Fitting ALS Reflectance Data Using Python

R. Steven Turley
Brigham Young University, turley@byu.edu

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

Part of the Physics Commons

BYU ScholarsArchive Citation
Turley, R. Steven, "Fitting ALS Reflectance Data Using Python" (2018). Faculty Publications. 2099. https://scholarsarchive.byu.edu/facpub/2099

This Report is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact ellen_amatangelo@byu.edu.
Fitting ALS Reflectance Data using Python, Version 1.0

R. Steven Turley

April, 2018

Contents
1. Introduction ... 2
 1.1. Python ... 2
 1.2. Fitting Steps ... 2
 1.3. Refl Module ... 2
2. Reading Raw Data Files 3
 2.1. Log class .. 3
 2.2. Run class ... 4
 2.3. Runs class ... 4
3. Creating Reflectance Spectra 5
 3.1. Creating a Single Spectrum 5
 3.2. Combining Spectra 6
4. Fitting the Data ... 6
 4.1. Mirror Model ... 6
 4.2. Index of Refraction 8
 4.3. Create Fit Function 8
 4.4. Weights .. 9
 4.5. Fit .. 9
 4.6. Discussion of Results 11
 4.7. Improved Model 13
5. Finding Average Values 15
6. Refitting Data .. 15
A. Complete Python Code 15
1. Introduction

This report explains how to use Python to fit reflectance data taken in Beamline 6.3.2 at the Advanced Light Source at Lawrence Berkeley National Lab. It is based on some classes I wrote to make the processes somewhat easier.

1.1. Python

If you don’t already know at least a little Python, I would suggest reading a python tutorial before reading this. I’ll explain things a little bit along the way, but the purpose of this document is more about fitting the data than about learning Python.

1.2. Fitting Steps

There are a couple of steps to the fitting process:

- reading in raw data
- combining raw data files to compute $\frac{\theta}{2}$ spectra
- fitting the $\frac{\theta}{2}$ spectra to theoretical curves
- combining the fits to derive average data values
- refitting the data with average data values.

1.3. Refl Module

The library routines and classes you’ll need to do the fitting are in the file `refl.py`. Before using these routines and classes, you’ll need to import with the entire module

```python
import refl
```

or the specific items you need from the module.

```python
from refl import Spectrum, Index, Parratt
```

The `refl` module contains the following items:

- `matR`: a function to calculate reflectance and transmittance from a multilayer mirror using matrices. It is slower than Parratt if you only want the reflectance.

- `Parratt`: a function to calculated reflectance from a multilayer mirror.

- `fracs`: a function to calculate the fraction of s-polarized light in the synchrotron beam at the ALS. This is mostly used internally.

- `Index`: a class returning the complex index of refraction for a material.

- `Run`: a class with the raw data from a run.
Runs a cache of all of the run data from an ALS trip. Runs[i] is the Run numbered i.

Reflectance a class with computed reflectance from a set of runs.

Log a class with information from the log file saved with a set of runs.

2. Reading Raw Data Files

Raw data files from the ALS consists of a header line with data information followed by four columns of numbers:

- **var** the data being varied during the measurement. For $\theta/2\theta$ measurements (our most common ones), this is the measurement angle. For I_0 measurements, this is the wavelength. For dark current measurements, this is usually the time.

- **diode** the signal from the diode detector

- **m3** the signal from the m3 mirror (usually ignored)

- **beam** the beam current during the run (also usually ignored)

There are three classes in refl which manage these data files for you.

2.1. Log class

The Log class parses the log file with information about each run. The command

```python
log = Log('..//ALSdata', 'Feb2018')
```

will read the log file in the directory `..//ALSdata` with the name `Feb2018.log` and store it as the log object. There are various attributes stores as arrays in object.

