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1. Introduction

This report explains how to use Python to �t re�ectance data taken in Beamline 6.3.2
at the Advanced Light Source at Lawrence Berkeley National Lab. It is based on some
classes I wrote to make the processes somewhat easier.

1.1. Python

If you don't already know at least a little Python, I would suggest reading a python
tutorial before reading this. I'll explain things a little bit along the way, but the purpose
of this document is more about �tting the data than about learning Python.

1.2. Fitting Steps

There are a couple of steps to the �tting process:

• reading in raw data

• combining raw data �les to compute θ/2θ spectra

• �tting the θ/2θ spectra to theoretical curves

• combining the �ts to derive average data values

• re�tting the data with average data values.

1.3. Re� Module

The library routines and classes you'll need to do the �tting are in the �le refl.py.
Before using these routines and classes, you'll need to import with the entire module

import r e f l

or the speci�c items you need from the module.

from r e f l import Spectrum , Index , Parratt

The refl module contains the following items.

matR a function to calculate re�ectance and transmittance from a multilayer mirror
using matrices. It is slower than Parratt if you only want the re�ectance.

Parratt a function to calculated re�ectance from a multilayer mirror.

fracs a function to calculate the fraction of s-polarized light in the synchrotron beam at
the ALS. This is mostly used internally.

Index a class returning the complex index of refraction for a material.

Run a class with the raw data from a run.
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Runs a cache of all of the run data form an ALS trip. Runs[i] is the Run numbered i.

Re�ectance a class with computed re�ectance from a set of runs.

Log a class with information from the log �le saved with a set of runs.

2. Reading Raw Data Files

Raw data �les from the ALS consists of a header line with data information followed by
four columns of numbers:

var the data being varied during the measurement. For θ/2θ measurements (our most
common ones), this is the measurement angle. For I0 measurements, this is the
wavelength. For dark current measurements, this is usually the time.

diode the signal from the diode detector

m3 the signal from the m3 mirror (usually ignored)

beam the beam current during the run (also usually ignored)

There are three classes in refl which manage these data �les for you.

2.1. Log class

The Log class parses the log �le with information about each run. The command

log = Log ( ' . . / ALSdata ' , ' Feb2018 ' )

will read the log �le in the directory ../ALSdata with the name Feb2018.log and store
it as the log object. There are various attributes stores as arrays in object.

�lename the �lename for the run

fullname the complete �lename with path for the run

comment the comment stored with the run

date the date of the run

time the time of the run

gain the log (base 10) of the gain for this run

wavelength the wavelength in nm (usually) for this run

Some of this information is copied to Run objects when they are created.
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2.2. Run class

A Run object has the raw data for a single run. It is usually accessed from the Runs class
rather than directly. This permits read caching. It has the four attributes mentioned
above for each run (stored as np.array objects) as well as the wavelength, comment, and
gain from the log �le. The Run class has a plot method de�ned which will plot the data
for a run using the comment as the plot title. Figure 1 was generated using the following
command.

runs [ 1 0 2 ] . p l o t ( )

Figure 1: raw data from run 102

2.3. Runs class

The Run objects are returned by the Runs class which reads the �les when needed and
caches their contents for subsequent calls. After executing

runs = Runs ( l og )

the individual run information can be accessed as runs[rnum] where rnum is the run
number. Thus, the gain for run 11 would be runs[11].gain.
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3. Creating Re�ectance Spectra

Re�ectance spectra are created with with the Re�ectance class by combining various
runs to �nd I, I0, and associated gains, and the associated dark currents.
I will illustrate how this is done by creating two single spectra and them combining

and �ltering them. I've used the data taken on Feb 24, 2018 at the Advanced Light
Source for sample 180221A at 18 nm as the example.

