-reaching gradients while large k approximates230

the step function. k in this method is the counterpart to h in Equation 9. Figure 4 shows this231

function with increasing values of k.232
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Figure 4: A sample plot of the sigmoid function with increasingly large k, beginning with a gentle slope for clean,

far-reaching derivatives, progressing towards a strict binary step function.

233

2.1.1. Sample results234

Each of the proposed linking functions is capable of finding a solution. However, since the235

provided gradients differ, the solver takes a different path to each solution. This can yield slightly236

different solutions as each problem may fall in different local optima. For the problem provided237

in Equation 4 (further described in Section 4), Figure 5 shows a set of sample results of both the238

end profit and the time required to achieve the solution. These results all use continuous variables239

for B, but each solution is sufficiently close to binary. An attempt at solving these problems with240

actual binary variables, in an MINLP using the APOPT solver [72], did not solve in under 10,000241

seconds.242

For this problem, the pseudo-binary method (Equation 9) consistently returns the highest profit243

and is therefore recommended for finding the initial schedule solution. However, Equation 7 is the244

fastest method and is therefore recommended for closed-loop control once a highly detailed solution245

is obtained and used to initialize the next control move. For other problems with different dynamics246

or constraints, a different linking function may work better.247
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Figure 5: A comparison of different linking functions at various horizon lengths. The figures show that Eq. 9 (PB or

”pseudo-binary”) consistently returns the best schedule, while Eq. 7 (hard) consistently yields the fastest solution.

248

3. Strategies for Computational Tractability249

To further reduce the time required to solve the MINLP problem, a computationally light250

continuous-time scheduling optimization is used to initialize the discrete-time problem. Both feed-251

back linearization and nonlinear model-predictive control (NMPC) are used to estimate the transi-252

tion times in the continuous-time scheduling problem used for initialization.253

A pseudo-binary variable strategy is presented to make the discrete-time mixed-integer dynamic254

optimization (MIDO) problem solvable by NLP. An initialization strategy is presented to further255

shorten the computational time for the discrete-time problem by using a simpler continuous-time,256

slot-based scheduling problem. The transition times needed to solve this continuous-time, slot-257

based scheduling problem are estimated using two alternative techniques: feedback linearization258

and nonlinear model predictive control. A transposition of the continuous-time scheduling solution259

to discrete-time is presented to initialize the discrete-time problem.260

3.1. Continuous-time Scheduling Initialization261

This work further lightens the computational burden of the discrete-time SC problem through262

initialization. As shown in Safdarnejad et al. [73], initialization of discrete-time problem variables at263

each finite element to values close to the optimal solution reduces the computational time required.264

In this work, initialization of binary variables (Bi,t) and key process variables at each finite element265

is employed to reduce the computational burden of each iteration of combined scheduling and266

control.267
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Figure 6: Continuous-time scheduling divides the future horizon into time slots that consist of a transition period

τi′i (where product i′ is made in slot s - 1 and product i is made in slot s) followed by the production period for

product i.

268

If implemented closed-loop, initialization can be provided by the solution of a previous iteration.269

However, continuous-time scheduling optimization is selected as a computationally light way to270

initialize in the case that a previous solution is unavailable. Continuous-time scheduling divides271

a future time horizon into time slots composed of a transition period followed by a production272

period, as shown in Figure 6. A continuous-time scheduling optimization is used to initialize the273

discrete-time problem in this work. This continuous-time optimization seeks to maximize profit274

while observing scheduling constraints. The objective function is formulated as follows:275

max
zi,s,tsi ,t

f
i ∀i,s

J =

n∑
i=1

Πiωi − qcrmTm

s.t. Eq. 12− 18

(11)

where Tm is the makespan, n is the number of slots, zi,s is the binary variable that governs the276

assignment of product i to a particular slot s, tss is the start time of the slot s where product i is277

made, tfs is the end time of the same slot, Πi is price per unit of product i, q is production rate,278
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crm is raw material cost, and ωi represents the amount of product i manufactured,279

ωi =

n∑
s=1

∫ tfs

tss+τi′i

zi,sq dt (12)

where τi′i is the transition time between product i′ made in slot s - 1 and product i made in slot280

s. The time points must satisfy the precedence relations281

tfs > tss + τi′i ∀s > 1 (13)
282

tss = tfs−1 ∀s 6= 1 (14)
283

tfn ≤ Tm (15)

which require that a time slot be longer than the corresponding transition time, impose the coinci-284

dence of the end time of one time slot with the start time of the subsequent time slot and define the285

relationship between the end time of the last time slot and the total makespan or horizon duration286