- **filename** the filename for the run
- **fullname** the complete filename with path for the run
- **comment** the comment stored with the run
- **date** the date of the run
- **time** the time of the run
- **gain** the log (base 10) of the gain for this run
- **wavelength** the wavelength in run (usually) for this run

Some of this information is copied to Run objects when they are created.
2.2. Run class

A Run object has the raw data for a single run. It is usually accessed from the Runs class rather than directly. This permits read caching. It has the four attributes mentioned above for each run (stored as np.array objects) as well as the wavelength, comment, and gain from the log file. The Run class has a plot method defined which will plot the data for a run using the comment as the plot title. Figure 1 was generated using the following command:

\[
\text{runs}[102].\text{plot()}
\]

![Figure 1: raw data from run 102](image)

2.3. Runs class

The Run objects are returned by the Runs class which reads the files when needed and caches their contents for subsequent calls. After executing

\[
\text{runs = Runs(log)}
\]

the individual run information can be accessed as \text{runs\[runum\]} where runum is the run number. Thus, the gain for run 11 would be \text{runs[11].gain}.
3. Creating Reflectance Spectra

Reflectance spectra are created with the Reflectance class by combining various runs to find \(I, I_0 \), and associated gains, and the associated dark currents.

I will illustrate how this is done by creating two single spectra and then combining and filtering them. I’ve used the data taken on Feb 24, 2018 at the Advanced Light Source for sample 180221A at 18 nm as the example.

3.1. Creating a Single Spectrum

The first step is to import the libraries needed for the analysis. We will refl for this library, numpy for finding the mean of arrays, matplotlib to plot the results, and scipy for the fitting routine.

```python
import refl
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
```

Next we need to create a Log and Runs objects with the data from the run.

```python
log = refl.Log('..ALSdata', 'Feb2018')
runc = refl.Runs(log)
```

The next step is to create a tuple of dark currents from the run. The dark currents were in runs 101 (gain 7), 98 (gain 8), 99 (gain 9), and 100 (gain 10). The dark current is computed as the mean diode signal for a dark current run.

```python
d7 = np.mean(runc[101].diode)
d8 = np.mean(runc[98].diode)
d9 = np.mean(runc[99].diode)
d10 = np.mean(runc[100].diode)
dark = (d7, d8, d9, d10)
```

There were three runs with \(\theta/2\theta \) data for this sample at 18 nm. Run 119 was taken with a lower gain than runs 120 and 121. Runs 120 and 121 don’t have any data for the lowest angles. I’ll create separate spectra for these two sets of runs to make it easier to filter and combine them. The \(I_0 \) data for this filter and sample is in run 97.

```python
s18a = refl.Reflectance((runc[119], runc[97], dark)
plt.figure()
plt.semilogy(s18a.ang, s18a.rfl)
plt.title('Spectrum 18a')
s18b = refl.Reflectance((runc[120], runc[121], runc[97], dark)
plt.figure()
plt.semilogy(s18b.ang, s18b.rfl)
plt.title('Spectrum 18b')
```

The plot commands in the above listing produced the plots in Figures 2 and 3.
Figure 2: reflectance data from run 119

3.2. Combining Spectra

By looking at the the raw data, I decided that the best data for angles of 18° or less is run 119 and the best data for angles greater than 18° is the combination of runs 120 and 121. To combine the runs, I filtered spectrum s18a to only have angles up to 18°. I also eliminated the angles less than two degrees where it is unreliable. I filtered the spectrum 18b to only include the data for angles greater than 18°. I then added the two spectra together to get a combined spectrum s18 which is shown in Figure 4.

\[s18 = s18a \cdot \text{filter}(2,18) + s18b \cdot \text{filter}(18.05,80) \]

\[s18 \cdot \text{plot}() \]

4. Fitting the Data

Once we have the reflectance spectrum, we need to find the materials properties that provide the best match between our reflectance measurements and theoretical calculations. We call this process data fitting.

4.1. Mirror Model

Based on our fabrication process and the measurements we made prior to going to ALS, we think this sample has a thick Si₃N₄ substrate followed by a layer of Al and AlF₃. We are not sure about the thickness of the Al or AlF₃ layers, but we think the have respective
thicknesses of 8 nm and 26 nm. To start with we will assume the Al is unoxidized and has a complex index of refraction given by the data file in volta.

The refl library has two routines for computing reflectance, **Parratt** and **matR**. We’ll use **Parratt** for this example since we only care about reflectance and not about transmittance in this case. The **Parratt** function takes the following arguments.

- **n** a numpy array with the index of refraction of the various layers. It starts with the index of refraction of the incident layer (which is a vacuum in our case) and works its way down to the substrate.