3.1. Creating a Single Spectrum

The �rst step is to import the libraries needed for the analysis. We will re� for this
library, numpy for �nding the mean of arrays, matplotlib to plot the results, and scipy
for the �tting routine.

import r e f l
import numpy as np
import matp lo t l i b . pyplot as p l t
from sc ipy . opt imize import curve_f i t

Next we need to create a Log and Runs objects with the data from the run.

l og = r e f l . Log ( ' . . / ALSdata ' , ' Feb2018 ' )
runs = r e f l . Runs ( l og )

The next step is to create a tuple of dark currents from the run. The dark currents were
in runs 101 (gain 7), 98 (gain 8), 99 (gain 9), and 100 (gain 10). The dark current is
computed as the mean diode signal for a dark current run.

d7=np .mean( runs [ 1 0 1 ] . d iode )
d8=np .mean( runs [ 9 8 ] . d iode )
d9=np .mean( runs [ 9 9 ] . d iode )
d10=np .mean( runs [ 1 0 0 ] . d iode )
dark=(d7 , d8 , d9 , d10 )

There were three runs with θ/2θ data for this sample at 18 nm. Run 119 was taken
with a lower gain than runs 120 and 121. Runs 120 and 121 don't have any data for the
lowest angles. I'll create separate spectra for these two sets of runs to make it easier to
�lter and combine them. The I0 data for this �lter and sample is in run 97.

s18a = r e f l . Re f l e c tance ( ( runs [ 1 1 9 ] , ) , runs [ 9 7 ] , dark )
p l t . f i g u r e ( )
p l t . semi logy ( s18a . ang , s18a . r f l )
p l t . t i t l e ( ' Spectrum 18a ' )
s18b = r e f l . Re f l e c tance ( ( runs [ 1 2 0 ] , runs [ 1 2 1 ] ) , runs [ 9 7 ] , dark )
p l t . f i g u r e ( )
p l t . semi logy ( s18b . ang , s18b . r f l )
p l t . t i t l e ( ' Spectrum 18b ' )

The plot commands in the above listing produced the plots in Figures 2 and 3
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Figure 2: re�ectance data from run 119

3.2. Combining Spectra

By looking at the the raw data, I decided that the best data for angles of 18◦ or less is
run 119 and the best data for angles greater than 18◦ is the combination of runs 120 and
121. To combine the runs, I �ltered spectrum s18a to only have angles up to 18◦. I also
eliminated the angles less than two degrees where it is unreliable. I �ltered the spectrum
18b to only include the data for angles greater than 18◦. I then added the two spectra
together to get a combined spectrum s18 which is shown in Figure 4

s18 = s18a . f i l t e r (2 , 18 ) + s18b . f i l t e r ( 18 . 05 , 80 )
s18 . p l o t ( )

4. Fitting the Data

Once we have the re�ectance spectrum, we need to �nd the materials properties that pro-
vide the best match between our re�ectance measurements and theoretical calculations.
We call this process data �tting.

4.1. Mirror Model

Based on our fabrication process and the measurements we made prior to going to ALS,
we think this sample has a thick Si3N4 substrate followed by a layer of Al and AlF3.We
are not sure about the thickness of the Al or AlF3 layers, but we think the have respective
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Figure 3: re�ectance data from combining runs 120 and 121

thicknesses of 8 nm and 26 nm. To start with we will assume the Al is unoxidized and
has a complex index of refraction given by the data �le in volta.
The re� library has two routines for computing re�ectance, Parratt and matR. We'll

use Parratt for this example since we only care about re�ectance and now about trans-
mittance in this case. The Parratt function takes the following arguments.

n a numpy array with the index of refraction of the various layers. It starts with the
index of refraction of the incident layer (which is a vacuum in our case) and works
its way down to the substrate.

x a numpy array with the thicknesses of each mirror layer in nanometers. The thickness
of the incident (vacuum) layer and substrate layers should be set to 0. This is be-
cause we are interested in the �eld right at the interface; not after is has penetrated
into those layers.

thetad the incident angle measured from grazing in degrees

lam the wavelength in nanometers

frs the fraction of s polarization in the beam. If left to its default value of 0, the Gullikson
formula is used.

sigma an array or tuple with the rms roughness of each interface measured in nm. They
should be in the same order as the layers themselves. There is one less interface
than layers, so this array will be one smaller than the n and x arrays.
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Figure 4: re�ectance data from combining runs 120 and 121

4.2. Index of Refraction

We will look up the index of refraction (either as starting guesses or assumed exact
values) from tables we store on the volta server. The Index class in re� will read these
values in these tables from volta. They have an at function which interpolates between
the values in these tables to estimate the index of refraction at our desired wavelength.
This code creates Index objects for AlF3, Al, and Si3N4.