(Tm).287

Products are assigned to each slot using a set of binary variables, zi,s ∈
{

0, 1
}

along with288

constraints of the form289
n∑
s=1

zi,s = 1 ∀i (16)

290
n∑
i=1

zi,s = 1 ∀s (17)

which ensure that only one product is made in each time slot.291

The makespan is fixed to the length of the scheduling and control horizon rather than set as a292

manipulated variable adjustable by the NLP solver. Demand constraints are formulated such that293

production may not exceed the maximum demand for a given product, as follows:294

ωi ≤ δi ∀i (18)

The continuous-time scheduling optimization requires transition times between steady-state295

products (τi′i) as well as transition times from the current state to each steady-state product if296

current state is not at steady-state product conditions (τ0′i). The transition times are estimated297

using two different methods: nonlinear model predictive control (NMPC) and feedback linearization.298

Transition times between steady-state products can be computed off-line and stored in memory;299

however, transition times from current state to steady-state products must be calculated on-line at300
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each iteration of integrated scheduling and control optimization if implemented on-line. These two301

approaches to calculate transition times are discussed in the following subsections.302

3.1.1. Nonlinear Model Predictive Control Transitions303

NMPC transitions minimize an objective function of the form304

min
u,tf

J = (x(tf )− xsp)TWsp(x(tf )− xsp) + tfWtime

s.t. nonlinear process model

x(t0) = x0

(19)

where x(tf ) is the process state at final time, Wsp is the weight on the set point for meeting target305

product steady-state, tf is the final time or time required for the transition, Wtime is the weight306

on minimizing the final time, xsp is the target product steady-state, and x0 is the start process307

state from which the transition time is being estimated. This formulation harnesses knowledge of308

process dynamics in the system model to find an optimal trajectory and minimum time required to309

transition from an initial concentration to a desired concentration. The final time chosen by NMPC310

is taken as the estimate of transition times to use in the continuous-time scheduling optimization.311

This transition time is expected to be similar to the time taken by the discrete-time combined312

scheduling and control algorithm to transition between product steady-state conditions as both313

approaches harness a nonlinear system model to find optimal control profiles between products.314

3.1.2. Feedback-Linearized Transitions315

Although NMPC harnesses full knowledge of process dynamics as available in the system model316

and is expected to effectively imitate the transition durations of the combined scheduling and317

control algorithm presented in this work, NMPC is expected to scale poorly (in terms of com-318

putational burden) to larger systems with complex models and large numbers of products. The319

large computational requirement of NMPC may be unsuitable for initialization purposes in on-line320

implementations of integrated scheduling and control. Consequently, feedback linearization is pre-321

sented as an alternative approach for estimating transition times in the continuous-time scheduling322

optimization.323

A linear system y = f(x, u) has the property that f(x, u0 + u1) = f(x, u0) + f(x, u1). Thus324

the response of the system to the initial input u0 can be decoupled from that of the step size u1.325
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Additionally, a closed-form solution for the transition time given a step size can be estimated, thus326

avoiding preprocessing time and space.327

Feedback linearization can be applied to dynamic systems of the form328

ẋ =f(x) + g(x)u

y =h(x)
(20)

Following the procedure outlined by Khalil et al. [74], the control signal u can be designed to make329

the input-output behavior of the system linear. For instance, in the SISO (Single Input Single330

Output) case331

u =
1

LgL
ρ−1
f h(x)

(
− Lρfh(x) + v

)
(21)

where Lf represents the Lie derivative along f and ρ is the relative degree of the system. In this332

case, the input-output behavior of the closed-loop system is333

v = y(ρ) (22)

which is a chain of ρ integrators.334

An issue with feedback linearization is that the resulting closed-loop dynamics may not be335

stable, as seen in the SISO case above. This work proposes to use LQR control for the stabilizing336

controller, since full state feedback of x̂ is available. This well-known approach finds a gain K that337

minimizes338

J =

∫ ∞
0

xTQx+ vTRv dt (23)

the control law then becomes v = −Kx̂ [75].339

One drawback to using feedback linearization is that it can produce arbitrarily large input340

signals u in order to maintain linearity. In most cases, this leads to unreasonable state values x341

that are allowed by the mathematics of the model but are not realistic. For this reason, Q and342