- **x** a numpy array with the thicknesses of each mirror layer in nanometers. The thickness of the incident (vacuum) layer and substrate layers should be set to 0. This is because we are interested in the field right at the interface; not after it has penetrated into those layers.

- **thetad** the incident angle measured from grazing in degrees

- **lam** the wavelength in nanometers

- **frs** the fraction of s-polarization in the beam. If left to its default value of 0, the Gullikson formula is used.

- **sigma** an array or tuple with the rms roughness of each interface measured in nm. They should be in the same order as the layers themselves. There is one less interface than layers, so this array will be one smaller than the **n** and **x** arrays.

Figure 3: reflectance data from combining runs 120 and 121
4.2. Index of Refraction

We will look up the index of refraction (either as starting guesses or assumed exact values) from tables we store on the volta server. The Index class in refl will read these values in these tables from volta. They have an at function which interpolates between the values in these tables to estimate the index of refraction at our desired wavelength. This code creates Index objects for AlF$_3$, Al, and Si$_3$N$_4$.

```python
# index objects
AlF3Index = refl.Index("AlF3")
AlIndex = refl.Index("Al")
Si3N4Index = refl.Index("Si3N4")

# interpolated values at 18 nm
alf3ndx = AlF3Index.at(s18.wavelength)
alndx = AlIndex.at(s18.wavelength)
si3n4ndx = Si3N4Index.at(s18.wavelength)
```

4.3. Create Fit Function

The `curve_fit` function will call a function we need to write to compute the theoretical reflectance using the current value of the parameters it is trying to fit. The function will have the desired angles as its first argument and successive parameters values as subsequent arguments. Our parameters for this first fit will be the read and imaginary
parts of the AlF₃ index of refraction (n and k), the thickness of the AlF₃ layer (tf), and the thickness of the Al layer (ta).

```python
def f(thr, n, k, tf, ta):
    ndx = np.array([1+0j, n+k*1j, alndx, si3n4ndx])
    th = np.array([0, tf, ta, 0])
    sigma = (1.0, 0, 0);
    return [refl.Parratt(ndx, th, thetad, s18.wavelength, 0, sigma) for thetad in thr]
```

The function uses the passed parameters to set up the index of refraction array and the thickness array for the call to Parratt. Parratt is then called to compute the reflectance with these parameters at the passed values for theta. If we want to fit different parameters, we’ll have to edit this function because its calling arguments will change.

4.4. Weights

Because of the wide range of values covered by the reflectance and the obvious noise floor at the highest angles, it is important to use a weighted fit. The challenge, which involves as much art as science, is to choose a reasonable set of weights. Based on experience and other studies, I’m inclined to use a weight with two components in quadrature. The first will be an exponentially decreasing function whose log has the same slope as the average log of the slope of the data. The second term will be a constant value with a magnitude of the lowest data points.

\[
\sigma_i = \sqrt{\sigma_p^2 + \sigma_c^2} \quad (1)
\]

\[
\sigma_p = \alpha \exp(-\beta \theta_i) \quad (2)
\]

\[
\sigma_c = \gamma \quad (3)
\]

I’ll start with \(\alpha = 0.05\), \(\beta = 0.097\), and \(\gamma = 5 \times 10^{-5}\). I chose \(\alpha\) of this size because a 5% error seems like a good starting guess. \(\beta\) was chosen by eyeballing the slope of the data in Figure 4 and estimating the average slope of the data. \(\gamma\) was chosen by estimating the size of the noise around the lowest data points near 70°. Here is the Python code to implement this.

```python
alpha = 0.2
beta = 0.097
gamma = 5e-5
sigmap = np.array([alpha*np.exp(-beta*th) for th in s18.ang])
sigmac = gamma
sigmaw = np.sqrt(sigmap**2+sigmac**2)
```

4.5. Fit

The last thing we need for the fit are starting guesses for the fir parameters. I used approximated values of \(n\) and \(k\) from the table values in volta. This thickness estimates
came from information supplied by David Allred from ellipsometry data. These are stored in the array \(p_0 \).

\[
p_0 = \text{np.array([0.95, 0.025, 8, 26])}
\]

Finally, the `curve_fit` routine is called using the above parameters.