# index ob j e c t s
AlF3Index = r e f l . Index ("AlF3")
AlIndex = r e f l . Index ("Al ")
Si3N4Index = r e f l . Index (" Si3N4 ")
# in t e r po l a t ed va lue s at 18 nm
al f3ndx = AlF3Index . at ( s18 . wavelength )
alndx = AlIndex . at ( s18 . wavelength )
si3n4ndx = Si3N4Index . at ( s18 . wavelength )

4.3. Create Fit Function

The curve_fit function will call a function we need to write to compute the theoretical
re�ectance using the current value of the parameters it is trying to �t. The function
will have the desired angles as its �rst argument and successive parameters values as
subsequent arguments. Our parameters for this �rst �t will be the read and imaginary
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parts of the AlF3 index of refraction (n and k), the thickness of the AlF3 layer (tf), and
the thickness of the Al layer (ta).

de f f ( thr , n , k , t f , ta ) :
ndx = np . array ([1+0 j , n+k∗1 j , alndx , s i3n4ndx ] )
th = np . array ( [ 0 , t f , ta , 0 ] )
sigma = ( 1 . 0 , 0 , 0 ) ;
r e turn [ r e f l . Parratt ( ndx , th , thetad , s18 . wavelength , 0 ,

sigma ) f o r thetad in thr ]

The function uses the passed parameters to set up the index of refraction array and
the thickness array for the call to Parratt. Parratt is then called to compute the
re�ectance with these parameters at the passed values for theta. If we want to �t di�erent
parameters, we'll have to edit this function because its calling arguments will change.

4.4. Weights

Because of the wide range of values covered by the re�ectance and the obvious noise �oor
at the highest angles, it is important to use a weighted �t. The challenge, which involves
as much art as science, is to choose a reasonable set of weights. Based on experience and
other studies, I'm inclined to use a weight with two components in quadrature. The �rst
will be an exponentially decreasing function whose log has the same slope as the average
log of the slope of the data. The second term will be a constant value with a magnitude
of the lowest data points.

σi =
√
σ2p + σ2c (1)

σp = α exp(−βθi) (2)

σc = γ (3)

I'll start with α = 0.05, β = 0.097, and γ = 5× 10−5. I chose α of this size because a 5%
error seems like a good starting guess. β was chosen by eyeballing the slope of the data
in Figure 4 and estimating the average slope of the data. γ was chosen by estimating
the size of the noise around the lowest data points near 70◦. Here is the Python code to
implement this.

alpha = 0 .2
beta = 0.097
gamma = 5e−5
sigmap = np . array ( [ alpha∗np . exp(−beta∗ th ) f o r th in s18 . ang ] )
sigmac = gamma
sigmaw = np . sq r t ( sigmap∗∗2+sigmac ∗∗2)

4.5. Fit

The last thing we need for the �t are starting guesses for the �r parameters.I used
approximated values of n and k from the table values in volta. This thickness estimates
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came from information supplied by David Allred from ellipsometry data. These are
stored in the array p0.

p0=np . array ( [ 0 . 9 5 , 0 . 025 , 8 , 2 6 ] )

Finally, the curve_fit routine is called using the above parameters.

popt , pcov = curve_f i t ( f , s18 . ang , s18 . r f l , p0 , sigmaw ,
absolute_sigma=False )

It has the following arguments:

f the function to compute the re�ectance given the parameters

s18.ang the angles at which the re�ectance was measured

s18.r� the measured re�ectance

p0 the initial values of the �t parameters

sigmaw the weight for each point

absolute_sigma whether the weight should be considered as the

popt returned value of the optimum parameters

pcov returned value of the estimated covariance matrix absolute uncertainty or a relative
value. For this initial �t where I do not yet know the residual, using a relative value
makes sense.

