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1 Introduction

The proposed LUVOIR mission calls for a large aperture mirror capable of reflecting
light from the deep ultraviolet to the near infrared. A strong candidate for that mirror
would be aluminum, which has a high reflectance over this entire range. Unfortunately,
aluminum readily oxidizes in the atmosphere. A thin layer of aluminum oxide, AloQOs,
is transparent in the visible and infrared, but is strongly absorbing in the ultraviolet,
significantly limiting the usefulness of such a mirror in the deep ultraviolet. In her
Master’s Thesis[1], Margaret Miles showed that a thin layer of AIF on top of the aluminum
immediately after deposition provides an effective barrier to slow the aluminum oxidation
and still all good light reflection in the deep ultraviolet. It is instructive to examine
the oxidation rate of bare aluminum to compare it to the rates Miles measured in her
thesis. A good point of comparison is the study made by Madden, et al. in which they
measured the reflectance of evaporated aluminum immediately after deposition without
exposing the sample to atmosphere|2]. This report is a review of the Madden work and
a computation of oxidation rates derived from that.

2 Madden’s Approach

Madden evaporated 70-90 nm aluminum films onto a substrate in a vacuum system with a
base pressure of 2 x 10~ torr. Immediately after deposition, the chamber pressure would
rise to 3-6x107° torr and then drop before 1 x 1076 torr with 5 sec. Madden attributes
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Figure 1: Reflectance of Al film under high vacuum conditions

the rise in chamber pressure to residual gas generated by the high temperatures of the
materials near his heating filaments. They used a hollow cathode source to generate the
vacuum ultraviolet (VUV) light for their measurements limiting them to spectral lines
from hydrogen, helium, and argon.

Madden used a photomultiplier tube imaging the fluorescence from a phosphored plate
to detect the VUV light reflecting from the sample. Since his detector was sensitive to
residual light from the remaining glow from the heating elements used for evaporation, the
light from the monochromater was chopped to allow for use of phase-sensitive detection
to reject residual light from the filaments and other background sources. This allowed
them to begin measuring the mirror reflectance within 10 seconds of evaporation.

3 Madden’s Measurements

Madden measured the reflectance of the Al film at a number of wavelengths between
102.5 nm and 200 nm. For this analysis, I focussed on the measurements at 102.5 nm,
the shorted wavelength he studied and the wavelength at which the light attenuation
from oxide formation should be the greatest. I utilized two figures from his paper which
I digitized by hand:

e Madden’s Figure 4 which shows the reflectance of the mirrors kept in a high vacuum
environment as a function of time up to 40 minutes from the time of deposition.
My digitized data is shown in my Figure 1 and in Tables 1 and 2 .



‘ time(min.) ‘ percent reflectance

0.273 84.06
0.395 83.13
0.546 81.87
0.789 80.09
1.00 78.49
1.24 76.72
1.31 75.63
1.64 74.19
1.94 73.35
2.43 72.08
3.04 70.99
3.73 69.89
4.52 68.96
5.19 68.37
5.98 67.62
6.71 66.94
7.53 66.43
8.29 65.76
9.05 65.42
9.56 65.00
10.41 64.58
10.99 64.07
11.96 63.57
12.72 63.06
13.75 62.72
14.51 62.30
15.51 61.88
16.27 61.63
17.40 61.20
18.25 60.87
19.34 60.36
20.16 99.94
21.10 59.77
21.71 59.52
22.47 59.43
23.28 59.18
24.22 08.84
24.92 58.59
26.08 08.34
26.87 58.08

Table 1: Reflectance of Al film under high vacuum conditions



‘ time(min.) ‘ percent reflectance

28.02 57.92
28.87 97.58
29.69 07.24
30.90 o7.07
31.88 96.90
32.76 96.57
33.73 56.31
34.55 56.14
35.64 56.14
36.73 55.55
37.74 95.30
38.49 95.22
39.04 95.13
39.53 04.96
39.92 54.88

Table 2: Reflectance of Al film under high vacuum conditions (continued).

e Madden’s Figure 12 which includes data on the reflectance of the aluminum films
in air as a function of time. My digitized data is shown in my Figure 2 and Table 3.

4 Computed Oxidation Rates

Madden didn’t specifically state the angle of incidence for the reflectances reported in
Tables 4 and 12 in his paper. I've assumed normal incidence. Since the theoretical
reflectance increases as the angle approaches the grazing angle, this would make my
computed oxide thicknesses a minimum possible thickness. I used interpolated data
from CXRO|3] and Palik[4] to get the index of refraction of Al and Al,O3 to compute
the thickness of the oxide assuming a planar surface with no roughness. The calculation
was done using the Fresnel coefficients at each interface and then the Parratt|5| formula
to combine the effects for each interface in the stack. The thickness of the oxide layer
was adjusted for time until the computed reflectance matched the measured reflectance.

Figure 3 is a plot of the oxide thickness as a function of time for the sample kept in
a high vacuum. Figure 4 is a plot of the same data using a logarithmic time axis. This
illustrates the almost logarithmic growth of the sample. Here is a copy of the exported
data from the calculation. The first column is the time in minutes and the second column
the sample thickness in nm.

0.273224044 0.137445732
0.394656952 0.153933787
0.546448087 0.176631528
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Figure 2: Reflectance of aluminum film exposed to atmosphere.

’ time (hours) ‘ reflectance (percent) ‘

-0.06 31.10
0.0 30.27
0.12 29.10
0.29 27.11
0.42 26.25
0.47 25.50
0.66 24.56
0.81 23.78
1.06 23.00
1.24 22.26
1.54 21.67
1.86 21.08
2.21 20.61
2.81 20.69
3.18 20.69
3.98 20.46
4.58 20.73
4.99 20.50
5.28 20.34

Table 3: Reflectance of aluminum film exposed to atmosphere.
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Figure 3: Oxide thickness of sample in high vacuum.
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Figure 4: Oxide thickness of sample in high vacuum with a logarithmic time axis.
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Figure 5 is a plot of the oxide thickness as a function of time for the sample exposed
to air. Figure 6 is a plot of the same data using a logarithmic time axis. They show
logarithmic growth of a sample up to about 100 hours and then a saturation in the oxide
growth. The exported data from the computation follows. The first column in the time
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Figure 5: Oxide thickness of the sample in air.

in hours and the second column is the computed thickness in nm.
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Figure 6: Oxide thickness of the sample in air with a logarithmic time axis.

63.30488751 1.799510692
74.47633825 1.836072945
92.35065943 1.865639342
111.7145074 1.89585848

132.5678821 1.920526328
168.3165244 1.916383743
190.6594259 1.916383743
239.0690458 1.928849731
274.8176881 1.914317191
299.3948798 1.926764073
316.5244375 1.935126089
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