\[
p_{\text{opt}}, p_{\text{cov}} = \text{curve_fit}(f, s18.ang, s18.rfl, p_0, \text{sigma w},
\quad \text{absolute sigma=False})
\]

It has the following arguments:

- \(f \): the function to compute the reflectance given the parameters
- \(s18.ang \): the angles at which the reflectance was measured
- \(s18.rfl \): the measured reflectance
- \(p_0 \): the initial values of the fit parameters
- \(\text{sigma w} \): the weight for each point
- \(\text{absolute sigma} \): whether the weight should be considered as the

\(p_{\text{opt}} \) returned value of the optimum parameters

\(p_{\text{cov}} \) returned value of the estimated covariance matrix absolute uncertainty or a relative value. For this initial fit where I do not yet know the residual, using a relative value makes sense.

Figure 5 shows the results of this fit and the value of \(\text{sigma w} \) I used. The elements of \(p_{\text{opt}} \) are the returned valued of the optimal fit parameters. The diagonal elements of the covariance matrix in \(p_{\text{cov}} \) give the estimated uncertainty in these parameters. This code will print these values.

\[
\text{print('n = ' + str(round(p_{\text{opt}}[0],4)) + '+/-' + str(round(np.sqrt(p_{\text{cov}}[0,0]),4))})
\]

\[
\text{print('k = ' + str(round(p_{\text{opt}}[1],4)) + '+/-' + str(round(np.sqrt(p_{\text{cov}}[1,1]),2))})
\]

\[
\text{print('tf = ' + str(round(p_{\text{opt}}[2],2)) + '+/-' + str(round(np.sqrt(p_{\text{cov}}[2,2]),2))})
\]

\[
\text{print('ta = ' + str(round(p_{\text{opt}}[3],4)) + '+/-' + str(round(np.sqrt(p_{\text{cov}}[3,3]),2)))}
\]

This returns the following:

\[
n = 0.9784+/−0.0011
\]

\[
l = 0.0301+/−0.0
\]

\[
tf = 8.93+/−0.1
\]

\[
ta = 24.5396+/−0.21
\]
These are close to our original parameter guesses and have reasonable uncertainties. The code used to create the plot in Figure 5 is as follows.

```python
rfit = f(s18.ang, popt[0], popt[1], popt[2], popt[3])
plt.figure()
plt.semilogy(s18.ang, s18.rfl, '.', s18.ang, rfit, '-', s18.ang, sigma, '-r')
plt.title('Data and Fit')
plt.xlabel('grazing angle, deg')
plt.ylabel('reflectance')
plt.legend(['data', 'fit', 'sigma'])
```

The function \(f \) was called to compute the fit function using the optimal parameter values returned by `curve_fit`.

4.6. Discussion of Results

The fit shows there are some obvious problems with the model we used for our data. There is a relatively large difference between the depth of the first minimum near 10\(^\circ\). This is probably more than just an alignment error. Secondly, the minimum values in the measured data are not as deep as calculated by the model. For valleys which are this deep and with such large slopes, this can be due variations in thin film thickness over the size of the beam spot and the angular spread in the incident beam. Finally, the location of the interference minima don’t match the data very well. This is probably an artifact.
of our chosen weights and an error in the rest of the model. To understand the artifact in the weight, note that the weight at 20° is about 300 times larger than the fit minimum at that point. With our 5% guess in the uncertainty, this is well within the bounds of what we’d expect. We can force a better fit of these minima by having the weights be proportional to the measured data. Here is the code for a fit with those weights.

```python
sigmap = alpha * np.abs(s18 rfl)
sigmaw = np.sqrt(sigmap**2 + sigmac**2)
popt, pcov = curve_fit(f, s18 ang, s18 rfl, p0, sigmaw, absolute_sigma=False)
```

The fit is shown in Figure 6. The optimal fit parameters were

![Data and Fit](image)

Figure 6: fit for sample 180221A at 18 nm using weights proportional to the data

n = 0.9768 ± 0.0011
k = 0.0249 ± 0.0
 tf = 8.67 ± 0.1
 ta = 25.3344 ± 0.15

Note that forcing a better fit to the valleys brings the imaginary part of the AlF₃ index of refraction closer to the tabulated values.