Figure 5 shows the results of this �t and the value of sigmaw I used. The elements of
popt are the returned valued of the optimal �t parameters. The diagonal elements of
the covariance matrix in pcov give the estimated uncertainty in these parameters. This
code will print those values.

p r i n t ( ' n = '+ s t r ( round ( popt [0] ,4))+"+/−"+
s t r ( round (np . s q r t ( pcov [ 0 , 0 ] ) , 4 ) ) )

p r i n t ( ' k = '+ s t r ( round ( popt [1] ,4))+"+/−"+
s t r ( round (np . s q r t ( pcov [ 1 , 1 ] ) , 2 ) ) )

p r i n t ( ' t f = '+ s t r ( round ( popt [2] ,2))+"+/−"+
s t r ( round (np . s q r t ( pcov [ 2 , 2 ] ) , 2 ) ) )

p r i n t ( ' ta = '+ s t r ( round ( popt [3] ,4))+"+/−"+
s t r ( round (np . s q r t ( pcov [ 3 , 3 ] ) , 2 ) ) )

This returns the following:

n = 0.9784+/−0.0011
l = 0.0301+/−0.0
t f = 8.93+/−0.1
ta = 24.5396+/−0.21
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Figure 5: data, initial �t, and weights for sample 180221A at 18 nm

These are close to our original parameter guesses and have reasonable uncertainties. The
code use to create the plot in Figure 5 is as follows.

r f i t = f ( s18 . ang , popt [ 0 ] , popt [ 1 ] , popt [ 2 ] , popt [ 3 ] )
p l t . f i g u r e ( )
p l t . semi logy ( s18 . ang , s18 . r f l , ' . ' , s18 . ang , r f i t , '− ' ,

s18 . ang , sigmaw , '− r ' )
p l t . t i t l e ( ' Data and Fit ' )
p l t . x l ab e l ( ' g raz ing angle , deg ' )
p l t . y l ab e l ( ' r e f l e c t an c e ' )
p l t . l egend ( [ ' data ' , ' f i t ' , ' sigma ' ] )

The function f was called to compute the �t function using the optimal parameter values
returned by curve_fit.

4.6. Discussion of Results

The �t shows there are some obvious problems with the model we used for our data.
There is a relatively large di�erence between the depth of the �rst minimum near 10circ.
This is probably more than just an alignment error. Secondly, the minimum values in
the measured data are not as deep as calculated by the model. For valleys which are this
deep and with such large slopes, this can be due variations in thin �lm thickness over the
size of the beam spot and the angular spread in the incident beam. Finally, the location
of the interference minima don't match the data very well. This is probably an artifact
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of our chosen weights and an error in the rest of the model. To understand the artifact
in the weight, not that the weight at 20◦ is about 300 times larger than the �t minimum
at that point. With our 5% guess in the uncertainty, this is well within the bounds of
what we'd expect. We can force a better �t of these minima by having the weights be
proportional to the measured data. Here is the code for a re�t with those weights.

sigmap = alpha∗np . abs ( s18 . r f l )
sigmaw = np . sq r t ( sigmap∗∗2+sigmac ∗∗2)
popt , pcov = curve_f i t ( f , s18 . ang , s18 . r f l , p0 , sigmaw ,

absolute_sigma=False )

The �t is shown in Figure 6. The optimal �r parameters were

Figure 6: re�t for sample 180221A at 18 nm using weights proportional to the data

n = 0.9768+/−0.0011
k = 0.0249+/−0.0
t f = 8.67+/−0.1
ta = 25.3344+/−0.15

Not that forcing a better �t to the valleys brings the imaginary part of the AlF3 index
of refraction closer to the tabulated values.
We can check the value of β we chose by calculating

χ2 =
∑
i

(
fi − yi
σi

)2

. (4)
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This should be approximately equal to the number of data points if β was chosen correctly
(at least if the errors were statistical). With this code

ch i2 = np . sum ( ( ( s18 . r f l −r f i t )/ sigmaw )∗∗2)
p r i n t ( ' ch i ∗∗2 = '+ s t r ( round ( chi2 ,1))+" npts = "+

s t r (np . s i z e ( sigmaw ) ) )

I get χ2 = 941.7 with 195 data points. This says an 11% error would have been a better
guess of β than the 5% value I used.