R should be tuned in order to keep u within reasonable bounds for the relevant step sizes in the343

system.344

Once the system has been tuned appropriately, then the transition times can be calculated345

independent of the starting point. This approach is similar to the scale-bridging model (SBM) as346

presented by Baldea et al. (2016) [76]. However, whereas Baldea et al. use linearization as a method347

for feeding information on process dynamics to a scheduler, this work uses feedback linearization348
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Figure 7: stabilized linearized system

strictly to estimate transition times for a continuous-time scheduling initialization for an overall349

nonlinear problem.350

The relevant difference between initial and target states is fed in as the reference signal sstep to351

calculate the transition durations. A function of the form352

ttrans = α · log(sstep) + β (24)

is fit to simulated transition times from a range of sstep to give a closed form and computationally353

light solution for finding the transition time in the estimated CSTR system. This feedback lineariza-354

tion method is expected to scale to larger systems with negligible computational requirements.355

3.1.3. Continuous-Time to Discrete-Time Transpose356

The solution to the continuous-time optimization provides a schedule that includes slot start357

times tss and slot end times tfs as well as product assignment to each slot as determined by zi,s.358

This continuous-time schedule determines the initialization of both the binary variable Bi,t and the359

state variables x at each finite element. The initialization reduces the computational time required360

for the NLP solver at each iteration of combined scheduling and control. The initialization occurs361

according to the following algorithm:362

for each finite element (fe),363

iff zi,s = 1 and tss < tfe < tfs : (25a)

364

then Bi,fe = 1 and xfe = xi; (25b)
365

else Bi,fe = 0 (25c)

For each time slot in the continuous-time schedule [tss,t
f
s ], Bi,fe transposes the product as-366

signment (zi,s) to finite elements within that time segment. x is initialized to the appropriate367
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steady-state operating value (xi) corresponding with the product manufactured during a given slot368

as given by zi,s.369

4. Case Study370

This section presents the CSTR problem used to highlight the value of the formulation intro-371

duced in this work. While this system does not directly represent a specific industrial problem,372

the generic CSTR model is applicable in various industries from food/beverage to oil and gas and373

chemicals. This work details a general approach to combined scheduling and control and this model374

demonstrates the benefits on a generic system. Notable assumptions of a CSTR include: constant375

volume, well mixed and constant density.376

The model shown in Eqs. 26 to 29 is an example of an exothermic, first-order reaction of377

A⇒ B where the reaction rate is defined by an Arrhenius expression and the reactor temperature378

is controlled by a cooling jacket. The fluid in the cooling jacket undergoes an external, arbitrary379

cooling process where ∆Hcool is the effective cooling rate.380

dCA
dt

=
q

V
(CA0 − CA)− k0e

−EA/RTCA (26)

381

dT

dt
=

q

V
(Tf − T )− 1

ρCp
k0e

−EA
RT CA∆Hr −

UA

V ρCp
(T − Tc) (27)

382

dTc
dt

=
qcool
Vj

(Tcin − Tc) +
UA

VjρCp(T − Tc)
(28)

383

∆Hcool = ρCp.coolqcool(Tc − Tcin) (29)

In these equations, CA is the concentration of reactant A, CA0 is the feed concentration, q is the384

inlet and outlet volumetric flowrate, V is the tank volume (q/V signifies the residence time), EA385

is the reaction activation energy, R is the universal gas constant, UA is an overall heat transfer386

coefficient times the tank surface area, ρ is the fluid density, Cp is the fluid heat capacity, k0 is the387

rate constant, Tf is the temperature of the feed stream, CA0 is the inlet concentration of reactant388

A, ∆Hr is the heat of reaction, qcool is the flowrate of coolant, Vj is the volume of the cooling jacket,389

T is the temperature of reactor, Tc is the temperature of cooling jacket, Tcin is the temperature of390

cooling return line and Cp.cool is the cooling fluid heat capacity. Table 1 lists the CSTR parameters391

used.392
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Table 1: Reactor Parameter Values

Parameter Value

V 400m3

qcool/Vjacket 5hr−1

EA/R 8750K

UA
V ρCp

0.523hr−1

k0 1.8e10hr−1

Tf 350K

CA0 1mol/L

∆Hr

ρCp
−209Km

3

mol

393

In this example, one reactor can make multiple products by varying the concentrations of A394

and B in the outlet stream. The manipulated variables in this optimization are ∆Hcool and q. q is395

bounded by 100m3/hr ≤ q ≤ 120m3/hr and ∆Hcool is either bounded by 4MW or a diurnal max-396

imum cooling curve. The sample problem uses three products over a 48-hour horizon. The product397

descriptions are shown in Table 2, where the product specification tolerance is ±0.005mol/L.398

Table 2: Product specifications.