We can check the value of β we chose by calculating

\[\chi^2 = \sum_i \left(\frac{f_i - y_i}{\sigma_i} \right)^2 . \] (4)
This should be approximately equal to the number of data points if β was chosen correctly (at least if the errors were statistical). With this code

$$\chi_2 = \text{np.sum}(((s18.rfl - rfit)/sigmaw)**2)$$

$$\text{print}\left(\text{''\chi^2 = ' + str(round(\chi_2,1)) + ' npt s = ' + str(np.size(sigmaw))}\right)$$

I get $\chi^2 = 941.7$ with 195 data points. This says an 11% error would have been a better guess of β than the 5% value I used.

4.7. Improved Model

It's probable that the Al was at least partially oxidized. We could put this in our model as the addition of an Al$_2$O$_3$ layer on top of the Al, or as an altered effective index of refraction for the Al. Let's try both and see which improves the fit the most. First we'll try fitting adding an additional oxide layer. The following code allows us to add an oxide layer and fit its thickness.

```python
Al2O3Index = refl.Index("Al2O3")
Al2O3ndx = Al2O3Index.at(s18.wavelength)
def f2(thr, n, k, tf, ta, to):
    ndx = np.array([1+0j, n+k*1j, Al2O3ndx, Alndx, si3n4ndx])
    th = np.array([0, tf, to, ta, 0])
    sigma = np.array([1.0, 0, 0, 0]);
    return [refl.Parratt(ndx, th, thetad, s18.wavelength, 0, sigma)
            for thetad in thr]
p0=np.array([0.95, 0.025, 8, 26, 1])
popt, pcov = curve_fit(f2, s18.ang, s18.rfl, p0, sigmaw,
                        absolute_sigma=False)
```

The fit indeed improves, as shown in Figure 7, but does so by requiring an unphysical value for the fluoride thickness.

$$n = 1.3424 +/-.0291$$
$$k = 0.1928 +/-.02$$
$$tf = 0.19 +/-.03$$
$$ta = 26.3502 +/-.14$$
$$to = 5.4362 +/-.0802$$

For this approach to work, we should find average values of the layer thickness as described in Section 5 and then refit using these average values as described in Section 6.

Let's see what happens if we allow the index of refraction of the Al layer to change rather than adding an oxide layer. Here is the code for that.

```python
def f3(thr, nf, kf, na, ka, tf, ta):
    ndx = np.array([1+0j, nf+kf*1j, na+ka*1j, si3n4ndx])
    th = np.array([0, tf, ta, 0])
    sigma = np.array([1.0, 0, 0, 0]);
```
Figure 7: fit for sample 180221A at 18 nm using an Al$_2$O$_3$ layer

$$\text{return } \text{refl.Parratt(ndx,th,thetad,s18.wavelength,0,sigma)}$$

for thetad in thr

p0=np.array([0.95, 0.025, alndx.real, alndx.imag, 8, 26])

popt, pcov = curve_fit(f3, s18.ang, s18.rfl, p0, sigmaw, absolute_sigma=False)

As shown in Figure 8, this improves the fit a lot for the low angles, although the fit at the highest angles is still problematic. Here are the fit values.

nf = 0.9809+/−0.0008
kf = 0.036+/−0.0008
na = 1.0019+/−0.0004
ka = 0.0011+/−0.0004
tf = 8.82+/−0.0675
ta = 25.2063+/−0.1068

The fit constants are physically reasonable when we note that the index of refraction of Al at 18 nm is 1.0087 + 0.0024i. The best model of the mirror in the end will probably use a fitted value for the Al index of refraction to compensate for the fact that our Al probably isn’t perfect and a thin oxide layer as well.
5. Finding Average Values

The thickness of the mirror films should change with wavelength, the the index of refraction of the mirror layers will. The best overall strategy for fitting the data would be to fit the thickness at multiple wavelengths and then use an average thickness as characteristic for all layers. then we should go back and refit the data keeping the thicknesses constant (or maybe only varying the thickness of the Al2O3 layer). By thus iterating, we should get a better physical model.

I’ll complete this section after a student goes through and actually does these fits as suggested for the rest of the wavelengths we measured.