4.7. Improved Model

It's probable that the Al was at least partially oxidized. We could put this in out model
as the addition of an Al2O3 layer on top of the Al, or as an altered e�ective index of
refraction for the Al. Let's try both and see which improves the �t the most. First we'll
try �tting adding additional oxide layer. The following code allows us to add an oxide
layer and �t its thickness.

Al2O3Index = r e f l . Index ("Al2O3")
al2o3ndx = Al2O3Index . at ( s18 . wavelength )
de f f 2 ( thr , n , k , t f , ta , to ) :

ndx = np . array ([1+0 j , n+k∗1 j , al2o3ndx , alndx , s i3n4ndx ] )
th = np . array ( [ 0 , t f , to , ta , 0 ] )
sigma = np . array ( [ 1 . 0 , 0 , 0 , 0 ] ) ;
r e turn [ r e f l . Parratt ( ndx , th , thetad , s18 . wavelength , 0 , sigma )

f o r thetad in thr ]
p0=np . array ( [ 0 . 9 5 , 0 . 025 , 8 , 26 , 1 ] )
popt , pcov = curve_f i t ( f2 , s18 . ang , s18 . r f l , p0 , sigmaw ,

absolute_sigma=False )

The �t indeed improves, as shown in Figure 7, but does so by requiring an unphysical
value for the �uoride thickness.

n = 1.3424+/−0.0291
k = 0.1928+/−0.02
t f = 0.19+/−0.03
ta = 26.3502+/−0.14
to = 5.4362+/−0.0802

For this approach to work, we should �nd average values of the layer thickness as de-
scribed in Section 5 and then re�t using these average values as described in Section 6.
Let's see what happens if we allow the index of refraction of the Al layer to change

rather than adding an oxide layer. Here is the code for that.

de f f 3 ( thr , nf , kf , na , ka , t f , ta ) :
ndx = np . array ([1+0 j , nf+kf ∗1 j , na+ka∗1 j , s i3n4ndx ] )
th = np . array ( [ 0 , t f , ta , 0 ] )
sigma = np . array ( [ 1 . 0 , 0 , 0 ] ) ;

13



Figure 7: �t for sample 180221A at 18 nm using an Al2O3 layer

re turn [ r e f l . Parratt ( ndx , th , thetad , s18 . wavelength , 0 , sigma )
f o r thetad in thr ]

p0=np . array ( [ 0 . 9 5 , 0 . 025 , alndx . r ea l , alndx . imag , 8 , 2 6 ] )
popt , pcov = curve_f i t ( f3 , s18 . ang , s18 . r f l , p0 , sigmaw ,

absolute_sigma=False )

As shown in Figure 8, this improves the �t a lot for the low angles, although the �t at
the highest angles is still problematic. Here are the �t values.

nf = 0.9809+/−0.0008
kf = 0.036+/−0.0008
na = 1.0019+/−0.0004
ka = 0.0011+/−0.0004
t f = 8.82+/−0.0675
ta = 25.2063+/−0.1068

The �t constants are physically reasonable when we note that the index of refraction of
Al at 18 nm is 1.0087 + 0.0024i. The best model of the mirror in the end will probably
use a �tted value for the Al index of refraction to compensate for the fact that our Al
probably isn't perfect and a thin oxide layer as well.
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Figure 8: �t for sample 180221A at 18 nm using an Al2O3 layer

5. Finding Average Values

The thickness of the mirror �lms should change with wavelength, the the index of refrac-
tion of the mirror layers will. The best overall strategy for �tting the data would be to �t
the thickness at multiple wavelengths and then use an average thickness as characteristic
for all layers. then we should go back and re�t the data keeping the thicknesses constant
(or maybe only varying the thickness of the Al2O3 layer). By thus iterating, we should
get a better physical model.
I'll complete this section after a student goes through and actually does these �ts as

suggested for the rest of the wavelengths we measured.