Product CA Max Demand Price

(mol/L) (m3) ($/10 m3)

1 0.35 1920 24

2 0.12 2880 27

3 0.25 2880 21

399

The only scheduling constraint used in this case study is demand, as shown in Equation 30.400

While these results use maximum demand (useful for situations like filling storage tanks rather401

than filling orders), it can easily switch to minimum demand by flipping the inequality.402

∫ t

0

Bi,t ≤ maxdemandi, ∀i (30)

The pseudo-binary variable approach is implemented via the following equations, with CA being403
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the process state variable relating to each product i:404

fi(CA) = h10log(1/h)/tol2(CA,i−CA)2 ∀i (31)

405

Bi(CA) ≤ fi(CA), Bi ∈ [0, 1] ∀i (32)

For continuous-time scheduling initialization, NMPC estimations of transition times are calcu-406

lated using the following objective:407

min
∆H,q,tf

J = (CA(tf )− CA,sp)TWsp(CA(tf )− CA,sp) + tfWtime

s.t. Eq. 26− 29

(33)

while feedback linearization estimates transition times with the following closed-form equation fit408

to feedback linearized process simulations:409

ttrans = 0.9853 · log(sstep) + 5.332 (34)

For a detailed derivation of Equation 34, the reader is directed to Appendix A.410

Four test cases were considered to develop the integration of time-based parameters:411

1. Static pricing and cooling constraints412

2. Static pricing, diurnal cooling constraint function413

3. Static cooling constraint, diurnal pricing function414

4. Diurnal pricing and cooling constraint functions415

Case 1 is the standard case with time-independent constraints that should largely replicate the416

results of a continuous-time, slot-based scheduling formulation. Results from cases 2 and 3 are417

summarized since their combined effects reappear in case 4.418

The dynamic diurnal cycles of energy price and effective cooling constraints are generalized by419

simple sinusoidal curves, as shown in Figure 8. The energy price varies from $10 per MWh during420

the day to $90 per MWh during the night, with the static price representing the average of $50421

per MWh. The effective cooling constraint represents the amount of cooling done that affects the422

system; in other words, the cooling done minus losses to the environment, etc. Therefore, the higher423

ambient temperature during the day reduces effective cooling to the reactor because of heat loss to424

the environment, while more cooling is possible during the colder night. This consideration allows425
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the system to account for demand response in the optimization, leveraging the abilities to account426

for dynamic constraints and parameters in the discrete-time dynamic optimization problem.427
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Figure 8: Plots of maximum effective cooling constraint and time-of-day pricing over 48 hours.

428

The objective function is formulated as follows:429

maximize

n∑
t

n∑
i

(qtΠiBi,t)− Et

s.t. Process Model (Eqs. 26 - 29)

Scheduling constraints (Eq 30)

Pseudo-binary Eqs. (Eqs. 31 - 32)

(35)

4.1. Closed-loop Control430

Since this method uses the full process model of MPC with sufficiently fine time discretization,431

it can be used in closed-loop control. Once an adequate solution is reached using an initialization432

method above, the previous solution horizon provides the initialization for the next control move433

calculation. On rare occasions of sufficiently large disturbances, the previous solution may not be434

adequate for initialization and one of the above initialization strategies may be used once again.435

This work solves a simple closed-loop sample case over 24 of the 48 hour horizon. Further436

analysis of this method’s closed-loop strengths and challenges, including responses to more drastic437

disturbances of both control (e.g. sudden change in concentration) or scheduling (e.g. change in438

demand) parameters is a subject of future work.439
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The closed-loop implementation uses the same problem formulation as Equation 4. The selected440

linking function is Equation 7, which is generally the fastest method. The individual product441

demands are updated on each iteration based on real-time production numbers.442

5. Results443

The results of each of the four test cases are described below. The description for each case444

includes comparisons of the effects of strategies employed to reduce the computational requirements445

of the problem. Each case has 2 plots for each initialization scheme employed. The first plot shows446

the system state variables, and the second plot shows the maximum cooling constraint with the447

actual system cooling. In cases 2 and 4, the energy price curve is overlaid onto the plots, with448

the right axis showing price units. The description of each case also contains tables detailing the449

computational requirements and economic results for convergent cases.450

Although the relaxed psuedo-binary variables are capable of yielding non-integer values, they451

almost always come very close to integer values. There are occasional non-integer values, especially452

during transitions, but their overall effect is minor compared to the magnitude of the problem, the453

uncertainty of a 48 hour schedule and plant-model mismatch. To remove the effects of intermediate454

values, the results are post-processed and the reported profits include only on-spec production.455