6. Refitting Data

This section will have the results of the final fits when we’ve only fit the index of refraction and kept the layer thicknesses the same for all samples.

A. Complete Python Code

This is the complete python code I used for the analysis described here.

```python
# -- coding: utf-8 --
```

Figure 8: fit for sample 180221A at 18 nm using an Al₂O₃ layer
import refl
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import import curve_fit

log = refl.Log('..\ALSdata', 'Feb2018') # NSF computer
log = refl.Log() # BYU Computer
runs = refl.Runs(log)

dark current calculation

d7 = np.mean(runs[101].diode)
d8 = np.mean(runs[98].diode)
d9 = np.mean(runs[99].diode)
d10 = np.mean(runs[100].diode)
dark = (d7, d8, d9, d10)

s18a = refl.Reflectance((runs[119],), runs[97], dark)
plt.figure()
plt.semilogy(s18a.ang, s18a.rfl)
plt.title('Spectrum 18a')
s18b = refl.Reflectance((runs[120], runs[121]), runs[97], dark)
plt.figure()
plt.semilogy(s18b.ang, s18b.rfl)
plt.title('Spectrum 18b')

s18 = s18a.filter(2, 18) + s18b.filter(18.05, 80)
s18.plot()

index objects
AlF3Index = refl.Index("AlF3")
AlIndex = refl.Index("Al")
Si3N4Index = refl.Index("Si3N4")

interpolated values at 18 mm
alf3ndx = AlF3Index.at(s18.wavelength)
alndx = AlIndex.at(s18.wavelength)
si3n4ndx = Si3N4Index.at(s18.wavelength)
def f(thr, n, k, tf, ta):
 ndx = np.array([1 + 0j, n + k * 1j, andx, si3n4ndx])
 th = np.array([0, tf, ta, 0])
 sigma = np.array([1.0, 0, 0, 0]);
 return [refl.Parratt(ndx, th, thetad, s18.wavelength, 0, sigma)
 for thetad in thr]

alpha = 0.2
beta = 0.097
gamma = 5e-5
sigmap = np.array([alpha*exp(-beta*th) for th in s18.ang])
sigmaw = np.sqrt(sigmap**2+sigmac**2)
p0=np.array([0.95, 0.025, 8, 26])

da = curve_fit(f, s18.ang, s18.rfl, p0, sigmaw,
 absolute_sigma=False)
print('n = ' + str(round(da[0][4])+"+/-.")
 + str(round(np.sqrt(da[0][1]),4)))
print('k = ' + str(round(da[0][1]+"+/-.")
 + str(round(np.sqrt(da[0][2]),2)))
print('tf = ' + str(round(da[0][3]+"+/-.")
 + str(round(np.sqrt(da[0][3]),2)))
print('ta = ' + str(round(da[0][4]+"+/-.")
 + str(round(np.sqrt(da[0][4]),2)))
rfit = f(s18.ang, da[0][0], da[0][1], da[0][2], da[0][3])
plt.figure()
plt.semilogy(s18.ang, s18.rfl ,'.',s18.ang, rfit , '-',
 s18.ang, sigmaw,'-r ')
plt.title('Data and Fit ')
plt.xlabel('grazing angle, deg ')
plt.ylabel('reflectance ')
plt.legend(['data', 'fit', 'sigma '])

refit with weights proportional to the data
sigmap = alpha*exp(-beta*th)
sigmaw = np.sqrt(sigmap**2+sigmac**2)
p0=np.array([0.95, 0.025, 8, 26])
da = curve_fit(f, s18.ang, s18.rfl, p0, sigmaw,
 absolute_sigma=False)
print('n = ' + str(round(da[0][4])+"+/-.")
 + str(round(np.sqrt(da[0][1]),4)))
print('k = ' + str(round(da[0][1]+"+/-.")
 + str(round(np.sqrt(da[0][2]),2)))
print('tf = ' + str(round(da[0][3]+"+/-.")
 + str(round(np.sqrt(da[0][3]),2)))
print('ta = ' + str(round(da[0][4]+"+/-.")
 + str(round(np.sqrt(da[0][4]),2)))
str(round(np.sqrt(pcov[2,2]) ,2)))
print('ta = ' + str(round(popt[3],4)) + '+' + str(round(np.sqrt(pcov[3,3]) ,2)))
rfit = f(s18.ang, popt[0], popt[1], popt[2], popt[3])
plt.figure()
plt.semilogy(s18.ang, s18.rfl, '. ', s18.ang, rfit, '−')
plt.title('Data and Fit')
plt.xlabel('grazing angle, deg')
plt.ylabel('reflectance')
plt.legend(['data', 'fit '])