6. Re�tting Data

This section will have the results of the �nal �ts when we've only �t the index of refraction
and kept the layer thicknesses the same for all samples.

A. Complete Python Code

This is the complete python code I used for the analysis described here.

# −∗− coding : utf−8 −∗−
"""
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Created on Thu Apr 26 11 : 50 : 40 2018

@author : r t u r l e y
"""

import r e f l
import numpy as np
import matp lo t l i b . pyplot as p l t
from sc ipy . opt imize import curve_f i t

# log = r e f l . Log ( ' . . / ALSdata ' , ' Feb2018 ' ) # NSF computer
l og = r e f l . Log ( ) # BYU Computer
runs = r e f l . Runs ( l og )

# dark cur r ent c a l c u l a t i o n
d7=np .mean( runs [ 1 0 1 ] . d iode )
d8=np .mean( runs [ 9 8 ] . d iode )
d9=np .mean( runs [ 9 9 ] . d iode )
d10=np .mean( runs [ 1 0 0 ] . d iode )
dark=(d7 , d8 , d9 , d10 )

# runs
s18a = r e f l . Re f l e c tance ( ( runs [ 1 1 9 ] , ) , runs [ 9 7 ] , dark )
p l t . f i g u r e ( )
p l t . semi logy ( s18a . ang , s18a . r f l )
p l t . t i t l e ( ' Spectrum 18a ' )
s18b = r e f l . Re f l e c tance ( ( runs [ 1 2 0 ] , runs [ 1 2 1 ] ) , runs [ 9 7 ] , dark )
p l t . f i g u r e ( )
p l t . semi logy ( s18b . ang , s18b . r f l )
p l t . t i t l e ( ' Spectrum 18b ' )

s18 = s18a . f i l t e r (2 , 18 ) + s18b . f i l t e r ( 18 . 05 , 80 )
s18 . p l o t ( )

# index ob j e c t s
AlF3Index = r e f l . Index ("AlF3")
AlIndex = r e f l . Index ("Al ")
Si3N4Index = r e f l . Index (" Si3N4 ")
# in t e r po l a t ed va lue s at 18 nm
al f3ndx = AlF3Index . at ( s18 . wavelength )
alndx = AlIndex . at ( s18 . wavelength )
si3n4ndx = Si3N4Index . at ( s18 . wavelength )
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# f i t func t i on
de f f ( thr , n , k , t f , ta ) :

ndx = np . array ([1+0 j , n+k∗1 j , alndx , s i3n4ndx ] )
th = np . array ( [ 0 , t f , ta , 0 ] )
sigma = np . array ( [ 1 . 0 , 0 , 0 ] ) ;
r e turn [ r e f l . Parratt ( ndx , th , thetad , s18 . wavelength , 0 , sigma )

f o r thetad in thr ]

alpha = 0 .2
beta = 0.097
gamma = 5e−5
sigmap = np . array ( [ alpha∗np . exp(−beta∗ th ) f o r th in s18 . ang ] )
sigmac = gamma
sigmaw = np . sq r t ( sigmap∗∗2+sigmac ∗∗2)
p0=np . array ( [ 0 . 9 5 , 0 . 025 , 8 , 2 6 ] )
popt , pcov = curve_f i t ( f , s18 . ang , s18 . r f l , p0 , sigmaw ,

absolute_sigma=False )
p r i n t ( ' n = '+ s t r ( round ( popt [0] ,4))+"+/−"+

s t r ( round (np . s q r t ( pcov [ 0 , 0 ] ) , 4 ) ) )
p r i n t ( ' k = '+ s t r ( round ( popt [1] ,4))+"+/−"+

s t r ( round (np . s q r t ( pcov [ 1 , 1 ] ) , 2 ) ) )
p r i n t ( ' t f = '+ s t r ( round ( popt [2] ,2))+"+/−"+

s t r ( round (np . s q r t ( pcov [ 2 , 2 ] ) , 2 ) ) )
p r i n t ( ' ta = '+ s t r ( round ( popt [3] ,4))+"+/−"+