Each problem is solved on an Intel i7 CPU-6700 at 3.40 GHz. The continuous-time schedul-456

ing problems are solved using the COUENNE branch-and-bound MINLP solver [77], the NMPC457

transition time estimations are solved with the APOPT MINLP solver [72], and the discrete-time458

integrated problems are solved with the IPOPT NLP solver [71]. The discrete-time problems are459

discretized over 200 finite elements with one collocation point within each finite element. Each460

problem is formulated using the Pyomo modeling language [78, 79]. Pyomo is designed for ultimate461

flexibility rather than solution speed [80]. The flexibility is useful for exploring these initialization462

strategies, but Pyomo is not recommended for time-sensitive solutions. Thus, the case study is463

replicated in GEKKO to compare solution speeds.464
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Figure 9: Case 1: No initialization employed, reached max iterations.
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Figure 10: Case 1: Initialized by continuous-time scheduling with NMPC-estimated transition times.
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Figure 11: Case 1: Initialized by continuous-time scheduling with NMPC-estimated transition times.

Case 1: Static Pricing and Cooling Constraints465

Table 3: Computational Requirements: Case 1

Initialization Initialization Discrete Problem Total

Scheme CPU time (s) CPU time (s) CPU time (s)

None 0 > 10, 000 > 10, 000

Continuous-time (linear) 0.18 619 619

Continuous-time (NMPC) 0.60 921 922

466
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Table 4: Economic Summary: Case 1

Initialization Product Production (m3) Profit

Scheme 1 2 3 ($)

Continuous-time (linear) 1752 2866 559 3538

Continuous-time (NMPC) 1780 2839 559 3541

467

As shown in Figures 9-11, case 1, the standard case with time-independent constraints of static468

price and static cooling, maximizes the production of product 2 for all initialization schemes em-469

ployed because of its high price. Production of product 3 is minimized due to its low price. Product470

1 sells at an intermediate price and is therefore produced during the remainder of the fixed hori-471

zon duration. The production order is selected to minimize transition times by stepping down to472

products with incrementally lower concentrations.473

The benefits of initialization are demonstrated by the orders of magnitude in computational474

time reduced by applying continuous-time initialization to the problem. Effective continuous-time475

scheduling initialization guides the discrete-time problem to find the optimal solution, whereas the476

non-initialized problem fails to converge within reasonable time. The non-optimal result of the non-477

initialized problem after maximum iterations is shown in Figure 9 for comparison. The problem478

reaches a local minimum, producing a large amount of each product but creating a sub-optimal479

schedule with more transitions than necessary.480

As expected, the feedback linearization estimations of transition times provide a reduction in481

initialization CPU time by roughly 60%, compared to the NMPC method. However, the CPU482

time required for initialization is negligible with respect to the overall problem. The economic483

results of the variations in continuous-time scheduling initializations vary only negligibly; however,484

continuous-time scheduling initialization with feedback linearization requires the least computa-485

tional time.486
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Figure 12: Case 2: Initialized by continuous-time scheduling with NMPC-estimated transition times.

Case 2: Static pricing, Diurnal Cooling Constraint Function487

Table 5: Economic Summary: Case 2

Initialization Product Production (m3) Profit

Scheme 1 2 3 ($)

Continuous-time (NMPC) 1777 2851 909 4010

488

The diurnal cooling constraint curve applied in case 2 allows product 2 to be produced at a489

higher rate compared to case 1. The production rate is decreased during the hottest part of the490

day, but reaches the lower production rate of case 1 for only a brief period. Further, the transitions491

between products occur more quickly when the max cooling constraint is higher because of the492

extra cooling (especially the transition between products 3, CA=0.25, and 2, CA=0.12).493

The overall profit for Case 2 increases ˜13% over case 1 for convergent continuous-time initial-494

ization. This shows the value of considering time-dependent constraints in combined scheduling and495

control and further justifies a discrete-time formulation because of the ease with which it can apply496

these constraints. Continuous-time formulations require steady-state conditions during production497

slots, which eliminates the possibility of considering time-dependent parameters as demonstrated498

in this work.499

CPU time requirements for convergent continuous-time initialized problems decrease by over500

50% compared to case 1. This demonstrates the extra effort required by the optimization algorithms501

to find an optimal solution while meeting the restrictive, fixed cooling constraint in case 1.502
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Figure 13: Case 3: Initialized by continuous-time scheduling with NMPC-estimated transition times.