Check \chi^2
chi2 = np.sum(((s18.rfl−rfit)/sigmaw)**2)
print('\chi^2 = ' + str(round(chi2,1))+ npts = "+
 str(np.size(sigmaw)))

Add Al2O3 layer
Al2O3Index = refl.Index("Al2O3")
al2o3ndx = Al2O3Index.at(s18.wavelength)
def f2(thr, n, k, tf, ta, to):
 ndx = np.array([1+0j, n+k*1j, al2o3ndx, alndx, si3n4ndx])
 th = np.array([0, tf, to, ta, 0])
 sigma = np.array([1.0, 0, 0, 0]);
 return [refl.Parratt(ndx ,th, thetad, s18.wavelength,
 0, sigma) for thetad in thr]
p0=np.array([0.95, 0.025, 8, 26, 1])
popt, pcov = curve_fit(f2, s18.ang, s18.rfl, p0, sigmaw,
 absolute_sigma=False)
print('n = ' + str(round(popt[0],4))+"+/−"+
 str(round(np.sqrt(pcov[0,0]) ,4)))
print('k = ' + str(round(popt[1],4))+"+/−"+
 str(round(np.sqrt(pcov[1,1]) ,2)))
print('tf = ' + str(round(popt[2],2))+"+/−"+
 str(round(np.sqrt(pcov[2,2]) ,2)))
print('ta = ' + str(round(popt[3],4))+"+/−"+
 str(round(np.sqrt(pcov[3,3]) ,2)))
print('to = ' + str(round(popt[4],4))+"+/−"+
 str(round(np.sqrt(pcov[4,4]) ,4))))
rfit = f2(s18.ang, popt[0], popt[1], popt[2], popt[3], popt[4])
plt.figure()
plt.semilogy(s18.ang, s18.rfl, '. ', s18.ang, rfit, '−')
plt.title('Data and Fit with Oxide Layer')
plt.xlabel('grazing angle, deg')
plt.ylabel('reflectance')
Fit Al index of refraction
def f3(thr, nf, kf, na, ka, tf, ta):
 ndx = np.array([1+0j, nf+kf*1j, na+ka*1j, si3n4ndx])
 th = np.array([0, tf, ta, 0])
 sigma = np.array([1.0, 0, 0]);
 return [refl.Parratt(ndx, th, thetad, s18.wavelength, 0, sigma) for thetad in thr]
p0=np.array([0.95, 0.025, alndx.real, alndx.imag, 8, 26])
popt, pcov = curve_fit(f3, s18.ang, s18.rfl, p0, sigmaw, absolute_sigma=False)
print('nf = ' + str(round(popt[0], 4)) + '+/-' + str(round(np.sqrt(pcov[0,0]), 4)))
print('kf = ' + str(round(popt[1], 4)) + '+/-' + str(round(np.sqrt(pcov[1,1]), 4)))
print('na = ' + str(round(popt[2], 4)) + '+/-' + str(round(np.sqrt(pcov[2,2]), 4)))
print('ka = ' + str(round(popt[3], 4)) + '+/-' + str(round(np.sqrt(pcov[3,3]), 4)))
print('tf = ' + str(round(popt[4], 4)) + '+/-' + str(round(np.sqrt(pcov[4,4]), 4)))
print('ta = ' + str(round(popt[5], 4)) + '+/-' + str(round(np.sqrt(pcov[5,5]), 4)))
rfit = f3(s18.ang, popt[0], popt[1], popt[2], popt[3], popt[4], popt[5])
plt.figure()
plt.semilogy(s18.ang, s18.rfl, '.', s18.ang, rfit, '-')
plt.title('Data and Fit Varyin Al Index')
plt.xlabel('grazing angle, deg')
plt.ylabel('reflectance')
plt.legend([['data', 'fit', 'sigma']])