s t r ( round (np . s q r t ( pcov [ 3 , 3 ] ) , 2 ) ) )
r f i t = f ( s18 . ang , popt [ 0 ] , popt [ 1 ] , popt [ 2 ] , popt [ 3 ] )
p l t . f i g u r e ( )
p l t . semi logy ( s18 . ang , s18 . r f l , ' . ' , s18 . ang , r f i t , '− ' ,

s18 . ang , sigmaw , '− r ' )
p l t . t i t l e ( ' Data and Fit ' )
p l t . x l ab e l ( ' g raz ing angle , deg ' )
p l t . y l ab e l ( ' r e f l e c t an c e ' )
p l t . l egend ( [ ' data ' , ' f i t ' , ' sigma ' ] )

# r e f i t with weights p ropo r t i ona l to the data
sigmap = alpha∗np . abs ( s18 . r f l )
sigmaw = np . sq r t ( sigmap∗∗2+sigmac ∗∗2)
popt , pcov = curve_f i t ( f , s18 . ang , s18 . r f l , p0 , sigmaw ,

absolute_sigma=False )
p r i n t ( ' n = '+ s t r ( round ( popt [0] ,4))+"+/−"+

s t r ( round (np . s q r t ( pcov [ 0 , 0 ] ) , 4 ) ) )
p r i n t ( ' k = '+ s t r ( round ( popt [1] ,4))+"+/−"+

s t r ( round (np . s q r t ( pcov [ 1 , 1 ] ) , 2 ) ) )
p r i n t ( ' t f = '+ s t r ( round ( popt [2] ,2))+"+/−"+
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s t r ( round (np . s q r t ( pcov [ 2 , 2 ] ) , 2 ) ) )
p r i n t ( ' ta = '+ s t r ( round ( popt [3] ,4))+"+/−"+

s t r ( round (np . s q r t ( pcov [ 3 , 3 ] ) , 2 ) ) )
r f i t = f ( s18 . ang , popt [ 0 ] , popt [ 1 ] , popt [ 2 ] , popt [ 3 ] )
p l t . f i g u r e ( )
p l t . semi logy ( s18 . ang , s18 . r f l , ' . ' , s18 . ang , r f i t , '− ')
p l t . t i t l e ( ' Data and Fit ' )
p l t . x l ab e l ( ' g raz ing angle , deg ' )
p l t . y l ab e l ( ' r e f l e c t an c e ' )
p l t . l egend ( [ ' data ' , ' f i t ' ] )

# Check \ ch i ^2
ch i2 = np . sum ( ( ( s18 . r f l −r f i t )/ sigmaw )∗∗2)
p r i n t ( ' ch i ∗∗2 = '+ s t r ( round ( chi2 ,1))+" npts = "+

s t r (np . s i z e ( sigmaw ) ) )

# Add Al2O3 l ay e r
Al2O3Index = r e f l . Index ("Al2O3")
al2o3ndx = Al2O3Index . at ( s18 . wavelength )
de f f 2 ( thr , n , k , t f , ta , to ) :

ndx = np . array ([1+0 j , n+k∗1 j , al2o3ndx , alndx , s i3n4ndx ] )
th = np . array ( [ 0 , t f , to , ta , 0 ] )
sigma = np . array ( [ 1 . 0 , 0 , 0 , 0 ] ) ;
r e turn [ r e f l . Parratt ( ndx , th , thetad , s18 . wavelength ,

0 , sigma ) f o r thetad in thr ]
p0=np . array ( [ 0 . 9 5 , 0 . 025 , 8 , 26 , 1 ] )
popt , pcov = curve_f i t ( f2 , s18 . ang , s18 . r f l , p0 , sigmaw ,

absolute_sigma=False )
p r i n t ( ' n = '+ s t r ( round ( popt [0] ,4))+"+/−"+

s t r ( round (np . s q r t ( pcov [ 0 , 0 ] ) , 4 ) ) )
p r i n t ( ' k = '+ s t r ( round ( popt [1] ,4))+"+/−"+