Case 3: Static Cooling Constraint, Diurnal Pricing Function503

Table 6: Economic Summary: Case 3

Initialization Product Production (m3) Profit

Scheme 1 2 3 ($)

Continuous-time (linear) 1754 2836 489 3400

Continuous-time (NMPC) 1919 2810 370 3482

504

Case 3 largely follows case 1, except that production rates decrease when energy prices peak.505

Energy costs too much during these times, so the optimization minimizes production rate (q) to506

the lower bound of 100 m3/hr. Also, transitions between products occur at slightly different times507

to compensate for different production rates and to transition during times of cheaper energy.508

The profit in this case for the continuous-time initialized problems decreased slightly (˜3%)509

from case 1 due to high energy prices, since this case considers realistic dynamic pricing. Again,510

time-dependent parameters are shown to be worth considering.511

Effective continuous-time scheduling initialization once again guides the discrete-time problem to512

find the optimal solution, whereas the non-initialized problem ends at a local minimum, producing513

a large amount of each product but creating a sub-optimal schedule with more transitions than514

necessary. CPU time requirements for initialized problems increase by approximately 40% compared515

to Case 1, demonstrating the extra effort exerted by the optimization algorithm to find the optimal516

solution with dynamic pricing parameters.517
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Figure 14: Case 4: No initialization employed.
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Figure 15: Case 4: Initialized by continuous-time scheduling with NMPC-estimated transition times.

Case 4: Diurnal Pricing and Cooling Constraint Functions518

Table 7: Computational Requirements: Case 4

Initialization Initialization Discrete Problem Total

Scheme CPU time (s) CPU time (s) CPU time (s)

None 0 > 10, 000 > 10, 000

Continuous-time (linear) 0.18 > 10, 000 > 10, 000

Continuous-time (NMPC) 0.60 571 572

519

Table 8: Economic Summary: Case 4

Initialization Product Production (m3) Profit

Scheme 1 2 3 ($)

Continuous-time (NMPC) 1778 2820 816 3863

520

Case 4 implements the positive effects of case 2 as well as the peak energy prices of case 3 —521

the transitions occur at different places, production rate of product 2 is maximized and production522

at peak energy prices is decreased (Figures 14-15). Transitions occur more quickly during periods523
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of higher maximum cooling. The overall profit increases by approximately 10% over the base case524

(Case 1) for the convergent initialized problem, but is still lower than Case 2 due to the effects of525

peak energy prices (Table 8).526

The CPU requirement of the convergent initialized problem are similar to that of Case 2, but527

lower than those of Cases 1 and 3 (Table 7). This demonstrates the additional effort required by528

the optimization algorithm to find an optimal solution with a restrictive, fixed constraint versus a529

dynamic constraint. The benefits of continuous-time scheduling initialization are again reiterated by530

the orders of magnitude reduced in computational time required and by the guidance to the optimal531

solution rather than a local minimum. As in Case 2, the continuous-time scheduling initialization532

with NMPC estimations converges whereas the linearized initialization fails to converge.533

5.1. GEKKO Solutions534

As previously mentioned, Pyomo is designed for flexibility rather than speed. This section535

reimplements the SC problem in the GEKKO modeling language, which specializes in robust, quick536

solutions to dynamic optimization problems. Pyomo and GEKKO have some structural differences,537

especially in the way each handles orthogonal collocation. To replicate the same degrees of freedom538

used in Pyomo, GEKKO solutions use 400 finite elements with no internal nodes.539

All 12 GEKKO solutions converged in under 10,000 seconds and all profit results are within 4%540

difference of the converged Pyomo results reported. The time results from GEKKO are shown in541

Table 9 and the profit results are shown in Table 10.542

Table 9: Computational Requirements: GEKKO

Initialization Case 1 Case 2 Case 3 Case 4

Scheme CPU time (s) CPU time (s) CPU time (s) CPU time (s)

None 193 187 278 362

Continuous-time (linear) 137 111 191 152

Continuous-time (NMPC) 129 103 187 155

543

For the six cases in which Pyomo did not reach a solution in under 10,000 seconds, GEKKO544

reached a solution in an average time of 214 seconds. In the 6 cases that both Pyomo and GEKKO545

reached a solution, Pyomo took an average of 793 seconds while GEKKO took an average of 150546

seconds – about 5 times faster.547

Using GEKKO, the uninitialized problems reached local minima that were worse than the solu-548

tions from initialized cases, confirming the value of the initialization techniques. Unlike in Pyomo,549
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linear and nonlinear initializations achieved the same solution but the nonlinear initialization proved550

slightly faster on average.551

Table 10: Profit Results: GEKKO

Initialization Case 1 Case 2 Case 3 Case 4

Scheme Profit Profit Profit Profit

None 3598 3835 2942 3575

Continuous-time 3618 3975 3488 3995

552

Closed-loop Simulation553

The previous cases demonstrate this method’s ability to provide a detailed schedule, including554

considering time-dependent parameters such as energy cost and effective cooling constraints. How-555

ever, this method is also capable of closed-loop control without modification because it utilizes a556

full dynamic process model and can begin with any initial conditions. In this capacity, this for-557

mulation can overcome process disturbances of short-time scales with economic consideration of558

multiple products.559

The previous results used Equation 9 for flexibility and the best solution. This section uses560

Equation 7 and GEKKO for speed in online control. Under these new conditions, and with the561

highly detailed solution of the previous time-step as initialization, each closed-loop solution at every562

5 minute interval solved fast enough for real-time. A summary of solution times is provided in Table563

11.564

Table 11: Closed-Loop Time Summary

Time Horizon (hr) Control Move Total Solver Time (hr) Solutions Average Solution Time (s)

24 5 min 8.39 288 105

565

Summarized Results566

Table 12: Initialization Comparison

Initialization Profit ($) Profit ($) CPU time (s) CPU time (s)

Scheme Pyomo GEKKO Pyomo GEKKO

None NA 3487 > 10, 000 255

Continuous-time (linear) 3469 3769 586 (2 converged) 148

Continuous-time (NMPC) 3724 3769 897 (4 converged) 144

567
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Table 13: Case Comparison

Case Profit ($) Energy Pricing Cooling Constraint

1 3541 Static Static

2 4010 Static Dynamic

3 3482 Dynamic Static

4 3863 Dynamic Dynamic

568

Table 12 shows profit and CPU requirements of each initialization scheme, averaged across all569

convergent cases, to make an overall comparison between initialization schemes. Table 13 displays570

the profit for continuous-time scheduling initialization with NMPC estimated transition times (the571

only initialization scheme convergent for all cases) to demonstrate the effects of diurnal constraints572

and parameters on combined scheduling and control optimization.573

In summary, time-dependent constraints affect the profit, optimal schedule, and optimal control574

or operation of a chemical process. These considerations can have a significant economic impact,575

with diurnal constraints increasing profits ˜13% from the base case in this example. It is antici-576

pated that, under the right circumstances, the scheduler may go so far as to switch products in577

response to these diurnal cycles, forcing extra transitions that would not be possible in current578

implementations of slot-based combined scheduling and control formulations, where the number of579

slots frequently equals the number of products. In other cases, the scheduler may order products580

differently with time-based constraints in consideration. Further, this method is easily applied to581

other time-dependent parameters beyond diurnal cycles, such as feed stock price predictions. These582

explorations are the subject of future work.583

The discrete-time formulation is shown to be a feasible and effective method to account for time-584

dependent parameters and constraints in combined scheduling and control. The positive effects of585

continuous-time scheduling initialization have been demonstrated. Convergent continuous-time586

scheduling initialization decreases computational requirements on average by approximately 15587

times. The method for estimating transition times in the continuous-time scheduling initialization588

is found to be significant in determining the convergence of the discrete-time SC problem. NMPC589

estimations are found to be more consistent for initializing the nonlinear discrete-time formulation590

and are found to guide the solution to more optimal solutions. Even with the effective NMPC591

initialization, the full MINLP did not solve successfully in under 10,000 seconds using the APOPT592

or Bonmin solvers.593
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6. Conclusion594

This work applied a nonlinear discrete-time formulation for combined scheduling and control.595

This method provided a schedule of sequential products using the full model dynamics through the596

entire horizon. The discrete-time formulation easily allowed the implementation of time-dependent597

parameters and constraints. This work applied time-dependent parameters of diurnal cycles of598

energy price and maximum effective cooling of a CSTR. This optimization improved open-loop599

scheduling profit prediction by 13% over the base scenario. This work implemented a pseudo-binary600

approach to assist gradient-descent solvers in finding the optimal solution to an inherently mixed-601

integer problem. This work also leveraged continuous-time scheduling with different methods to602

estimate transition times to calculate an optimal schedule order and schedule timing to initialize the603

discrete-time problem. Continuous-time scheduling with nonlinear estimations of transition times604

consistently decreased the computational requirements of the nonlinear discrete-time problem by605

many orders of magnitude.606

This work motivates continued investigation into discrete-time formulations and time-dependent607

parameters in considering both transitions and product manufacturing. In particular, the pseudo-608

binary approach should be implemented as part of an interior point solver. As this method matures,609

other objectives, such as on-time delivery should be incorporated in the objective. Additionally, ac-610

counting for product inventory, closed-loop implementation, and accounting for process and market611

uncertainties should be addressed in future work as this method matures.612

Acknowledgments613

Financial support from the NSF Award 1547110, EAGER: Cyber-Manufacturing with Multi-614

echelon Control and Scheduling, is gratefully acknowledged.615

References616

[1] Z. Y. Soderstrom, T.A., J. Hedengren, Advanced Process Control in ExxonMobil Chemical617