s t r ( round (np . s q r t ( pcov [ 1 , 1 ] ) , 2 ) ) )
p r i n t ( ' t f = '+ s t r ( round ( popt [2] ,2))+"+/−"+

s t r ( round (np . s q r t ( pcov [ 2 , 2 ] ) , 2 ) ) )
p r i n t ( ' ta = '+ s t r ( round ( popt [3] ,4))+"+/−"+

s t r ( round (np . s q r t ( pcov [ 3 , 3 ] ) , 2 ) ) )
p r i n t ( ' to = '+ s t r ( round ( popt [4] ,4))+"+/−"+

s t r ( round (np . s q r t ( pcov [ 4 , 4 ] ) , 4 ) ) )
r f i t = f2 ( s18 . ang , popt [ 0 ] , popt [ 1 ] , popt [ 2 ] , popt [ 3 ] , popt [ 4 ] )
p l t . f i g u r e ( )
p l t . semi logy ( s18 . ang , s18 . r f l , ' . ' , s18 . ang , r f i t , '− ')
p l t . t i t l e ( ' Data and Fit with Oxide Layer ' )
p l t . x l ab e l ( ' g raz ing angle , deg ' )
p l t . y l ab e l ( ' r e f l e c t an c e ' )
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p l t . l egend ( [ ' data ' , ' f i t ' , ' sigma ' ] )

# Fit Al index o f r e f r a c t i o n
de f f 3 ( thr , nf , kf , na , ka , t f , ta ) :

ndx = np . array ([1+0 j , nf+kf ∗1 j , na+ka∗1 j , s i3n4ndx ] )
th = np . array ( [ 0 , t f , ta , 0 ] )
sigma = np . array ( [ 1 . 0 , 0 , 0 ] ) ;
r e turn [ r e f l . Parratt ( ndx , th , thetad , s18 . wavelength ,

0 , sigma ) f o r thetad in thr ]
p0=np . array ( [ 0 . 9 5 , 0 . 025 , alndx . r ea l , alndx . imag , 8 , 2 6 ] )
popt , pcov = curve_f i t ( f3 , s18 . ang , s18 . r f l , p0 , sigmaw ,

absolute_sigma=False )
p r i n t ( ' nf = '+ s t r ( round ( popt [0] ,4))+"+/−"+

s t r ( round (np . s q r t ( pcov [ 0 , 0 ] ) , 4 ) ) )
p r i n t ( ' k f = '+ s t r ( round ( popt [1] ,4))+"+/−"+

s t r ( round (np . s q r t ( pcov [ 1 , 1 ] ) , 4 ) ) )
p r i n t ( ' na = '+ s t r ( round ( popt [2] ,4))+"+/−"+

s t r ( round (np . s q r t ( pcov [ 2 , 2 ] ) , 4 ) ) )
p r i n t ( ' ka = '+ s t r ( round ( popt [3] ,4))+"+/−"+

s t r ( round (np . s q r t ( pcov [ 3 , 3 ] ) , 4 ) ) )
p r i n t ( ' t f = '+ s t r ( round ( popt [4] ,4))+"+/−"+

s t r ( round (np . s q r t ( pcov [ 4 , 4 ] ) , 4 ) ) )
p r i n t ( ' ta = '+ s t r ( round ( popt [5] ,4))+"+/−"+

s t r ( round (np . s q r t ( pcov [ 5 , 5 ] ) , 4 ) ) )
r f i t = f3 ( s18 . ang , popt [ 0 ] , popt [ 1 ] , popt [ 2 ] , popt [ 3 ] ,

popt [ 4 ] , popt [ 5 ] )
p l t . f i g u r e ( )
p l t . semi logy ( s18 . ang , s18 . r f l , ' . ' , s18 . ang , r f i t , '− ')
p l t . t i t l e ( ' Data and Fit Varyin Al Index ' )
p l t . x l ab e l ( ' g raz ing angle , deg ' )
p l t . y l ab e l ( ' r e f l e c t an c e ' )
p l t . l egend ( [ ' data ' , ' f i t ' , ' sigma ' ] )
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