Company: Successes and Challenges, in: CAST Division, AIChE National Meeting, Salt Lake618

City, UT, 2010.619
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AppendixA. Feedback Linearization Estimation: Derivation887

A linear system y = f(x, u) has the property that f(x, u0 + u1) = f(x, u0) + f(x, u1). This888

means that the response of the system to the initial input u0 can be decoupled from that of the889

step size u1. Using this formulation, a closed-form solution for the transition time given a step size890

can be estimated to avoid preprocessing time and space.891

According previous research [74], any system of the form892

ẋ = f(x) + g(x)u

y = h(x)
(A.1)
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can be feedback linearized. In the present example, this means (substituting CA = x1, T = x2, and893

Tc = u in Eqs. 26-27)894

dx1

dt
= 5− 5x1 − 1.8 · 1010x1e

−8750/x2

dx2

dt
= 1750− 5.52x2 + 3.77 · 1012x1e

−8750/x2 + 0.523u

(A.2)

f(x) =

 5− 5x1 − 1.8 · 1010x1e
−8750/x2

1750− 5.52x2 + 3.77 · 1012x1e
−8750/x2

 ,
g(x) =

 0

0.523

 , h(x) = x1

(A.3)

To linearize the output y in terms of an input v that shapes u, an input-output representation895

of the system is found by taking the 1st and then 2nd time derivative of y.896

ẏ =
dh

dt
=
∂h

∂x

dx

dt

=
∂h

∂x
(f(x) + g(x)u)

=
∂h

∂x
f(x)

(A.4)

since ∂h
∂x = [1 0] and g(x) = [0 0.523]T , and therefore ∂h

∂xg(x) = 0. Leveraging (A.4), ÿ can now be897

solved for:898

ÿ =
d

dt
ẏ =

d

dt

∂h

∂x
f(x)

=
∂h

∂x

df

dt
=
∂h

∂x

∂f

∂x

dx

dt

=
∂h

∂x

∂f

∂x
(f(x) + g(x)u)

= L2
fh(x) + LgLfh(x)

(A.5)

where Lfh(x) = ∂h
∂xf(x) is known as the Lie derivative of h with respect to f , and L2

fh(x) =899

LfLfh(x). Solving equation (A.5) for u yields:900

u =
1

LgLfh(x)

(
− L2

fh(x) + ÿ
)

(A.6)
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Figure A.16: feedback linearized system

Therefore, letting v = ÿ the system can be structured as in Figure A.16, where901

K1 : w = −L2
fh(x)

K2 : u =
v

LgLfh(x)

(A.7)

Since v = ÿ, the input-output behavior of the closed-loop system inside the dotted box is the902

same as a double integrator, and is thus a linear system. According to Khailil et al. (1996) [74],903

the new state vector z for this system is given by:904

z =

 h(x)

Lfh(x)

 =

 x1

5− 5x1 − 1.8 · 1010x1e
−8750/x2

 (A.8)

With 2 poles on the imaginary axis, the linearized system is marginally stable. In order to905

compensate for this, a stabilizing controller is needed. One such controller is given by the following906

transfer function907

K3(s) = 27.193
50s+ 100

s+ 50
(A.9)

and used in feedback with the standard servo architecture shown in Figure 7. Using this configura-908

tion, the transition times can be calculated by simply knowing the difference between the starting909

and end values, or the step size in r. This is a key advantage to linearizing the system in this way.910

Without a linearized system, a large number of transition times would need to be known a priori911

in order to give the scheduler a comprehensive list. A linearized system only needs to know the912
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Figure A.17: Actual transition times compared to the log function approximation. The approximation works excep-

tionally well.

increase or decrease of the step response to compensate for the transition time, regardless of the913

current state.914

In order to give the scheduler a complete list of transition times, a function approximation with915

respect to step size is created. Figure A.17 shows such an approximation. The transition time is916

determined through simulation for a set of step sizes and then fit to a logarithmic function. The917

result is the following:918

ttrans = 0.9853 · log(sstep) + 5.332 (A.10)

where ttrans is the transition time and sstep is the step size, or difference between starting and919

ending values. Note here that the transition time is the time for y to settle to within 0.005 of the920

steady state value.921

Thus by linearizing the CSTR system, transition times can be found using Equation (A.10).922

These transition times can then be used by the continuous-time scheduler to create an optimal923

schedule for initialization.924
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